
 Abstract

Domain analysis is an effective technique for enabling
both reuse and reverse engineering. This paper shows
how domain analysis can provide a framework for com-
bining reverse engineering and forward engineering to
implement transformational reuse for information system
user interfaces.1

Keywords: Reverse engineering, domain analysis, user
interfaces, reuse

1. Introduction

Domain analysis—the process of collecting and orga-
nizing information about a specific class of problems—
has primarily been a technique for facilitating software
reuse [PRE91]. The structure of a defined domain can
provide the basis for retrieving information about software
components, for managing complexity and for making
reuse more efficient and effective [NEI89]. Recent work
[DEB94], [TIL94], [DEB96], [CLA97] has begun to
explore domain analysis as a means of providing a frame-
work for reverse engineering as well.

 Transformational Reuse is a process in which compo-
nents of an existing system are transformed to evolve the

1. Effort sponsored by the Defense Advanced Research
Projects Agency, and Rome Laboratory, Air Force Mate-
riel Command, USAF, under agreement number F30602-
96-2-0229. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory, or the U.S. Govern-
ment.

system [BIG89]. For example, when migrating a system to
a new environment, such as moving from Unix to MS-
Windows, many components of the system must change
even though the functional requirements remain constant.
Such a project requires a reverse engineering step, to
understand the existing system components, a transforma-
tion step, to determine mappings between old and new
components, and a forward engineering step to produce the
new system.

The Model Oriented Reengineering Process for
Human-Computer Interface (MORPH) [MOO95],
[MOO96], [MOO97] is a technique and toolset to support
migration, or transformational reuse, of character-oriented
user interfaces to graphical user interfaces. This paper
shows how domain analysis was used to establish a model-
ing framework for both the reverse engineering process
and the transformation process for the domain of informa-
tion system user interfaces.

2. Problem Domain

Industry surveys have shown that up to 80 percent of
businesses are migrating their information systems to
updated platforms and environments [UNI93]. Many of
these old systems run on mainframes and have character-
oriented user interfaces. Since graphical workstations
have become prevalent in industry, a typical migration path
is to move the old systems from the mainframe to a graphi-
cal environment. A major cost of this migration is that the
user interfaces for these legacy systems must be com-
pletely rewritten, since the changes constitute replacement
of old character-oriented constructs with appropriate
graphical components. Since half or more of the code of
an interactive system is devoted to implementing the user
interface [MEY92], this can be prohibitively expensive.

MORPH supports migration by applying reverse engi-
neering techniques to the legacy application to construct a

Domain Analysis for
Transformational Reuse

Melody M. Moore
Spencer Rugaber

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
melody@cc.gatech.edu

model of the existing character-oriented user interface.
User interface code is detected by pattern matching and
heuristic rules in order to understand the interaction
between the user and the system [MOO96]. MORPH
also supports transformation between the resulting user
interface model and the corresponding user interface con-
struct expressed as a specific toolkit widget. In order to
do both of these steps, the MORPH technique must have a
robust domain model from which to derive the coding
patterns and rules, and also to serve as the vehicle for
transformation.

As described in [PRE91], there are two aspects of
reusability: infrastructral and operational. The following
sections elaborate on how domain analysis was used to
support each of these activities in the development of
MORPH.

2.1 Infrastructural domain analysis
When creating a library of software components for

reuse, infrastructural analysis is the process of “defining,
populating, and evolving the repositories of reusable
information” [PRE91]. In reverse engineering, infra-
structural domain analysis is used for a slightly different
purpose: to define the set of abstractions that will be the
target of the detection process.

In the case of MORPH, the set of user interface
abstractions that occur in character-oriented information
system user interfaces needed to be identified, in order to
define coding patterns that implement those abstractions
in the legacy code. These abstractions are modeled using
a knowledge representation language [MOO96], and for-
malized as a set of coding patterns and rules in the

REFINE language [REA90]. The process for the MORPH
infrastructural domain analysis is diagrammed in figure 1.

2.2 Operational domain model usage
Once the domain model is defined and the coding patterns

are in place, we need a way to store the information collected
about a specific application’s user interface during the reverse
engineering process. This activity is also supported by the
domain model, as it provides general classes of user interface
components that can be instantiated as patterns are recog-
nized in code. For example, the user interface domain model
defines selection as one of the abstractions that can be imple-
mented by a variety of coding patterns. Code in a legacy
application that implements a menu is recognized during
detection as a selection object, and an instance of a selection
object class is placed in the model of the user interface being
constructed. The domain representation provides a frame-
work that allows individual components to be modeled.

Another use for the domain model is in transforming the
detected user interface components into a new implementa-
tion. To continue the example, the menu that was detected
during reverse engineering and represented in the model as a
selection might be transformed into a row of pushbuttons in
the tcl/tk toolkit, depending on its attributes. The domain
model includes specific toolkit information, and enables the
inferencing that perform the mappings to specific toolkit
components. Figure 2 presents the use of the domain model
in the MORPH operational approach.

3. Approach

The MORPH domain analysis task underwent four phases:
an empirical study, a survey of the domain from experts, an

Figure 1: MORPH Infrastructural Domain Analysis Process

UIF
Domain
Definition

Concept
Hierarchy
Model

Recognition
Patterns and
Rules

Empirical
Reverse
Engineering

Domain
Expert
Study

Specific
Toolkit
Info

Application
Code

UIF community
Literature

Rules and
Patterns

Concept Hierarchy

Implementation
Info

organizational knowledge engineering phase, and a modeling
phase.

3.1 Empirical Approach
The first step in the infrastructural domain analysis was a

manual reengineering experiment to determine what code
patterns were likely to be found in legacy information sys-
tems [MOO95]. Twenty-two applications written in various
languages ranging from Cobol, Ada, and Pascal to C, were
examined manually (with only the use of a text editor and
listings). The applications were also examined dynamically
by running the programs while simultaneously looking at the
code that implemented each part of the user interface. As
user interface components were identified, a list of code pat-
terns that implemented those components was generated.
With each successive application, the list of patterns was
refined and augmented, and a set of heuristics for recogniz-
ing the constructs was created.

To validate the set of rules, several volunteers with a wide
range of computing experience were asked to manually exe-
cute the MORPH technique, applying the rules to reverse
engineer a small database system. The resulting models of
the user interface were very consistent, supporting the effi-
cacy of the rules.

3.2 Domain Expert Survey
Although the empirical study yielded a set of rules to

identify user interface components that worked for the set of
applications that were examined, questions arose about the
completeness of the abstraction set. Also, since the applica-
tions in the empirical study all had character-based user inter-
faces, it was likely that there would be additional abstractions
from the graphical user interface (GUI) world that should be

represented. Previous research in user interface reengineer-
ing [MER95] employed interviews with experts in the appli-
cation domain. As an alternate approach, we performed an
extensive search in the user interface literature to discover the
missing abstractions.

An interesting side effect of this approach was the intro-
duction of a framework for a concept hierarchy. An interac-
tion task is the entry of a unit of information that is
meaningful to an application by the user [FOL90]. Interac-
tion tasks classify the fundamental types of information the
user enters while interacting with the application. Interaction
tasks are defined by what the user accomplishes, not how it is
accomplished.[FOL90] lists four basic interaction tasks that
we used as a top-level organization:

• Selection

• Text data

• Position

• Quantify

Other works containing surveys of user interface concepts
[SHN93],[HIX93],[DIX93] filled in the details of the con-
structs that implemented each of the basic interaction tasks.
For example, the selection interaction task can be imple-
mented by menus, pushbuttons, lists, and other mechanisms.
The original rules were classified by the type of construct
that they recognized, and new rules were formulated to iden-
tify code patterns that might implement the GUI abstractions.
Another development during this phase was the addition of
attributes, based on work described in [DEB92], that allowed
declarative information to help determine appropriate trans-
formations from the abstractions to the specific implementa-
tions from a usability standpoint. For example, a selection
task that has twenty choices in its selection list is probably

Figure 2: MORPH Operational Process

Recognition
(Reverse
Engineering)

Application
Source
Code

Patterns
and Rules
(Domain

Representation of
User Interface
Model

Transformation

New
User Interface
Components

Definition)

best implemented with a cascading menu or a scrolling list
rather than a set of pushbuttons. This type of qualitative
knowledge, known as design critics [FOL90], was also incor-
porated into the domain model.

3.3 Knowledge Engineering
In order to organize the information gathered from the

empirical study and the domain expert study, the knowledge
engineering method described in [BRA90] was employed to
represent the user interface domain in the CLASSIC knowl-
edge representation language [RES93]. First, the object types
were identified and enumerated. From the set of abstractions,
the highest-level concepts (classes) were identified, along
with roles (attributes) and fillers (specific instances of
attribute values). The concepts were then grouped into a
cohesive hierarchy. (The hierarchy for the selection basic
interaction task is illustrated in Figure 3.) Lastly, the value
restrictions for the roles were defined in order to establish the
heuristics for the transformation that will occur after the user
interface has been modeled.

3.4 Domain Model Representation
Once the concept hierarchy was defined and attributes

identified for the components, the concepts were imple-
mented in the CLASSIC language. The basic interaction
tasks became the top level of abstraction, and lower-level
abstractions were defined as subconcepts to the basic interac-
tion tasks. For example, the following pseudocode shows
how the abstract selection interaction task is defined as a con-
cept with its associated roles (attributes):

SELECTION-OBJECT: INTERACTION-OBJECT
 Action: Procedural-Action or
 Visible-State-Change
 Choices: integer minimum 1
 Variabiliy: Fixed or Variable
 Grouping: Grouped or Not-Grouped

The SELECTION-OBJECT concept inherits attributes
from its parent concept, INTERACTION-OBJECT, but fur-
ther specifies the new attributes unique to a selection interac-
tion task. Concepts that are specializations of the selection
interaction task are then defined in terms of the SELEC-
TION-OBJECT concept, as shown in the definition of the
MORPH-BASIC-MENU concept below. The narrower defi-
nition serves to define values that are acceptable as role fillers
to match this more specific concept:

MORPH-BASIC-MENU: SELECTION-OBJECT
 Action: Procedural-Action
 Choices: Minimum 2, Maximum 10
 Variability: Fixed
 Grouping: Not-Grouped

Each interaction task and object is described in the con-
cept hierarchy in its appropriate place. The CLASSIC
code and further details of the MORPH knowledge repre-
sentation can be found in [MOO97].

In order to test the transformational capabilities of the
knowledge representation, two implementation toolkits,
tcl/tk and the Java Abstract Windowing Toolkit (AWT)
were also added to the concept hierarchy. This was also an
interesting exercise from the perspective of testing the
concept hierarchy to ensure that it was able to represent
the provisions of real toolkits. The toolkit widgets were
defined in terms of the concept hierarchy alongside the
abstract MORPH concepts. For example, the tk menu
widget had the following pseudocode description:

TK-MENU: SELECTION-OBJECT
 Action: Procedural-Action
 Choices: Minimum 2, Maximum 10
 Variability: Fixed
 Grouping: Not-Grouped

Since this is almost identical to the MORPH-BASIC-
MENU description, it is not surprising that CLASSIC
infers a sibling connection in the concept hierarchy.

4. Results

An automated MORPH pattern recognizer is currently
under development, so the results described here are from
the empirical study, the domain expert study, and develop-
ment of the MORPH concept hierarchy. Experiments to
test the validity of the domain model are described in the
“validation” section below.

4.1 Initial Rule Base
The results of the original manual reverse engineering

experiments yielded a list of rules for identifying the user
interface components in the applications that were exam-
ined. For example, a common construct we found in the
empirical study was a menu, in which the application gave
the user a set of choices to select from. Dynamic analysis
of one of the programs produced this output:

 Menu
 [a] answer
 [b] browse
 [c] make a match
 [d] delete record
 [e] quit

 Your choice => __

In examining the application code, one code pattern for
a character-oriented menu was identified when encounter-
ing the following Pascal code segment:

 writeln(output, 'Menu');
 writeln(output,’[a] answer');
 writeln(output,’[b] browse');
 writeln(output,’[c] make a match');
 writeln(output,’[d] delete record’);
 writeln(output,’[e] quit');

 choice := getanswer(lastchoice);

 case choice of
 'a': answer;
 'b': browse;
 'c': match;
 'd': delete;
 'e': writeln(output)
 end

This code segment implements a simple menu, the first
set of writelns displaying the choices to the user, and
the case statement implementing the user input and selec-
tion. The getanswer routine implements input valida-
tion for the characters that the user types. Through
dataflow analysis, the choice variable is identified as a
user input variable: a structure that gets its value either
directly or through assignment from an input statement.
The fact that the choice variable’s value comes from the
user and then is used in a decision is significant in the user
interface; it implements a selection of some kind. Thus, an
informal English description of the rules to recognize the
above constructs would be:

 If a statement performs text output
 then identify text block

If an output statement follows a text
 block
 then include that output statement
 in the text block

 If a case statement contains a User
 Input Variable for a discriminator
 then identify Selection

The last rule illustrates recognition of an attribute of the
selection (number of choices) that could give information
about appropriate implementation choices for this abstrac-
tion during the transformation process.

The initial rule base constructed from the empirical
study consisted of sixteen rules similar to the ones listed
above. For more detail on MORPH’s rule-based detection,
please refer to [MOO96].

4.2 Building a hierarchy
With the four basic interaction tasks as the basis for

organization, user interface components described in
numerous surveys were categorized into a hierarchy. Rela-
tionships between components sometimes made this diffi-
cult, as in the case of the mutually-exclusive pushbutton
(known as a radio button in many toolkits). The property
of mutual exclusion occurs only when these widgets are
grouped; pressing one radio button in a group un-presses

Figure 3: Concept hierarchy for Selection Interaction Task

SELECTION-OBJECT

BUTTON MENU LIST

PUSHBUTTON

RADIO-BUTTON

TOGGLE-BUTTON

PULLDOWN-MENU

CASCADE-MENU

OPTION-MENU

PALETTE-MENU

PIE-MENU

EMBEDDED-MENU

SCROLLING-LIST

TEXTBOX

any others that were previously pressed. The radio button
falls under the toggle button (a pushbutton with only two
states) with attributes denoting mutual exclusivity in
groups. This is important because the presentation, or
appearance, of the radio button is different from a regular
pushbutton in many toolkits and therefore we need to iden-
tify the correct semantics.

There was also some overlap in the abstractions. A text-
box, an area for the user to input text, could be used to enter
unvalidated data (such as an address), or could also be used
as a selection mechanism (as when entering a date or typing
a selection from a list of choices). Therefore some of the
lower-level abstractions may have multiple parents in the
concept hierarchy. (Textbox in figure 3 above is shown
only in the SELECTION-OBJECT hierarchy; it actually
has another parent in the TEXT-OBJECT hierarchy as
well.) An advantage of CLASSIC is that it directly sup-
ports the representation of this mulitple-parent hierarchy.

Code patterns for the additional concepts identified in
this stage were added to the pattern recognition set. Most
of these additions were to detect attributes of one of the
basic interaction tasks that might differentiate among
lower-level abstractions. For example, a small static num-
ber of choices in a selection might indicate that an option
menu is appropriate, whereas a dynamic number of choices
suggests a more flexible mechanism such as a scrolling list.
One of the rules that was added as a result of detecting
attributes was:

 For each choice in the list of an
 identified selection case statement
 increment number-of-choices

This rule implements part of the heuristic described
above to determine the appropriate implementation mecha-
nism for the selection component. The number-of-
choices attribute is then stored in the knowledge base
with the information for that selection object.

4.3 Operational strategy
Once the framework of the concept hierarchy and the

coding patterns and rules have been defined, the MORPH
reverse engineering technique [MOO95] can be applied to
legacy systems code. As the pattern matching identifies
potential interaction tasks and their attributes, the rules gen-
erate CLASSIC code that creates individuals in a knowl-
edge base describing each interaction. For example, the
code segment implementing the text menu presented earlier
in the paper is recognized as a SELECTION-OBJECT, and
the rules generate the following code to create a CLASSIC
individual representing this interaction object:

(cl-create-ind 'OBJ1
 '(and SELECTION-OBJECT

 (fills action Procedural-Action)
 (fills number-of-choices 5)
 (fills variability Fixed)
 (fills grouping Not-Grouped)
)
)

The interaction object (OBJ1), is identified as a selection
interaction task and the role fillers are determined from the
attributes found in the code.

4.4 Validating the concept hierarchy
In order to determine if the concept hierarchy was com-

plete enough to represent GUI as well as character-oriented
interfaces, two popular widget toolkits were defined in terms
of the hierarchy and added to the knowledge base. The selec-
tion and text data basic interaction tasks for the tcl/tk toolkit
were added first, to see if the model would support these gen-
eral abstractions. Then, the Java AWT widgets were added.
Although translation to Java is not a current goal of MORPH,
the AWT widget set is significant because it is very recent.
Both toolkits fit into the concept hierarchy, although minor
additions to some of the attributes were made in order to be
able to differentiate some of the widgets.

After the toolkits were defined in terms of the concept
hierarchy, classification and subsumption inferencing were
used to test the transformational capabilities of the model.
The CLASSIC system allows queries to be composed in the
terminology of the domain model, so it is possible to create a
new concept with particular attributes (as we would during
the detection process) and find the closest match in either the
concept hierarchy or in a specific toolkit. As an illustration,
the CLASSIC knowledge base can be queried to determine
the hierarchical ancestors of the OBJ1 selection object in the
previous example:

Classic> (cl-ind-ancestors @obj1)
(@c{THING} @c{CLASSIC-THING}
@c{INTERACTION-OBJECT}
@c{SELECTION-OBJECT}
@c{MORPH-BASIC-MENU} @c{TK-MENU})

The results show that OBJ1 is most directly related to the
lowest-level concepts, MORPH-BASIC-MENU, and also the
toolkit widget TK-MENU. This example also shows how the
concept hierarchy can suggest replacement toolkit widgets for
interaction objects detected in legacy code. These experi-
ments showed that transformations can be suggested with
varying amounts of information about attributes.

4.5 Validating the Domain Model
In addition to the original manual experiment validating

the application of the rule set, there needs to be a validation of
the entire domain model. A toolset implementing the

MORPH technique is currently under development, and
part of the testing of the toolset will include running a suite
of application code through MORPH, including applica-
tions in the 80-100,000 line range. The percentage of user
interface constructs recognized by the automated analysis
process will be measured, and changes to the domain model
will be noted. We hope to show convergence of the domain
model with each successive application of the MORPH
technique requiring less and less modification to the domain
model.

5. Conclusions and Future Work

The goal of using domain analysis to support both
reverse engineering and reuse was met by the combination
of empirical methods and domain-expert knowledge. Initial
experiments have shown the resulting domain model for
user interfaces to be robust enough to express the constructs
of two commonly-used GUI toolkits. Furthermore, the con-
cept hierarchy supports the transformation process neces-
sary for transformational reuse. More strenuous domain
model validation experiments will be conducted when the
implementation of the MORPH toolkit has been completed.
Additional widget toolkits, such as MOTIF and MS-Win-
dows, will also be added to test the flexibility and coverage
of the domain model.

6. References

[BIG89] Biggerstaff, Ted, and Perlis, Alan. Software
Reusability, ACM Press, Frontier Series,
Addison Wesley, 1989.

[BRA90] Brachman, Ronald, McGuinness, Deborah,
Patel-Schneider, Peter, Resnick, Lori, and
Borgida, Alexander. “Living with CLASSIC:
When and How to Use a KL-ONE-Like
Language”, Principles of Semantic Networks,
J. Sowa, ed., Morgan Kaufmann Publishers,
1990.

[CLA97] Clayton, Richard; Rugaber, Spencer; Taylor,
Lyman; and Wills, Linda. “A Case Study of
Domain-based Program Understanding”, in
Proceedings of the International Workshop
on Program Comprehension, Dearborn,
Michigan, May 1997.

[[DEB92] deBaar, Dennis; Foley, James D.; and
Mullet, Kevin E. “Coupling Application
Design and User Interface Design”,
Proceedings of CHI ‘92, May 3-7, 1992.

[DEB94] DeBaud, Jean-Marc; Moopen, Bijith; and
Rugaber, Spencer. “Domain Analysis and
Reverse Engineering”, in Proceedings of
the 1994 International Conferences on
Software Maintenance, Victoria, Canada,
IEEE Computer Society Press, September
1994.

[DEB96] Debaud, Jean-Marc. “Lessons From a Domain-
based Reengineering Effort”, in Proceedings of
the Third Working Conference on Reverse
Engineering, Monterey, CA, Nov 8-10 1996.

[DIX93] Dix, Alan; Finlay, Janet; Abowd, Gregory;
and Beale, Russell. Human-Computer
Interaction, Prentice Hall International
(UK) Limited, 1993.

[FOL90] Foley, James D., van Dam, Andries, Feiner,
Steven K., and Hughes, John F. Computer
Graphics Principles and Practice, Second
Edition, Addison-Wesley Publishing
Company, Addison-Wesley Systems
Programming Series, 1990.

[HIX93] Hix, Deborah, and Hartson, H. Rex.
Developing User Interfaces - Ensuring
Usability Through Product and Process,
Wiley Professional Computing Series,
John Wiley and Sons, Inc., 1993.

[MER95] Merlo, Ettore; Gagne, Pierre-Yves;
Girard, Jean-Francois; Kontogiannis,
Kostas; Hendren, Laurie; Panangaden,
Prakash, and DeMori, Renato;
“Reengineering User Interfaces” IEEE
Software, Vol. 12 No. 1, January 1995

[MEY92] Myers, Brad, and Rosson, Mary Beth. “Survey
on User Interface Programming”, Proceedings
of SIGCHI 1992, Human Factors in Computing
Systems, Monterey, CA, May 1992.

[MOO95] Moore, Melody. “Reverse Engineering User
Interfaces: A Technique”, in Proceedings of
the 1995 Software Developer’s Conference,
San Francisco, CA, April 1995.

[MOO96] Moore, Melody. “Rule-Based Detection for
Reverse Engineering User Interfaces”,
Proceedings of theThird Working Conference
on Reverse Engineering, IEEE Computer
Society Press, Nov 8-10, Monterey,
California, 1996.

[MOO97] Moore, Melody and Rugaber, Spencer.
“Using a Knowledge Representation
for Understanding Interactive Systems”,
in Proceedings of the International
Workshop on Program Comprehension,
Dearborn, MI, May 1997.

[NEI89] Neighbors, J.M. “DRACO: A Method for
Engineering Reusable Software Systems”,
in Domain Analysis and Software Systems
Modeling, IEEE Computer Society Press,
Los Alamitos, California, 1991. Reprinted
from Association for Computing
Maehinery, with permission from
Addison-Wesley Publishing Co., Reading
MA, 1989.

[PRE91] Prieto-Diaz, Ruben, and Arango,
Guillermo. Domain Analysis and
Software Systems Modeling, IEEE

Computer Society Press, Los Alamitos,
California, 1991.

[REA90] Reasoning Systems Inc. REFINE User’s
Guide, Copyright Reasoning Systems Inc.,
3260 Hillview Avenue, Palo Alto, CA 94304,
1990.

[RES93] Resnick, Laurie Alperin et al. CLASSIC
Description and Reference Manual for the
Common LISP Implementation Version 2.1,
AT&T Bell Labs, Murray Hill, N.J., May 15,
1993.

[SHN93] Shneiderman, Ben. Designing the User
Interface, Strategie for Effective Human-
Computer Interaction, Second Edition,
Addison Wesley, 1993.

[TIL94] Tilley, Scott. “Domain Retargetable Reverse
Engineering II: Personalized User Interfaces”
in Proceedings of the 1994 International
Conferences on Software Maintenance,
Victoria, Canada, IEEE Computer Society
Press, September 1994.

[UNI93] Uniforum, “Uniforum Research Released:
‘93 to be the Year of Change”, UniNews,
Vol VII, Number 6, April 7, 1993.

