
The Transition of Application Programs From COBOL to a Fourth

Generation Language

Spencer Rugaber Srinivas Doddapaneni

College of Computing

Georgia Institute of Technology

Atlanta� GA �����

Abstract

It is becoming increasingly desirable to move older

application programs from their traditional mainframe

execution environments to networked workstations�

These management information systems are most of�

ten written in COBOL and store their data in �les� A

networked environment enables the use of a relational

database management system and its fourth genera�

tion access language� SQL� A conceptual framework

is described that comprises a variety of strategies for

making such a transition� Decision criteria for select�

ing among them are then presented� Finally� a variety

of experiments intended to explore the strategies are

recounted� The experiments include e�orts to auto�

mate parts of the process�

� Motivation and Background

The advantages of moving existing COBOL main�
frame management information systems to a fourth
generation language ��GL� environment based on a re�
lational database management system �RDBMS� are
both economic and technical�

� Distributed access� The data and procedures pro�
vided by an RDBMS application are available to
other programs and people� The programs and
people may be geographically distributed�

� Transportability� An RDBMS typically sup�
ports the standard database query language�
SQL� This enhances vendor and platform inde�
pendence� thereby increasing �exibility�

� Database features� An RDBMS supports a vari�
ety of services that are not likely to be available

in a standalone application program� Typical fea�
tures include security� data integrity� rollback and
crash recovery� and locking�

� Increased abstractness� Many application fea�
tures present in COBOL programs can be de�
scribed declaratively or avoided altogether when
using a �GL� For example� an RDBMS requires
explicit models of the data it contains� Some of
this information is available as �le descriptions
in the COBOL code� but it is often very con�
crete� and more conceptual aspects of the data
are present only implicitly in the procedural code�
Moreover� once data have been moved from �les
into databases� enterprise�wide data integration
can be addressed�

� An RDBMS also provides a variety of functions
that have to be coded explicitly in a COBOL pro�
gram� For example� a forms�based� data entry
tool can replace much data entry and validation
code� Likewise� a report generator can replace
code that explicitly formats output reports� and
query operations can replace complex procedural
code�

� Improved maintainability� Estimates indicate
that several hundred billion lines of source code
exist in the world and that seventy percent of it
is written in COBOL�	
��

The largest cost factor in software development
is maintaining existing programs after they are
delivered� Up to �� of life cycle cost may be
expended on such maintenance� Moreover� main�
tenance costs are directly related to the amount of
code being maintained���� In section ��� we show
that a �GL program can be signi�cantly smaller
than the corresponding COBOL program� Hence�
it should be much less expensive to maintain�



� Simpli�ed use� Data for application programs can
be entered and validated on personal computers
much more quickly and cheaply than in a batch
processing environment on a mainframe� An ex�
periment to support this assertion is described in
section ���

��� Army Management Information Sys�
tems

To investigate these issues� we have undertaken a
series of experiments� In particular� we have exam�
ined U� S� Army STAMISs� A STAMIS is a STandard
Army Management Information System� Of the ���
STAMISs listed in the STAMOD database� ��� were
written at least partially in COBOL� When all sys�
tems and variants are considered� the average size of
a STAMIS is 	
� thousand lines of code� Each such
system is broken up into separate programs� The av�
erage number of programs per system is ���� Of the
original systems� �� already access a database of some
sort� These databases range from large�scale� third
generation systems like DMS��

 to personal com�
puter record managers like DBase� Some systems al�
ready access an RDBMS such as Oracle or Informix�
In summary� a typical STAMIS is written in COBOL
for execution on a mainframe computer as a batch
process� accessing �les rather than a database�

��� A Typical Army Management Infor�
mation System

For the purposes of this project� we needed to ex�
plore the di�culties that arise when actually tran�
siting an application� To do this� we used the In�
stallation Materiel Condition Status Reporting Sys�
tem �IMCSRS����� This STAMIS consists of approx�
imately �
�


 lines of COBOL code� broken into �
programs� We had become familiar with this system
during an earlier project���� that ultimately lead to
the replacement of IMCSRS by a version written in
Ada��� ����

IMCSRS is smaller than a typical STAMIS� but it
performs typical functions� It is responsible for using
input transactions to update a master �le and then
producing a variety of reports describing the status of
Army materiel� We used it to examine the hypothe�
sis that most of its functionality can be replaced by
RDBMS functions expressed in a �GL�

� Conceptual Framework

��� Strategies Considered

There are a variety of approaches to moving a
COBOL information system into an environment sup�
porting distributed access� This section describes
those that we have examined� They are organized
roughly from those requiring the least to those re�
quiring the most e�ort to e�ect� The strategies are
comparable in the sense that each has advantages and
disadvantages� For any given situation� the costs and
bene�ts of the various strategies must be compared to
select the most e�ective approach�

����� As�Is Strategy

The base line against which the other strategies must
be measured is the strategy of doing nothing� In this
case� there are no real advantages� and the disadvan�
tages are fairly well understood� This strategy may
be appropriate if it is known that the application is
going to be replaced or phased out or if it is used only
infrequently by a single site� In these cases� there is
little value in investing in �GL access�

����� Direct SQLAccess to File Data Strategy

Another strategy leaves both the COBOL program
and the data �les untouched� This strategy involves
the development or acquisition of a tool that provides
SQL access to �les� New queries can be written di�
rectly in SQL without requiring COBOL code alter�
ation� The strategy also supports the incremental re�
placement of COBOL functionality by SQL queries�
This may lead to a hybrid environment� where some
programs are written in COBOL and some in SQL
and some data reside in �les and some in relational
database tables�

����� Direct Porting Strategy

Another strategy is to simply port an existing COBOL
system from the mainframe environment onto a net�
worked workstation without adding any new function�
ality� thereby increasing its accessibility� This is a tra�
ditional adaptive maintenance approach� Our expe�
rience with this strategy is described in section ����
Direct porting may be desirable if execution costs are
signi�cantly reduced by using a workstation or if the
network access provided by the workstation increases
the customer base and timeliness of the application�s
reports� It may also be applicable as an interim step
to some of the other strategies described below�



����� Transparent Layered Conversion Strat�

egy

Some vendors are already addressing the software
transition problem� For example� Liant Software sells
a tool called RM�plusDB�� Its purpose is to provide a
transparent mechanism so that existing COBOL pro�
grams can access an RDBMS without having to be
altered� RM�plusDB provides an extended run�time
environment and a server� The run�time extensions
are invoked when a COBOL statement attempts to
do I�O to a �le� The run�time routines intervene and
convert the I�O request to an access to the RDBMS�
The server transfers these requests to the RDBMS and
passes back any returned data�

This strategy provides some of the sought�after
bene�ts� All of the advantages of DBMSs over �les�
such as data security and integrity� are available�
Also� enhancements are facilitated�new reports can
be easily constructed using the �GL capabilities of the
RDBMS� Because the code is not altered� the cost is
low� This strategy can also be applied as an interim
step to those described below� Disadvantages include
the fact that the resultant data organization is naive�
It will not contain the conceptual abstractions that
would be present if a complete database design had
been undertaken� There may also be degraded perfor�
mance due to the presence of the database�

����� Code Layering Strategy

The previous strategies have avoided altering the
source code of an application system� Sometimes�
however� the bene�ts of direct intervention are war�
ranted� Most database vendors provide a mechanism
for directly placing SQL statements into source code�
This is accomplished using either a preprocessor or
through direct library calls� We did not try any spe�
ci�c experiments with this strategy� but some of the
observations related in the next subsection are rele�
vant here�

����� Code Replacement Strategy

�GL programs are smaller and more maintainable
than are programs written in COBOL� These bene�ts
can be a strong inducement to replace parts or all of
an application program by one or more �GL programs�
Speci�cally� �GLs support the construction of reports
and the satisfying of relatively small queries that do

�This particular tool is limited to programs accessing index

sequential �les only�

not require a great deal of computation� Also� de�
pending on the speci�c interactions involved� the view
and join capabilities of an RDBMS can replace some
complicated computations involving multiple �les� In
addition� some �GLs provide declarative data valida�
tion mechanisms that can further reduce code size� An
experiment to explore this possibility is described in
section ��	�

This strategy is applicable in situations where in�
cremental transition fromCOBOL to SQL is desirable�
This may be warranted when the programmers are re�
ceiving on�the�job training and need small examples�
The feedback obtained from comparing the existing
results with that obtained from SQL can serve to val�
idate the conversion� If the program being converted
is convoluted and di�cult to understand� incremen�
tally removing segments responsible for relatively self�
contained tasks� such as report generation� can reduce
the size of the remaining COBOL code to the point
where direct comprehension is more feasible�

����� RDBMS Conversion by Re�engineering

Strategy

Program evolution without bene�t of a high�level rep�
resentation of functionality and structure presents
risks in terms of quality� The process of reverse engi�
neering existing software yields such a representation
that can then be used as a basis for enhancements�
The advantages of such an approach are obvious� the
disadvantages are� however� di�cult to measure� One
factor that needs to be understood is that reverse en�
gineering requires a signi�cant commitment of time
and e�ort� Some discussions of mechanisms for par�
tially automating the process are described in the next
subsection�

Manual re�engineering is indicated in situations
where the existing code will continue to be used exten�
sively for the foreseeable future� Maintenance activi�
ties that require modi�cation of existing code �versus
simply adding new modules� can also help justify the
expense of reverse engineering� Reverse engineering
does not have to be applied to an entire system����
Even if only a part of a system is being reverse engi�
neered� there is still a need for the programmaintainer
to understand the context of the component relative to
the entire system� Thus� in situations where resources
such as accurate documentation or experienced main�
tenance personal exist� partial reverse engineering may
be indicated�



����	 Automatic Reverse Engineering Strat�

egy

Because of the expense involved in reverse engineer�
ing� it is desirable to automate as much as possible the
steps involved� Unfortunately� the state of the art is
such that few tools exist� and those that do are capable
of describing only surface features of an existing sys�
tem� The strategy of automatic reverse engineering in�
volves extracting features from existing programs and
translating them into a standard design representa�
tion� We performed an experiment� described in sec�
tion ���� to explore the feasibility of this approach�
Speci�cally� we investigated whether we could auto�
matically extract information froma COBOL program
describing the structure of the �les that it uses�

����
 From�Scratch Rewrite Strategy

A �nal strategy needs to be mentioned for reasons of
completeness� Under some circumstances� it may be
desirable to replace an existing program entirely and
to rebuild it from scratch� including new requirements
gathering� This situation may arise when the original
system needs to be signi�cantly modi�ed and is com�
plex enough that the cost of re�engineering outweighs
the costs �and risks� of initial development�

��� Summary of Strategies

Figure � summarizes the strategies described above�

Strategy

As�Is Strategy
Direct SQL Access to File Data Strategy
Direct Porting Strategy
Transparent Layered Conversion Strategy
Code Layering Strategy
Code Replacement Strategy
RDBMS Conversion by Re�engineering Strategy
Automatic Reverse Engineering Strategy
From�Scratch Rewrite Strategy

Figure �� Summary of Transition Strategies

��� Strategy Selection Criteria

No one strategy is suitable for dealing with all situ�
ations� In order to determine which strategy is appro�
priate in a given situation� the factors that can a�ect
the costs and bene�ts of applying the strategy should
be weighed� The factors serve as decision criteria� and
Appendix I provides a sample list�

The various factors and strategies have an internal
structure� That is� making one decision may natu�
rally lead to a subsequent question being asked� Some
decisions preclude others� To summarize the possibili�
ties� the decisions can be organized into a hierarchical
structure called a decision tree� A skeleton decision
tree for the various transition strategies is shown in
Figure 	� The numbering of the questions indicates
their relative placement�

In order to use the decision tree� the criteria must
be interpolated� There are two substantial impedi�
ments to doing this� The �rst concerns measurement�
While some of the decision criteria are quanti�able
��average cost of an execution of the application pro�
gram��� many of them are qualitative ��are the polit�
ical factors ��� ���� In order for there to be a formal
decision procedure� metrics for the qualitative factors
need to be devised and validated�

The second impediment involves combining the cri�
teria� Even if all criteria were quantitative� it would
still not be meaningful to make a decision by combin�
ing numbers from several criteria� For example� how
does the availability of a sta� of maintainers experi�
enced with a COBOL application trade o� against a
signi�cant increase in system use due to networked
availability�

Two approaches to dealing with these impediments
are suggested� scenarios and case studies� A scenario
is a hypothetical narrative describing a potential tran�
sition e�ort� It can be used to explore di�culties in
applying the criteria� Scenarios have been e�ectively
used to solicit system requirements during the early
stages of software development��
�� and their use here
has a similar purpose� to unearth unanticipated costs
and bene�ts� The second suggestion involves the use
of case studies of previous transition e�orts� In partic�
ular� data concerning costs involved� di�culties that
arose� and eventual bene�ts can serve to guide the de�
cision process�

� Experiments

We have conducted a series of experiments to ex�
plore the transition strategies� We have used IMCSRS
as our subject system and looked at four of the pos�
sible transition paths for it� directly porting it to a
networked workstation environment �section ����� re�
placing part of it by a direct SQL query �section ��	��
automatically generating an SQL description of its in�
put �le structure �section ����� and replacing part of
it by the use of an RDBMS report writer tool �section



