
 Abstract

System migration presents a myriad of challenges in
software maintenance. The user interfaces of interactive
systems can undergo significant change during migration.
Program understanding techniques can be used to create
abstract models of the user interface that can be used to
generate a new user interface on the target platform. Using
a knowledge representation to model the abstractions has
the advantage of providing support for transformation to
the new user interface environment. This paper details the
knowledge base and representation incorporated into the
Model Oriented Reengineering Process for HCI
(MORPH)1 toolkit, which supports program understanding
for interactive systems. It illustrates the process with an
example transforming MORPH abstractions to the Java
Abstract Windowing Toolkit (AWT).

Keywords: User Interface, reengineering, migration,
reverse engineering, knowledge bases

1. Introduction

The migration of interactive systems presents a unique
challenge for program understanding. Often the user inter-
face must be completely replaced, even though the func-

1. Effort sponsored by the Defense Advanced Research
Projects Agency, and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-96-2-
0229. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstand-
ing any copyright annotation thereon. The views and con-
clusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects
Agency, Rome Laboratory, or the U.S. Government.

tional requirements of the system remain the same.
Manual reengineering of the user interface is costly, since
half or more of the code for an interactive system is devoted
to the user interface [6]. Using an automated process to
extract information about user interface tasks and construct-
ing an abstract model can significantly reduce the effort
required for migration [5].

Even though the tasks the user accomplishes do not
change, the way that the user interacts with the system may
be altered significantly. Conceptually, the migration process
creates a mapping from the user interface tasks in the old
system, to the implementation of those tasks in the new sys-
tem. Nuances of the user interactions in the original system
can help determine the most appropriate replacements in
the new system. A transformation process is needed to
determine the best mapping for user interface replacement.

Representation is also a key issue in any process for
program understanding [14]. The quality and utility of an
abstract model derived from code can be largely determined
by the capabilities of the representation for the model.
Therefore, a representation method must be chosen care-
fully to adequately support the program understanding task
being undertaken [9]. A representation method that
accommodates both the capture of detailed information
about the interactions and also provides the mapping capa-
bility is knowledge representation [7]. The Model Oriented
Reengineering Process for HCI (MORPH) [10] provides a
framework for deriving abstract models of user interfaces
and support for transformation to the new graphical imple-
mentation. This paper focuses on the MORPH abstract
modeling method using the Classic [13] knowledge repre-
sentation language and the advantages and issues in using a
knowledge representation for program understanding.

1.1 Terminology
 Interaction tasks define what the user accomplishes

while interacting with a user interface; for example, select-

Using Knowledge Representation
to Understand Interactive Systems

Melody Moore and Spencer Rugaber
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280
melody@cc.gatech.edu

ing from a list of choices, or entering data [3]. Interaction
objects are the controls (such as buttons, textboxes, or slid-
ers) that define how the user interacts with the system [2].
Interaction tasks are defined by the application requirement,
and do not change when the system is migrated to a differ-
ent platform. Interaction objects are defined by the imple-
mentation environment and may be completely replaced
during migration. Interaction objects can be classified by
the interaction task they implement, differentiated by iden-
tifiable attributes. For example, a menu is an interaction
object that implements the selection interaction task, with
the attributes “small, static choice set”. A scrolling list is an
interaction object that also implements the selection inter-
action task but can be used to implement a “potentially
large, dynamic choice set”.

Specific interaction objects are implemented in toolkits
that allow composition of new user interfaces, such as
Motif, MS-Windows, and the Java Abstract Windowing
Toolkit (AWT). User Interface Management Systems
(UIMS) are environments that allow rapid development and
modification of graphical user interfaces (GUIs) [3]. The
most ubiquitous form of GUI is the Windows, Icons,
Menus, and Pointers (WIMP) interface, which evolved
from the Apple MacIntosh. A legacy system is an applica-
tion that has been developed and maintained over a period
of time, typically its original designers and implementors
are no longer available to perform the system’s mainte-
nance. Often specifications and documentation for a legacy
system are outdated, so the only definitive source of infor-
mation about the system is the code itself.

2. Approach

2.1 The MORPH Process
 MORPH is a process for reengineering the user inter-

faces of text-based legacy systems to graphical user inter-
faces, and a toolset to support the process. There are three
steps in the reengineering process [8]:

• Detection - Also called program understanding, analyz-
ing source code to identify user interaction objects from
the legacy system.

• Representation - Building and expressing a model of the
existing user interface as derived from the detection
step.

• Transformation - Manipulating, augmenting, or restruc-
turing the resulting model to a graphical environment.

In the detection step, identifying interaction tasks from
code enables construction of an abstract model of the user
interface (expressed by a representation model). From this
abstract model, transformations can be applied to map the
model onto a specific implementation. It has been shown
that interaction tasks can be detected from character-ori-
ented application code by defining a set of coding patterns
and replacement rules [10]. Attributes of interaction tasks
can also be detected from code, in order to construct a
higher quality abstract model of the user interface [11].
With more detail in the model, the transformation step can
select more appropriate interaction objects for the imple-
mentation of the new user interface.

 As illustrated in figure 1 below, the process begins
with extracting the user interface from the computational
legacy code, using program understanding techniques to

New GUI-
based
system

Abstract
Model

Restructured
Model

Transformation

Generation
(Forward
 Engineering)

Detection

Representation Representation

Human Analyst
Input

Charcter-
oriented
interactive
system

Figure 1: The MORPH Reengineering Process

build an abstraction, or model, of the existing interface.
This path is depicted by the detection edge and the abstract
model box in Figure 1. The legacy system model can then
be transformed to a model structured to support a WIMP
interface, shown by the transformation edge. Input from
the human analyst is added at this stage, to define presenta-
tion details and to enhance the model. Once the model has
been restructured, a forward-engineering tool, such as a
User Interface Management System (UIMS), can be used to
automatically generate a new graphical interface for the
system.

2.2 Abstraction Hierarchy
 A key element of the MORPH process is the set of

user interface abstractions that can be recognized from leg-
acy code and represented in the user interface model.
These abstractions start with the four basic user interaction
tasks described in [3]:

• Selection - the user makes a choice from a set or list of
choices

• Quantification - the user enters numeric data

• Position - the user indicates a screen or world coordinate

• Text Entry- the user enters text from an input device

 Coding patterns that describe the implementation of
each of these basic interaction tasks can be used to detect
these tasks in text-based user interfaces [10]. In a graphi-
cal user interface, however, there are many different possi-
bilities for the implementation of a particular interaction
task. For example, a selection task may be implemented by
a bank of pushbuttons, or by a menu. Therefore, once the
interaction tasks are identified, then the code can be exam-
ined for further clues to possible attributes of the interaction
object that will be most appropriate in the GUI. For exam-
ple, if a selection task is identified, then the number of
choices may determine whether that interaction object
should map to a menu or a scrolling list. MORPH main-

tains a hierarchy of concepts, composed of the set of
abstract interaction objects categorized under the basic
interaction tasks. These abstractions are described in the
MORPH knowledge base. In order to allow transforma-
tions between the abstractions and specific GUI toolkits to
be accomplished by inferencing, components of each tool-
kit are also described in the knowledge base. Figure 2
below shows the organization of the MORPH abstraction
hierarchy. As the interaction tasks are identified, attributes
are collected to pinpoint the appropriate abstract interaction
object. Inferencing is then used to map to the appropriate
implementation of the abstract object in a particular toolkit,
such as Java AWT.

2.3 Declarative Models
In [2], deBaar, Foley, and Mullet present a declarative

approach to designing a user interface by specifying a data
model, and then using an inference engine to generate the
user interface from the data model. This method also has
applicability to reverse engineering, since it is straightfor-
ward to detect a data model from code. Detecting interac-
tion tasks and objects of a user interface from text-based
code depends largely on the data structures involved in I/O.
Identification of attributes of variables that are used in I/O
with the terminal may be used to determine which compo-
nents of a specific toolkit are appropriate to substitute in a
GUI interface. Using this approach, we are able to identify
salient features that can differentiate between interaction
objects that implement the same interaction task. For
example, in the selection interaction task, a large, dynami-
cally sized choice list indicates a scrolling list, whereas a
smaller, static choice list may be best implemented with a
basic menu. A table of attributes for each interaction task
was generated based on the declarative model idea. The
Selection task table is presented as an example (Table 1) in
the Results section below.

Interaction
Task

Selection Position Quantification Text

Abstract
Interaction
Objects

Specific
Toolkit
Implementations

Basic
Menu

Button
Toggle
Button

List . . .

Java Abstract
Windowing

Toolkit Classes
MS-WindowsMotif

Widgets resources

Figure 2: MORPH Concept Hierarchy

2.4 The CLASSIC Knowledge Representa-
tion Language

The addition of a knowledge base strengthens the
declarative approach. Frame-based (slot-and-filler) knowl-
edge base systems work well with pattern-based detection
methods [4]. If data structure and attribute patterns for
interaction tasks and objects can be identified, then a frame-
based knowledge representation can be used to describe
them. This knowledge base can then be used to aid in the
detection of user interface components from legacy code,
and then used to identify the appropriate replacement inter-
action objects within a specific toolkit such as MS-Win-
dows or Motif.

The CLASSIC Knowledge Representation from AT&T
Bell Laboratories [13] is a frame-based system that is par-
ticularly well suited for our purposes. CLASSIC focuses
on objects rather than logical sentences, allowing interac-
tion tasks and objects to be described in an object oriented
fashion. CLASSIC is a deductive system based on the defi-
nition of concepts, which are arbitrarily complex, compos-
able descriptions of object classes. Roles are properties
that can be used to define attributes and restrictions on the
concept descriptions, and individuals are instantiations of
objects.

The power of CLASSIC for the MORPH knowledge
base is in the organization of concepts and individuals into
a hierarchy. More abstract, or general, concepts will be
higher in the hierarchy, while more specific concepts and
individuals will be lower. This allows individuals to be
matched with classes that they satisfy. For example, the
“selection task” is a high-level concept, while the concepts
for the abstract objects “menu” and “pushbutton” are under-
neath “selection”. Concepts and individuals for specific
toolkit components, such as the “Choice” in Java AWT, are
underneath the abstract objects in the hierarchy.

 CLASSIC also provides a variety of inferencing capa-
bilities. Its completion inferences include contradiction
detection, combination, inheritance, and propagation. It
also provides classification, which allows concepts to be
identified if they are more general or more specific than a
given concept, and subsumption, which answers questions
comparing the relative order of two concepts in the hierar-
chy. Classification in particular can be used to infer the
most appropriate specific toolkit component from a descrip-
tion of an abstract interaction object.

3. Results

The MORPH knowledge base was built in CLASSIC
according to a domain analysis for user interfaces. This

section describes the method for organizing the user inter-
face hierarchy and gives an example of the representation.

3.1 Knowledge Base Hierarchy
In building the concept hierarchy, we implemented two

approaches to analyzing the user interface domain:

• Bottom-up - Since the domain was limited to character-
oriented interfaces, a study was performed on 22 legacy
systems, using static and dynamic analysis to identify
user interface components. A taxonomy of possible
user interaction tasks and interaction objects was built
from entities that were found in the code.

• Top-down - in order to make the taxonomy more com-
plete, user interface community literature was searched
to find definitions for interaction tasks, objects, and their
associated semantics. The taxonomy was augmented to
include interactions that weren’t discovered in the code
study, but could conceivably be a part of a character-ori-
ented interface.

According to the knowledge engineering methodology
described in [1], roles and concepts for each of the interac-
tion tasks and objects were defined for the CLASSIC
knowledge representation. Definitional attributes became
roles, and interaction tasks and interaction objects became
concepts.

3.2 Knowledge Representation Language
This section illustrates the construction of the concept

hierarchy using the selection interaction task as an example.

Selection, allowing the user to make a choice from a
set of alternatives, is one of the most-used basic interaction
tasks, especially in character-oriented applications. Selec-
tion choices can allow the user to submit commands, such
as save or edit, or allow the user to set system attributes and
states (such as turning on boldface type). Selection interac-
tion objects range from buttons of various kinds to text
entry and menus. Attributes that are important in determin-
ing the appropriate selection mechanism include:

• Action when selected - When a selection mechanism is
invoked, it either causes an action to occur (procedural),
or it changes a state in the user interface or in the appli-
cation.

• Number of States - All selection objects have a range of
states or choices, from one to infinity. This attribute
describes the number of states available for that selec-
tion object.

• Choice List Type - whether the number of choices in the
choice list is fixed, or whether it can be added to dynam-
ically (variable).

The following table, patterned after the declarative
description method described in [2], details selection

attributes for each abstract interaction object:

The attributes of these selection tasks are formalized in
Classic as roles, with the following concepts defining their
possible values. The concept definition names the possible
values of a choice set by incorporating a higher-level con-
cept, SELECTION-PROPERTY. CLASSIC provides oper-
ators, such as one of, that allow the concept to specify a
choice:

(cl-define-concept 'SELECTION-ACTION
 '(and SELECTION-PROPERTY
 (one-of
 Procedural-Action
 Visible-State-Change)))

(cl-define-concept
 'SELECTION-NUMBER-OF-STATES
 '(and integer (min 1)))

(cl-define-concept
 'SELECTION-VARIABILITY
 '(and SELECTION-PROPERTY
 (one-of Fixed Variable)))

(cl-define-concept
 'SELECTION-GROUPING
 '(and SELECTION-PROPERTY

 (one-of Grouped Not-Grouped)
))

The Selection interaction task itself is defined by the
composition of the various roles. The at-least operator
asserts that the named role must be filled in any individual
created from that concept:

(cl-define-primitive-concept
'INTERACTION-OBJECT 'classic-thing)

(cl-define-concept
 'SELECTION-OBJECT
 '(and INTERACTION-OBJECT
 (at-least 1 action)
 (all action SELECTION-ACTION)
 (at-least 1 number-of-states)
 (all number-of-states
 SELECTION-NUMBER-OF-STATES)

 (at-least 1 variability)
 (all variability
 SELECTION-VARIABILITY)
 (all grouping
 SELECTION-GROUPING)
)
)

Table 1: Selection Attributes

Abstract
Interaction

Object

Action
When

Selected

Number
of States

Choice
List Type

Grouping

Pushbutton procedural
(action)

One Fixed Not
Grouped

Toggle
Button

State
Change

Two Fixed Not
Grouped

Radio
Button

State
Change

Two Fixed Grouped

Basic
Menu

procedural
(action)

Few (< 15) Fixed Not
Grouped

Option
Menu

State
Change

Few (< 15) Fixed Not
Grouped

Selection
List

State
Change

Many -
(> 15)

Variable/
Dynamic

Not
Grouped

The definition of INTERACTION-OBJECT is at the
top of the CLASSIC concept hierarchy; all of the MORPH
definitions are subsumed by it, allowing the CLASSIC
inference engine to work. Notice that all roles except for
SELECTION-GROUPING are required; this is because the
only interaction object that refers to grouping is the radio
button, which is used to implement a selection from a mutu-
ally exclusive set of choices.

The interaction objects are defined and differentiated
by restrictions on the roles, as illustrated in the definition of
radio button and basic menu:

(cl-define-concept 'MORPH-RADIO-BUTTON
 '(and SELECTION-OBJECT
 (fills action
 Visible-State-Change)
 (fills number-of-states 2)
 (fills variability Fixed)
 (fills grouping Grouped)
)
)

(cl-define-concept 'MORPH-BASIC-MENU
 '(and SELECTION-OBJECT
 (fills action
 Procedural-Action)
 (all number-of-states
 (and integer
 (min 2) (max 15)))
 (fills variability Fixed)
 (fills grouping Not-Grouped)
)
)

3.3 Transformation by Inferencing
The next task is to perform transformations from the

MORPH abstractions to specific toolkit instances. For our
test, the Java Abstract Windowing Toolkit (AWT) [12] was
added to the knowledge base. Following are the CLASSIC
descriptions for the “Grouped Checkbox” (corresponds to
the MORPH-RADIO-BUTTON) and the “Choice” (corre-
sponds to the MORPH-BASIC-MENU). In order to get a
fair test of the inferencing capabilities, no assumptions are
made about the hierarchy and the parent concept is INTER-
ACTION-OBJECT, not SELECTION-OBJECT:

(cl-define-concept
 'AWT-Grouped-Checkbox
 '(and INTERACTION-OBJECT
 (fills action
 Visible-State-Change)
 (fills number-of-states 2)

 (fills variability Fixed)
 (fills grouping Grouped)
)
)
(cl-define-concept 'AWT-Choice
 '(and INTERACTION-OBJECT
 (fills action Procedural-Action)
 (all number-of-states
 (and integer (min 2) (max 10)))
 (fills variability Fixed)
 (fills grouping Not-Grouped)
)
)

The inferencing test is performed by providing a
MORPH abstract concept to CLASSIC and asking which
higher-level concepts subsumes it, which gives us the map-
ping to the specific Java component AWT-CHOICE. The
screen capture below shows the interactive CLASSIC ses-
sion to perform this query, and the response from the
CLASSIC knowledge base on the next line:

Classic> (cl-concept-parents
 @morph-basic-menu)
(@c{AWT-CHOICE} @c{SELECTION-OBJECT})

CLASSIC returns AWT-CHOICE as the best match for
MORPH-BASIC-MENU, and also indicates that the inter-
action task is SELECTION-OBJECT. Even though the
Java AWT components were not directly described as
SELECTION-OBJECTS, the CLASSIC system makes the
match because of the values of the role fillers. In this way,
the MORPH abstract model objects can be mapped to any
specific toolkit that is described in the knowledge base.

3.4 Design Critics
Another advantage of using a knowledge representa-

tion for transforming user interfaces is that design and
usability heuristics can be incorporated into the knowledge
base. A “design critic”, or guideline, is shown in the range
of 2..15 defined in the MORPH-BASIC-MENU definition.
A decision was made that any selection with a large number
of choices should be handled by another interaction object,
a scrolling list. Therefore only selection tasks with choice
lists smaller than 10 will ever be mapped to MORPH-
BASIC-MENU, and larger lists will be mapped to
MORPH-LIST. This enhances the usability of the resulting
user interface.

3.5 Current Status of MORPH Knowledge
Representation

The MORPH knowledge representation for the selec-
tion and text entry and output interaction tasks and objects

are implemented, along with the associated Java AWT
classes. We have experimented with inferencing and with
different organizations of the concept hierarchy in order to
obtain the best possible mappings. Although the position
and quantification interaction tasks are much less ubiqui-
tous in character-oriented code, attribute tables for them
have been developed and will be implemented next to com-
plete the knowledge representation.

4. Issues and Conclusions

Even though the representation of the user interface
model and the identification of the closest match to a spe-
cific toolkit widget were successful, we encountered several
interesting issues in the study we conducted:

• Defining the concept hierarchy - native vocabulary vs.
common vocabulary. The first attempt at defining the
concept hierarchy was accomplished in a “native vocab-
ulary” fashion - by looking at the toolkits and describing
them in their own terms. The result was that the infer-
encing performed poorly [7] and few matches were
made in the transformation step. When the concept
hierarchy was designed top-down, with the toolkits and
abstractions being described in a common vocabulary,
the inferencing worked much better and correct trans-
formations were identified. Therefore it is important to
describe all of the user interface components using the
same vocabulary, sharing at least the highest level con-
cept and role definitions.

• Transformation inferencing accuracy. In order to obtain
the correct mappings from the inferencing, the concept
definitions had to be carefully crafted to make sure they
were accurate. For example, leaving the “grouping”
role filler off of a MORPH-RADIO-BUTTON caused
matches with AWT-BUTTON and AWT-CHOICE
instead of the desired AWT-GROUPED-CHECKBOX.
All definitive roles must be present, and determining
which roles are necessary is an important part of testing
the knowledge base.

• Individuals vs. concepts at the definition level. It was
tempting initially to define all toolkit objects as CLAS-
SIC individuals, putting them at the lowest level of the
hierarchy. However, we ran into problems with this as
an overall scheme since some of the interaction objects
required ranges. For example, the AWT-CHOICE
(which is essentially a menu) can have a range of the
number of choices. Defining it as an individual requires
fixing the number of choices, which is incorrect. There-
fore the toolkit objects must be defined by concepts. In
the program understanding process, however, specific

implementations in the legacy code should be repre-
sented by individuals, since information such as the
number of choices is detectable from the code.

In conclusion, this study showed that user interaction
tasks and associated interaction objects can be organized
into a hierarchy, and used to represent an abstract model in
a program understanding process. Interaction object
attributes can be identified and used to aid transformation
by subsumption and classifaction-based reasoning. The
knowledge representation basis for the abstract model adds
significant advantages to the process of migrating interac-
tive systems.

5. References

[1] [BRA90]Brachman, Ronald, McGuinness, Deborah, Patel-
Schneider, Peter, Resnick, Lori, and Borgida,Alexander.
“Living with CLASSIC: When and How to Use a KL-ONE-
Like Language”, Principles of Semantic Networks, J. Sowa
 ed., Morgan Kaufmann Publishers, 1990.

[2] [DEB92]deBaar, Dennis, Foley, James D., and Mullet, Kevin
E. “Coupling Application Design and UserInterface
Design”, Proceedings of CHI ‘92, May 3-7, 1992.

[3] [FOL90]Foley, James D., van Dam, Andries, Feiner, Steven
K., and Hughes, John F. Computer GraphicsPrinciples and
Practice, Second Edition, Addison-Wesley Publishing Com-
pany, Addison-Wesley Systems Programming Series, 1990.

[4] [FRO85]Frost, Richard. Introduction to Knowledge Base Sys-
tems, MacMillan Publishing Company, New York, New
York, 1985.

[5] [MER95]Merlo, Ettore; Gagne, Pierre-Yves; Girard, Jean-
Francois; Kontogiannis, Kostas; Hendren, Laurie;Panan-
gaden, Prakash, and DeMori, Renato; “Reengineering User
Interfaces” IEEE Software, Vol. 12 No. 1, January 1995.

[6] [MEY92]Myers, Brad, and Rosson, Mary Beth. “Survey on
User Interface Programming”, Proceedings ofSIGCHI 1992,
Human Factors in Computing Systems, Monterey, CA, May
1992.

[7] [MOO94]Moore, Melody, Rugaber, Spencer, and Seaver, Phil,
“Experience Report: Knowledge-Based User Interface
Migration”, in Proceedings of the 1994 International Con-
ference on Software Maintenance, Victoria, B.C., Sept 1994.

[8] [MOO94a]Moore, Melody. “A Technique for Reverse Engi-
neering User Interfaces”, Proceedings of the 1994 Reverse
Engineering Forum, Victoria, B.C., Sept 1994.

[9] [MOO96a]Moore, Melody. A Survey of Representations for
Recovering User Interface Specifications in Reengineering,
Research Report number GIT-CC-96-34, College of Com-
puting, Georgia Institute of Technology, Feb 19, 1996.

[10] [MOO96b]Moore, Melody. “Rule-Based Detection for
Reverse Engineering User Interfaces”, Proceedings of the
Third Working Conference on Reverse Engineering, IEEE
Computer Society Press, Nov 8-10, Monterey, California,
1996.

[11] [MOO96c]Moore, Melody. “Attributes of Interaction Objects
for Knowledge-Based Program Understanding”, Research
Report number GIT-CC-96-35, College of Computing, Geor-
gia Institute of Technology, November 24, 1996.

[12] [NAU96]Naughton, Patrick. The Java Handbook, Osborne
McGraw-Hill, Berkeley, California, 1996.

[13] [RES93]Resnick, Laurie Alperin et al. CLASSIC Description
and Reference Manual for the Common LISP Implementa-
tion Version 2.1, AT&T Bell Labs, Murray Hill, N.J., May
15, 1993.

[14] [RUG93]Rugaber, Spencer, and Clayton, Richard. “The Rep-
resentation Problem in Reverse Engineering”, Proceedings
of the Working Conference on Reverse Engineering, May 21-
23 1993, Baltimore, MD. IEEE Computer Society Press,
1993.