Should the information system�

�� be left alone�As�Is Strategy��
�� be moved into a �GL environment�

�� In moving to a �GL environment� should the
information system	

���� be ported as�is �Direct Porting Strategy��
���� be migrated to an RDBMS
�GL�

����A� If migration is desirable� should the new
version	

����A��� move the data to an RDBMS and
leave the code alone to the extent possible
�Transparent Layered Conversion Strategy��
����A��� provide the functionality with
SQL access to �les �Direct SQL Access to
File Data Strategy��
����A��� replace selected features of
the code with �GL constructs�

����A��� If code is going to be replaced� which
combination of features should be replaced	

����A����� File access replaced by embedded
SQL and
or library calls �Code Layering
Strategy��
����A����� Report formatting replaced by the
�GL report writer�
����A����� Some reports replaced by SQL
or forms�based queries�

����A����� If �le access is to be replaced�
should it be accomplished	

����A������� with a layering tool�
����A������� by replacing COBOL I
O
with embedded RDBMS access�

����B� If migration is desirable� should the new
version	

����B��� be developed from scratch� including
requirements gathering �From�Scratch
Rewrite Strategy��
����B��� be incrementally migrated from the
current version �Code Replacement Strategy��
����B��� be the results of reverse engineering
the existing version �RDBMS Conversion by
Re�engineering Strategy��

����B��� If reverse engineering is used�
should it be done	

����B����� by hand�
����B����� using semi�automated tools
�Automatic Reverse Engineering Strategy��

Figure 	� Skeleton Decision Structure

����� Section �� reports on a related use of IMCSRS
to reduce actual operational costs�

��� Direct Code Porting

The �rst experiment explores the Direct Porting
strategy� That is� we took the mainframe COBOL
program� IMCSRS� and tried to port it to run on a
UNIX workstation� After converting from �xed length
records to varying length records and stripping out line
numbers and other records included for the bene�t of
the mainframe source code management system� we
tried to compile it�

Unfortunately� IMCSRS is written in an older di�
alect of COBOL� COBOL ��� The compiler that we
used is capable of compiling only the COBOL �� and
COBOL � dialects� In order to proceed� we had to
convert the COBOL code by hand� This was time
consuming but relatively straightforward� The con�
version took the form of systematic transformations
to the code� many of which are potentially automat�
able� For example� some COBOL �� statements �such
as �EJECT�� are not supported in COBOL �� and
these can simply be deleted� some keywords have been
replaced ��EXAMINE� becomes �INSPECT��� the
way in which long string literals are handled has been
changed� and some COBOL �� registers are no longer
supported� In general� an experienced COBOL pro�
grammer� using a screen editor that supports global
search and replace operations� can make the transi�
tion in a straightforward way� A description of the
complete set of transformations is available as an ap�
pendix to ����

After the code was converted� it successfully com�
piled using the workstation compiler� In order to test
the integrity of the conversion� we ran several of the
programs and successfully obtained reports�

There are several factors related to the conversion
of system data that our experiment did not consider�
Issues such as word size� byte order� and character set
may cause di�culties in applying the strategy� For
example� would word size di�erences� such as might
exist between a ���bit mainframe and a �	�bit work�
station� lead to loss of precision� We also did not
consider the related modi�cation of operational proce�
dures� On the mainframe� IMCSRS consists of �fteen
programs� some of which produce output that is con�
sumed by others� On a workstation� command scripts
would have to be written to support this structure�

Our conclusion from the experiment is that no con�
ceptual di�culty prevents the porting of COBOL pro�
grams from the mainframe to the workstation� but a
signi�cant number of technical details make the pro�



cess burdensome� And while running the COBOL pro�
gram from the workstation does provide a limited form
of distributed access� many of the advantages of an
RDBMS are not provided�

��� Replacement of COBOL by SQL

Our second experiment applied the Code Replace�
ment Strategy to convert one of the IMCSRS pro�
grams to SQL� In order to accomplish this� the original
COBOL program had to be understood� Tradition�
ally� this would be accomplished informally by try�
ing to understand the program in terms of the target
SQL functionality� Although this was the course that
we took� our recommendation for subsequent e�orts
is to make this comprehension process more system�
atic� In particular� an explicit reverse engineering step
is required in which a representation of the program�s
data processing requirements is constructed� Such a
procedure targeted speci�cally at information systems
is described in Batini�s book�	�� Another approach�
aimed somewhat more at the functional requirements
than at data modeling is described in �����

The converted program is responsible for generat�
ing a report on equipment availability� For this experi�
ment� the steps involved in the conversion were manu�
ally applied� �The experiment described in section ���
explores how to automate part of this process�� The
steps involved are the following�

� Create SQL schema de�nitions for two tables
corresponding to the two input File Description
statements �FDs� in the program� The schema
de�nitions take the form of SQL create com�
mands�

� Create sample data� and use the RDBMS loader
to load it into the tables�

� Determine the data accesses and computations
needed to produce the output report�

� Determine the format of the output report�

� Construct the SQL statements to retrieve the
data and format it for the output report�

We note several things about this process� First� in
the case of one of the two input �les� the FD did not
contain su�cient information to describe the struc�
ture of the �le data� The speci�c FD as de�ned in the
FILE SECTION of the program has a single �eld� ��
characters long� It is in the WORKING STORAGE
section� however� where a storage area is de�ned that
indicates that this �eld can be viewed as consisting of

	 smaller �elds� The fact that the FD and storage
area are related is not made explicit by COBOL syn�
tax anywhere in the FILE SECTION or WORKING
STORAGE section� In the procedural code� however�
where a READ statement transfers the data from the
input �le to WORKING STORAGE� the connection
can be made� Therefore� an automated tool will need
to analyze the PROCEDURE DIVISION as well as
the FILE SECTION�

The experiment was successful in the sense that an
SQL report was generated from an RDBMS� Full de�
tails of this experiment are given in ���� In all� a �

line program was replaced by two create commands
to de�ne the schema for the input �les� two load com�
mands to load the data into the RDBMS� four format�
ting commands to produce page and column headings
for the output report� and a select command to actu�
ally access the data� Note� however� that the appear�
ance of the output report did not attempt to duplicate
the appearance of the original report� Section ��� de�
scribes our use of a report writer to pursue this goal�

��� COBOL to CASE to RDBMS

Our most ambitious experiment concerned the au�
tomatic construction of SQL create commands from
COBOL programs� In particular� we used a grammar�
based� program analysis tool to extract FD state�
ments from the COBOL source� The statements were
then transformed into an Entity Relationship �ER�
diagram��� for the Software Through Pictures �STP�
CASE tool� Then the STP schema generation feature
was used to generate SQL create commands to de�ne
tables for holding the data�

A COBOL program is a highly structured descrip�
tion of computations and data� In order to construct
a high�level design representation of a program� the
design decisions that went into its development and
maintenance must be reconstructed� This can be ac�
complished by a systematic analysis of the program
text� simultaneously constructing a description of the
application domain and procedures that the program
models� A description of this process is given in �����

Because of the structured nature of programming
languages� any analysis must be based on a gram�
matical description of that language� i� e�� a COBOL
grammar� We used a grammar�based tool� called
NewYacc���� to annotate the grammar with rules�
The rules were applied during traversals of the pro�
gram parse tree in order to extract constructs from
the program�

The rules indicate which program features to ex�
tract� In the case of IMCSRS� FD statements were



extracted� These can be used to automate parts of the
several other strategies� For example� in the Transpar�
ent Layered Conversion strategy� the FDs have been
used to build a description of the tables in the RDBMS
that hold the input and output data� Also� in the
RDBMS Conversion by Re�engineering strategy� they
can help construct a high�level representation of the
data manipulation requirements of the program�

STP has an open architecture� This means that it is
extensible in a variety of ways� In particular� diagrams
are represented textually� and the format of the repre�
sentation is documented� Normally� an STP user man�
ually selects icons and places them in a diagram on the
screen� Using the published �le format� however� we
were able to automatically construct diagrams based
on the information extracted by NewYacc���� �	��

The program visualization provided by this ap�
proach is limited in several ways� First� STP pro�
vides no mechanism for re�ning an ER diagram into
lower level diagrams� This is not a fundamental lim�
itation� The Batini book�	�� for example� describes
several ways in which complex diagrams can be ab�
stracted� The second limitation has to do with re�

lationships� An ER diagram consists of entities and
relationships� In our case� the entities correspond to
�les� and they can be automatically extracted using
the procedure described above� Relationships� how�
ever� are more troublesome� Relationships between an
input and an output �le can be arbitrarily complex�
and many relationships are only implicitly apparent in
the procedural code�

Once an ER diagram has been built by the auto�
matic procedure� it is editable just as if the diagram
had been drawn initially from within STP� Moreover�
the diagram supports future enhancements to the in�
formation system� For example� if a program enhance�
ment adds new information to an input �le� the cor�
responding ER diagram can be extracted and edited�
Then� the CASE tool�s template generation mecha�
nism can be used to automatically produce a new ver�
sion of the FD statement describing the �le� In a sense�
maintenance has been moved from a code editing ac�
tivity to a conceptual alteration expressed graphically�
A more detailed description of the experiment is pro�
vided in ����

��� Replacement of COBOL by a Report
Writer

Our most recent experiment involved reengi�
neering a report generation application� which
was originally written in COBOL� using Oracle�s
SQL�ReportWriter� The program we chose was the

same one used in the previous experiment� The re�
port it generates is a structured document consisting
of groups corresponding to classes of equipment� Each
group contains detailed information on each type of
equipment in that class� Each page in the report is
printed with page headings consisting of title� date�
station name� etc� We reverse engineered the program
to extract its speci�cation� With the aid of this infor�
mation and a sample output page� the program com�
putations were extracted�

In section ���� we described a direct use of SQL�
That experiment produced the same output data as
the original report� but the format of the data was not
nearly so well organized� We found that the complex
structured query needed for duplicating the original
report can not be directly speci�ed in SQL� In par�
ticular� there is no facility for interleaving the results
of the SQL query� which extracts data on the type of
equipment in each class� with the results of the query
for extracting data on class of equipment�

An alternative is to use a report writer� In this
experiment we reimplemented the program using the
Oracle RDBMS� SQL� and various Oracle tools such
as SQL�ReportWriter� SQL�Menu and SQL�Forms�

As a result of reverse engineering the program� we
obtained a description of its input �les� We con�
structed a table corresponding to each �le� For a sim�
ple collection of �les the implementation of each �le by
a relational table works well� But for a more complex
set of �les� it will be necessary to do a database design�
There is a facility in Oracle�s CASE�Dictionary tool
to do automatic generation of a default database de�
sign that might prove useful� CASE�Dictionary can be
populated with a data model for the problem through
Oracle�s ER graphical editor�

A report is �rst speci�ed in SQL�ReportWriter
through its interactive forms�based interface� Then
the report can be customized by providing the speci�
�cations for page headings and footings� group head�
ings and footings� �eld labels� page size� page margins�
and the placement of groups and �elds relative to each
other�

The generated report contains several values com�
puted from the �elds of the relational tables� Since
these computations are complex� we found it nec�
essary to specify various intermediate views on the
tables� This simpli�ed the query speci�cation in
SQL�ReportWriter� Two views are used to compute
the sums of certain columns� These sums are then
used in other views to compute values for the target
report� The views are expressed in SQL�Plus� Oracle�s
extension to SQL�



The COBOL implementation of the program con�
sisted of �
 lines of source code� The implementa�
tion of the report in SQL�ReportWriter consisted of
�

 lines of SQL for table and view de�nitions� and
� lines of SQL�ReportWriter speci�cation� We found
that SQL�ReportWriter is also very easy to use� A re�
port speci�ed in it can be altered in minutes and the
results immediately observed� We believe the resulting
implementation is also easy to modify and maintain�

��� Economic Justi�cation

One related �experiment� should be reported on�
Our original examination of IMCSRS was part of an
exercise to determine the issues involved in translating
a COBOL program to Ada���� The project involved re�
verse engineering IMCSRS and then constructing two
designs� one using functional decomposition and one
using object�oriented design� The designs were com�
pared and the object�oriented design selected for im�
plementation� An Ada implementation was then built
and analyzed� As part of the analysis� the system was
installed in a site where it replaced use of the COBOL
version�

The Ada version runs on a personal computer in�
stead of a mainframe� Data can be validated locally
without having to wait for physical transmission to
and from the mainframe� Results were so positive
that the Ada version has replaced the COBOL version
as part of regular procedures at the site of the trial�
As other sites learned of the improved performance�
they requested and obtained the personal computer
version��� ���� Subsequently� an economic analysis
was performed to predict the saving that would result
for using the Ada version over a ten year period�����
The predicted results for this system alone were for a
���


�


 saving� And this does not include any sav�
ings in maintenance cost due to the increased encap�
sulation provided by the object�oriented design� The
payback period for the re�engineering e�ort was pro�
jected to be less than six months�

In Section �� we indicated that one advantage of
moving an application o� of a mainframe is simpli�
�ed use� With the Ada version� improved availability
provided by the personal computers was one of the
largest contributing factors to the projected cost sav�
ings� The same improvement should obtain when the
target language is a �GL rather that Ada�

� Recommendations for Future Work

Some of the questions raised by our explorations
present interesting research possibilities�

� Relationship detection� Our investigations of the
automatic construction of ER diagrams proved
successful at describing those entities that corre�
spond to program �les� More di�cult is the ques�
tion of detecting relationships in programs� Some
work in this direction is described in �� ���� We
would like to use techniques from compiler data
�ow analysis to pursue this goal�

� Other types of applications� The experiment de�
scribed in section ��� was limited to a program
solely concerned with writing a report� Other
types of applications will no doubt be more dif�
�cult to deal with� Candidate program types in�
clude replacing small programs with direct SQL
queries �in a sense� decompiling� and replacing
data editing and validation programs with the use
of an RDBMS forms�based data entry tool�

� Transformation abstraction� Our reverse engi�
neering activities involve systematically trans�
forming a program to a higher level of abstrac�
tion� We have by now collected enough data on
this process that we should be able to character�
ize which kinds of abstractions have proven useful�
what their enabling conditions are� to what extent
they are automatically detectable� and how they
can be combined to support higher order trans�
formations�

� Domain modeling� Our reverse engineering ac�
tivities were based on an informal description of
the application domain� Certain application do�
mains� such as report writing� are well enough
understood that an explicit domain model can be
constructed� The model can be used in several
ways� It can be compared to the model that re�
sulted during the reverse engineering process� and
it can be used to support reverse engineering ef�
forts on related programs� From these e�orts� we
can learn the ways in which domain models can
best support reverse engineering activities�

� Knowledge representation� Domain models must
be explicitly represented� One approach to this is
to use an existing knowledge representation lan�
guage� Other approaches are described in �����
We would like to explore how well such languages
are capable of supporting reverse engineering ef�
forts such as those described here�



Acknowledgements

The authors gratefully acknowledge the support
of the Army Research Laboratory through contract
DAKF ������D�


� and the participation of Richard
Clayton� Bret Johnson� and Gary Pardun�

Appendix I � Strategy Selection Deci�

sion Criteria

Factors Related to Usage of the Existing Sys�

tem

� Usage pro�le and availability� How many users
does the system currently have� How are they
distributed topologically �do they log into the
mainframe� do they submit batch jobs� or are
run requests handled manually�� How frequently
does a given user make use of the application� In
what di�erent ways is the application used �what
is the ratio of data updates to reports produced��
How frequently does each such use occur� What
is the physical process by which the application
is used �data entry and validation handled sep�
arately� manual or electronic distribution of re�
ports�� How many di�erent sites use the existing
system�

� Expected lifetime� What is the expected lifetime
of the existing application� Is use growing or
shrinking�

� Current execution costs� How much does it cur�
rently cost to execute the program in terms of
machine and human resources� How does this
cost vary across types of uses�

� Ownership and control� Are there political factors
that would impede the reduction in information
control that comes from distributed access�

� Administration� Are there administrative proce�
dures that would be di�cult to provide in a dis�
tributed environment� What are the costs in
transforming these procedures�

� Interoperation� Do other applications depend di�
rectly on the data produced by this application
�master �le� report �les� exception �les�� Does
this application depend on the products of other
applications�

Factors Related to the Structure and Function�

ality of the Existing System

� Current architecture� How amenable is the cur�
rent architecture to the client�server model� Is
the application primarily batch or interactive�

� Hardware con�guration considerations�resource
availability� What external resources and inter�
faces does the application require� How exten�
sively are they used�

� Software con�guration considerations� Does the
existing system make use of non�portable operat�
ing system capabilities� Does the existing system
interface to other systems�

� Reports� Does the existing system write reports�
If so� how separable is the computational func�
tionality from the report construction functional�
ity� Are there reports that can be replaced by
SQL queries� Are there reports that can be re�
placed by the RDBMS report writer tool�

� Other RDBMS features� Does the current ap�
plication do signi�cant data validation that can
be replaced by the data validation features of an
RDBMS� Can the current application make ef�
fective use of advanced RDBMS operations like
views and joins�

Factors Related to Expected Usage of the Tran�

sited System

� Increased use� What is the expected increase in
use of the system due to networked availability�
What is the expected change in use �e� g�� from
batch to interactive� promoted by distributed ac�
cess�

� DBMS functions� Can the application take ad�
vantage of DBMS features such as security and
integrity�

� Proposed execution costs� What is the expected
change in execution cost in terms of machine and
human resources�

Factors Related to Expected Evolution of the

Transited System

� Technical impediments� Does the existing system
make use of a DBMS� Is it relational� Does the
existing system make use of an older version of
COBOL� Are there portability issues related to



data conversion� Can this application be inte�
grated into others�

� Maintenance requirements� How much corrective
maintenance activity is there currently on the
system� What enhancements to the system are
planned� Which enhancements would be facili�
tated by the use of an SQL interface to the data�

� Support issues� Are there personnel available that
have experience with the internals of the exist�
ing system� Is there existing documentation for
the system� How up�to�date and accurate is it�
Is su�cient funding available for a comprehen�
sive reverse engineering e�ort� Does this include
funding to support the training of users in �GLs�
How feasible is incremental conversion�

� Standards� Is the application part of the e�ort to
standardize the use of data item names across ap�
plications� How closely does it conform to these
standards�

References

�� Automated Data Systems Manual� Installation Ma�
teriel Condition Status Reporting System �IMCSRS��
Functional User�s Manual� Commander FORSCOM�
AFLG�RO� Ft� McPherson� Georgia� April �� �����

�� Carlo Batini� Stefano Ceri� and Shamkant B� Na�
vathe� Conceptual Database Design � An Entity�
Relationship Approach� Benjamin Cummings� �����

�� Barry W� Boehm� Software Engineering Economics�
Prentice Hall� �����

�� P� P� Chen� �The Entity�Relationship Model�Toward
a Uni�ed View of Data�� ACM Transactions on
Database Systems� pp ����� March �����

�� Kathi Hogshead Davis and Adarsh K� Arora� �A
Methodology for Translating a Conventional File Sys�
tem into an Entity�Relationship Model�� Proceed�
ings �th International Conference on the Entity�
Relationship Approach� IEEE� �����

�� Melody Eidbo and et al�� �ISA��� Compliant Ar�
chitecture Testbed �ICAT� Project Final Report��
ASQB�GC�������� AIRMICS�

�� Ian J� Hayes� �Applying Formal Speci�cation to Soft�
ware Development in Industry�� IEEE Transactions
on Software Engineering� vol� SE���� no� �� pp ����
���� February �����

�� Reginald L� Hobbs� John R� Mitchell� Glenn E�
Racine� and Richard Wassmath� �Re�engineering Old
Production Systems	 A Case Study of Systems Re�
development and Evaluation of Success�� Emerging

Information Technologies for Competitive Advantage
and Economic Development� Proceedings of the �		

Information Resources Management Association In�
ternational Conference� pp ������ Harrisburg� Penn�
sylvania� May �����

�� Reginald L� Hobbs� Joseph J� Nealon� and Richard
Wassmath� �Ada Transition Research Project �Phase
I� Final Report�� ASQB�GI�������� AIRMICS� De�
cember ��� �����

��� Ivar Jacobson� Magnus Christerson� Patrik Jonsson�
and Gunnar Overgaard� Object�Oriented Software En�
gineering � A Use Case Approach� Addison�Wesley�
�����

��� Bret Johnson� �Reverse Engineering with a CASE
Tool�� SRC�TR������� Software Research Center�
College of Computing� Georgia Institute of Technol�
ogy� December �����

��� Bret Johnson� Steve Ornburn� and Spencer Rugaber�
�A Quick Tools Strategy for Program Analysis and
Software Maintenance�� Proceedings of the Confer�
ence on Software Maintenance� pp �������� Orlando�
Florida� November �����

��� Kit Kamper and Spencer Rugaber� �Reverse Engi�
neering Methodology for Data Processing Applica�
tions�� GIT�SERC���
��� Software Engineering Re�
search Center� Georgia Institute of Technology� March
�����

��� Erik G� Nilsson� �The Translation of a Cobol Data
Structure to an Entity�Relationship Type Conceptual
Schema�� Proceedings �th International Conference
on the Entity�Relationship Approach� IEEE� �����

��� James J� Purtilo and John R� Callahan� �Parse Tree
Annotations�� Communications of the ACM� vol� ���
no� ��� pp ���������� December �����

��� Glenn E� Racine� Reginald L� Hobbs� and Richard
Wassmath� �Ada Transition Research Project �A
Software Modernization E�ort��� Proceedings of the
��th Annual National Conference on Ada Technology�
pp �������� February �����

��� Spencer Rugaber and Richard Clayton� �The Repre�
sentation Problem in Reverse Engineering�� Proceed�
ings of the First Working Conference on Reverse En�
gineering� Baltimore� Maryland� May ������ �����

��� A Spencer Rugaber and Kit Kamper� �Design Deci�
sion Analysis Research Project�� GIT�SERC���
���
Software Engineering Research Center� Georgia Insti�
tute of Technology� January ��� �����

��� Peter G� Sassone� �Economic Justi�cation�� ASQB�
GM�������� AIRMICS� December �����

��� Edward Yourdon� Structured Walkthroughs� Yourdon
Press� �����


