
User Interface Reverse Engineering

Research Proposal
DRAFT

Melody M. Moore

College of Computing
Georgia Institute of Technology

October 18, 1994

Prepared For: Dr. James Foley
Committee: Dean Peter Freeman

Dr. Richard LeBlanc
Dr. Spencer Rugaber

February 19, 1996 2

1.0 Introduction
 The term rightsizing [WIL93] has been coined to describe the practice of reengineering and
updating information systems to better fit their environment, to improve business processes, and
to reduce cost. Typically this involves migrating systems from centralized mainframes to
distributed client-server organizations (downsizing), but it can also include migrating applications
to more powerful or ubiquitous platforms (upsizing). Application developers are more frequently
steering away from proprietary, vendor-specific solutions and are reengineering systems to
conform to industry standards that provide more portability and interoperability. A recent
Uniforum survey showed that of the 1,100 companies that were surveyed, 85% of them were
migrating large systems to “rightsize” them [UNI93].

Migration Technologies
 This increasing need to migrate systems across very different platforms has created some
difficult problems for software maintainers. Often it is simpler to completely rewrite the old
application rather than attempt to adapt it to the new environment by hand. However, rewriting
large systems is prohibitive in both time and cost. Transition technologies, which allow
applications to be quickly migrated to new environments with automated assistance, are
becoming paramount to the maintenance process. Fortunately, there has been a lot of effort put
into reverse engineering techniques, and many tools have been developed to glean algorithms and
data models from existing legacy systems. However, these technologies do not completely solve
the migration problem.

Focus on the User Interface
 It has been estimated that up to 50% of the code in interactive systems is devoted to the user
interface [SUT78]. It is common for a legacy system, especially one written for a mainframe, to
have a simple text-based user interface. Migration to a workstation environment often involves
rewriting the text-based interface to the new Graphical User Interface (GUI). Comparatively little
work has been done in the area of reverse engineering the user interface model from legacy code.
Since user interface technology has traditionally been very platform-dependent, much of the
reengineering work can center around properly migrating the functionality of the user interface.
Therefore, if we can improve the process of reengineering user interfaces, we streamline the
entire task of migrating systems between different platforms, reducing cost and shortening
development time.

Traditional Reverse Engineering Techniques
 Although there have been significant strides made recently in the areas of program
understanding and reverse engineering, there has been little work done that focuses on
understanding the user interface of a legacy system. Since nearly half of the code in an interactive
system is devoted to the user interface, it is obvious that understanding the abstractions of the user
interface are paramount to understanding the program itself. Therefore, studying ways of
automatically constructing a model of the user interface from legacy code could fill a gap in the
field of program understanding.

February 19, 1996 3

Research Objectives
 This work focuses on solving the problems inherent in reengineering user interfaces when
migrating legacy systems. A technique is developed to detect user interface components from
legacy code, and represent the user interface in an abstract model.
 This research proposal describes issues in user interface migration and describes a technique
under development to abstract the user interface model from legacy code. I then present some
experimental strategies and results.
To develop a technique to effectively detect and represent user interface components from text-
based legacy systems in order to transition them to Graphical User Interfaces.

February 19, 1996 4

2.0 Motivation
Traditionally, Software Reengineering research has focused on detecting and transforming the
functionality of a system as a whole. This section establishes a basis of terminology and domain,
to set a focus. It then examines the reasons why reengineering User Interfaces is a unique
problem, and why research into understanding the user interface is an important step in improving
the migration process.

2.1 Terminology
The terms associated with reengineering are often overloaded and misused. Therefore, it is
imperative to define some terminology to establish a common ground for discussion. Chikofsky
and Cross present a taxonomy of reengineering terminology in [10], which were used as a basis
for generating these definitions:.
• Migration is the activity of moving software from its original environment, including hard-

ware platform, operating environment, or implementation language to a new environment.
• Reengineering includes restructuring, redesigning, or reimplementing software.
• Porting software entails moving from one environment to another with minimal change (usu-

ally just syntactic changes, such as recompiling). Porting does not include restructuring or
rewriting significant portions of the code, except the lowest-level system interfaces.

• Reverse Engineering is the activity of analyzing an existing system to describe its original
design by an abstract representation.

• Forward Engineering entails moving from abstraction and design level to the system imple-
mentation level.

• A Legacy System is an existing application in the maintenance phase of its lifecycle; it may be
very old and heavily modified. Often, system documentation for legacy systems is out of date
or nonexistent. The original developers may not be available for consultation, either, hence the
connotation of “handing down” the system to the software maintainers.

2.2 The Information Systems Domain
 The information systems domain presents some unique opportunities in studying migration.
These systems are typically data-oriented, and often include an integral user interface. Database
system architectures are generally command-based, with a common create / delete / query
functional paradigm. User interfaces for these systems are often simple and text-based, with little
or no graphical requirements. User interactions tend to take the form of question and answer, or
command and response.
 The limited amount of user interface abstractions in these text-based interfaces make the
information systems domain an ideal candidate for automated reverse engineering. Since only a
restricted number of user interactions paradigms are used, the user interface components can be
more easily recognized and detected. Semantics associated with graphics are also less of a
problem than with other domains. Common system architectures may make it easier to retrofit
the applications for new interfaces, and the fact that information systems tend to be very large

February 19, 1996 5

means that they will benefit greatly from automated techniques. Therefore, this study will focus
on the information systems domain as a source of legacy code for migration experiments.

2.3 Why User Interfaces are Difficult to Migrate
 There are many factors that contribute to the difficulty of migrating user interfaces:
• Display technologies have become increasingly sophisticated and have more capabilities. In

the heyday of the mainframes, displays usually were text-based or form-based on remote
“dumb” terminals. The advent of the personal computer and the workstation brought high-
quality Graphical User Interfaces (GUI’s) to the general market. Taking advantage of the
power and functionality provided by the new interactive display technologies can be a prime
motivator for migrating an information system.

• Lack of standards in early information systems led to the proliferation of many proprietary
Application Programming Interfaces (API’s) for user interfaces. This meant that migrating the
application to another platform required substantial or total reengineering. The availability of
Open Systems standards today allow user interfaces to be much more portable, which is
another incentive to migrate obsolete display technologies to the new standards.

• “Look and Feel” of an information system application can change drastically between plat-
forms, depending on underlying display technology support. This raises a philosophical ques-
tion: when migrating an application, is it better to retain the “look and feel” of the original
platform or to reengineer the application to conform to the “look and feel” of the new target
platform?

• Functionality changes may be necessary when migrating across platforms. Some of these
changes may be improvements offered by new display capabilities, but some changes may be
required because certain functionality is not provided on the new target platform. For example,
a text-based user interface might require the user to type information that could simply be
selected from a scrolling list with a graphical user interface. On the other hand, a graphical
interface that made heavy use of color might not migrate well to a system with only a mono-
chrome monitor, since information could be conveyed in the color scheme.

• Integration of the user interface can vary drastically depending on the design of the system. In
many older functionally decomposed information systems, the user interface is the central
component that “drives” the rest of the system. Also, insensitivity to modularization makes it
difficult to isolate the user interface components. Migrating these systems may require com-
plete reengineering to isolate the platform-dependent components of the system.

• Architectural Issues such as callback vs. non-callback systems, synchronous vs. asynchro-
nous, and centralized vs. distributed, can have a profound effect on the organization of the user
interface. The decomposition of the reengineered system may differ from the original system,
as when reorganizing a functionally decomposed system into an object-oriented one.

2.4 Why Traditional Reverse Engineering Techniques Are Insufficient
 The realization that improving software maintenance techniques can save significant cost and
time has encouraged the development of many good techniques for reverse engineering program

February 19, 1996 6

code. There are automated tools to extract information about data (such as Entity-Relationship
diagrams and dataflow diagrams), and program structure and flow (such as hierarchical structure
charts, call charts, and flow charts). Program understanding and comprehension tools take this a
step further, and can actually glean design abstractions and decisions from the code, producing a
high-level description of the program [ROB91]. However, in none of these techniques is the user
interface addressed. The analysis traditionally centers on the algorithmic and data components of
the program.
 Understanding the abstract model of the user interface is an important step in reengineering and
migrating legacy code, since it is very likely that the underlying user interface technology will
change. Once an abstract model is built from the old system, the forward engineering step of
creating the new interface is greatly simplified, and can be easily automated. Especially in the
information systems domain, where the applications tend to be very large and up to half user
interface code, automating this process would be a great advantage to the software maintainer,
and would save significant amounts of effort, time, and cost. Therefore, there is a need for
program understanding and reverse engineering techniques that focus specifically on the user
interface.

February 19, 1996 7

3.0 Background and Related Research
 The first step in defining a systematic methodology for user interface migration is to form a
conceptual framework [MOO93c]. This conceptual framework consists of three main
components:
• Detection - through analysis and other techniques, identify the user interface components in the

legacy code.
• Representation - once the components have been detected, describe the user interface in

abstract terms.
• Transformation - from the abstractions, generate a new interface for the system.
This section examines each of the components of the conceptual framework: detection,
representation, and transformation, and evaluates existing techniques and methods for
applicability to the user interface migration problem.

3.1 Detection
 A large part of the difficulty in migrating systems is in comprehending the existing design
[RUG92]. In user interface migration, an important task is detecting modules or components of
the application that implement the user interface, especially if the user interface technology
dictates complete reengineering or replacement of the user interface. Detection can be
accomplished in several ways. One method involves creating call trees or dataflow diagrams of
the existing code, and then identifying the code segments that can be classified as “user interface”
by transitive groupings. Another method is to locate callbacks in the code and use them to
identify potential user interface objects.

Manual detection
 Without automation, detection is a labor-intensive, time consuming, and error-prone task. It
involves analyzing code to locate user interface calls and also studying documentation and system
manuals for areas of user interaction.
Analysis - Detecting user interface components from application code is tedious, although the
designer can make decisions and restructure code to better suit the new architecture in the
process. The designer can “fine-tune” the interface to suit the native environment, adding
functionality requiring judgement to the interface (for example, adding a scrolling list where
previously the user needed to look up codes in a manual). Still, manual detection of components
from code is inefficient and difficult. Often, when no automated methods or tools are available, it
is easier to simply redesign and reimplement the application than to restructure the legacy system.
This method also is prohibitive with the large applications common to the application systems
domain because of the time and cost constraints of understanding and rewriting the system.

Abstract Syntax Tree Analysis
 In [MER93], Merlo et. al. describe a toolkit that detects user interface components from
character-based applications in order to generate a GUI. This method starts with an Abstract
Syntax Tree (AST) produced by a parser. The systems detects “anchor points” for code fragments

February 19, 1996 8

by matching user interface syntactic patterns in the code. Using the anchor points as a basis,
details about modes of interaction and conditions of activation are identified using control flow
analysis.
Analysis - This method is the most generally applicable since it is designed to address the
problem of migrating from character-based to GUI-based interfaces. This method has much
merit, however, it is a purely static detection method. There are many circumstances in legacy
code when program behavior cannot be determined statically (for example, function pointers that
are not bound until runtime). Also, this method is based on building “basic contiguous interaction
fragments”, and the authors admit that determining the bounds of the fragments that relate to the
user interface is difficult, and in fact, can only be partially automated. The task of determining the
connection between the user interface and the application code are left to manual analysis through
a slicing technique. However, the resulting formal language specification of the user interface
components is excellent to express the form and behavior of a GUI, since the process algebra
allows the definition of pre- and post-conditions and other behavioral aspects. Structural aspects
define entities and the relationships between them.

Syntactic Analysis and Grouping
 In [VAN93], Van Sickle et. al. describe a method for transforming line-oriented user interfaces
to form-based interfaces, detecting “user input blocks” from COBOL code by analyzing the code
against a set of criteria for input and output. The recognition algorithm identifies an “ACCEPT”
statement and attempts to incorporate the entire user exchange from that point by detecting
groupings.
Analysis - This authors indicate that this method will fail when code is poorly structured, and it is
not difficult to see why, since detection depends on user interface components residing in
contiguous code. This method is very limited in that it only identifies groupings of input and
output for reorganization into forms. It might be useful for detecting user dialogues, but is not
sufficient to detect the highly asynchronous or interactive interfaces required by GUIs. While this
method is relatively simple to implement and employ, it will not solve the full problem of
detecting the user interface components.

Dynamic Detection
 In [20], Ritsch and Sneed describe a different approach to program understanding that involves
dynamically executing the program instead of static analysis. The program is automatically
instrumented by a dynamic analyzer, which inserts probes into the program at branches,
procedure entries and exits, and before and after each I/O operation. A test monitor is then used to
capture output from running the program.
Analysis - Although this technique has not been used specifically to identify user interface
components, it does have promise, especially considering the interactive nature of user interfaces.
Benefits of dynamic analysis include:
• Identifying what portions of the implemented code are used
• Learning how particular pieces of the interface are used, to improve usability of the new inter-

faces;
• Determining connections between user interface actions and corresponding code;

February 19, 1996 9

• Detecting pre- and post-conditions; and
• Providing performance information.

Cliche and Plan recognition
 In [WIL90a], Wills describes a prototype system that automatically identifies occurrences of
“cliches”: stereotyped code fragments for algorithms and data structures that are recognized and a
design description generated. Programs are converted to annotated directed graphs, and then
artificial intelligence techniques are used to effect the program recognition. Although this
technique has not been used to detect user interface components, there is a possibility that user
interface programming “cliches” could be defined and therefore recognized with this method. In
[QUI94], Quilici describes similar work in using libraries of programming “plans” that describe
design in terms of common patterns of implementation.
Analysis - The idea of generating a set of user interface programming cliches or plans that could
be fed into a Recognizer is intriguing; the cliches could be customized for different applications,
languages, and programming styles, and therefore this solution could be very general. The
current prototype Recognizer system translates the original program into a Plan Calculus, which
is then analyzed to detect programming cliches. The resulting design trees are an aid to
understanding program structure and behavior. However, the translation step presents a drawback
to reverse engineering - the connections from the user interface components to the original code
are lost. Therefore, this method could be useful to identify the components and structure of the
interface, but associating the code that implements the behavior with the user interface objects is
not automated. This method shows promise as a diagnostic tool but is not a complete solution to
the detection problem unless the connections between detected components and original code can
be retained.

Traditional Slicing Techniques
 In [BEC93], Beck and Eichmann describe a method for comprehending program structure
called “interface slicing”. Traditional slicing techniques involve examining selected related
portions (“slices”) of code to analyze behavior and to recover design decisions. The code
statements in a program slice are not necessarily contiguous; this facilitates design recovery even
if the code has been heavily modified or if it is poorly structured. Typically slices are centered
around manipulation of a particular data object or type, tracing the manipulations of the data
through the program flow. Slicing tools typically build a program representation in the form of a
control-flow or data-flow graph to analyze appropriate program slices. Interface slicing extends
this method to detect behaviors that occur across module boundaries.
Analysis - Slicing has been used for program comprehension, program quality metrics, portability
analysis, and parallelization. It is a fairly well-understood technique and has many applications in
reverse engineering to detect program behavior. It has good potential for aiding in the process of
detecting user interface components. A user interface “slice” could be detected from the
component by tracing data objects involved in input and output statements. The slice could then
be analyzed by other techniques to identify user interface components and behavior.

February 19, 1996 10

3.2 Representation
 The next component of the conceptual framework is the abstract representation of the system.
We need to be able to describe the functionality of the system in a manner that is not dependent on
any specific display technology, yet is complete and robust enough to adequately represent all of
the functional requirements of the user interface. Solving this representation problem and
building a model is key to understanding the process of reengineering [RUG93]. We begin by
describing a concept hierarchy, defining levels of abstraction that progress from the highest level,
generic functionality, down to the purely concrete level of the programming interface (figure 1).
We then can define transformations that will allow us to “translate” an existing system into the
generic representation, and map its functionality back down the chain of abstraction to the new
target platform.

Figure 1 Concept Hierarchy

 Devising an abstract representation is the foundation for developing further reengineering
support, such as automated tools [SEL93]. Several methods for representing the generic level of
abstraction have been studied:

Finite State Machines
 Since most user interfaces involve system states and transtitions that are caused by user inputs,
finite state machines (FSMs) have been used extensively to describe user interfaces [MOO93].
FSMs are effective for showing transitions between menus, for example, or systems that change
state on user selections.
Analysis - FSMs can be used to show behavior of highly interactive and concurrent systems,
which would seem to make them well-suited for representing user interface designs. However,
although FSMs have been used extensively to show user interface behavior and state transitions,

selection text entry scrolling ...
Generic level:

Artifact level:

Implementation
 level:

resourcescursor moves widgets

Curses library XT Intrinsics Windows API

Text-based
interfaces

X Windows MS-Windows
interfacesTechnology: interfaces

February 19, 1996 11

they have no capability to show data flow or data structures which are important to determining
user interface function. Also, the FSM representation breaks down when the user interface
becomes asynchronous or less structured, such as during text entry. FSMs could be used in
conjunction with data representation techniques but are not sufficient in themselves to represent
the design and behavior of an interactive user interface.

Abstract Description language
 In [MER93], Merlo et. al. describe an intermediate representation for a user interface
specification using “Abstract User Interface Design Language (AUIDL)”. AIUDL describes user
interface structure based on an object-oriented paradigm, and specifies user interface behavior
based on process algebra.
Analysis - AUIDL is used as an intermediate representation language which is designed to capture
both user interface structure and behavior. It combines a procedural description with an object
notation that allows object classes, inheritance, and relationships to be defined. The semantics of
the objects are defined with a process algebra which allows the designer to define object reactions
to user input as well as behavioral descriptions. This notation works well as an intermediate
representation, because it is complete, efficient, and allows testing of the resulting interfaces for
equivalence. It may be cumbersome for a human to read directly because of the process algebra
notation, however. It also does not separate the user interface model from the application model,
rather, it treats them as an intertwined whole. Therefore restructuring of the program to design a
better interface would be more difficult. Still, AIUDL merits consideration for a viable
intermediate representation for reverse engineering user interfaces.

Prolog Abstract Syntax Tree
 In [VAN93], Van Sickle et. al. represent user interface structure by translating COBOL code into
Prolog, which then acts as an abstract syntax tree. The Prolog is then restructured and
manipulated to provide control flow information, data structure information, and high level
descriptions of the user interface.
Analysis - Prolog provides an adequate choice for manipulating programs to detect user interface
components in this work because it combines a procedural abstraction with a data description
technique. Also, the Prolog statements can be mapped back to the original code in order to retain
the connection between user interface code and application code. However, pre- and post-
conditions for operations are difficult to detect from the procedural Prolog representation, which
makes it less suitable for describing all the functional capabilities of GUI. Prolog is suitable for
detecting forms from line-based input, but cannot sufficiently describe asynchronous interactions.

Model-based representation
 In [FOL91], Foley et. al. describe the User Interface Design Environment (UIDE), which
incorporates an object-oriented data model to represent user interfaces. One key difference of this
approach is that the user interface is designed based upon a separate application model, describing
objects and operations in terms of application functionality. The application model consists of
layers of increasing levels of abstraction, capturing the semantics, actions, and low-level
interactions. The representation method includes specifying actions, parameters, and pre- and
post-conditions to describe application behavior.

February 19, 1996 12

Analysis - The separation of application and user interface allows maximum flexibility in
migrating user interfaces across platforms, since changing an interface can be accomplished by
simply changing the mappings of connections between the application model and the user
interface model. This makes the UIDE representation strategy very attractive for reengineering.
The levels of abstraction implemented in this model fulfills the goals of the concept hierarchy
described above. However, the UIDE system as it exists now is a generative system designed to
aid in the creation of applications and user interfaces. Adding reverse engineering capabilities
would increase the power and applicability of the UIDE system. Pitfalls could include inability to
sufficiently detect the application model from legacy code that is poorly structured or heavily
modified. Still, this is a promising avenue of study for user interface migration.

Formal Language Representations
 In [ABO89], Abowd et al present an excellent survey of formal notations and techniques to
describe user interfaces. They stress evaluation criteria of expressiveness, readability, and
evaluation, among others. Formal languages, such as Z, ACT-ONE, and VDM, are generalized
languages that can be used to express user interface components and behavior. In [ABO91],
Abowd adapts Z specifically for user interfaces by adding an action formalism that allows the
specification of “agents”, which allow user interface objects and behavior to be specified.
Analysis - The advantage of a formal specification is consistency, precision, and nonambiguity of
the resulting program descriptions. The language presented in the Abowd thesis is an excellent
candidate since it has been tailored specifically to represent user interfaces. While formal
languages would be a good choice for precisely stating the user interface model, they are more
difficult to understand from a human perspective than other representation methods, such as
graphical notations. Understanding the notation and predicate calculus of Z would require
training for the reverse engineer to understand the models that were built.

3.3 Transformation
 The last step in migrating user interfaces is to devise a set of transformations to allow the levels
of the concept hierarchy to be traversed, from the concrete level of the old system, up to the
abstract level, then back down to the concrete level of the new platform. This stage involves
building the generic model, then forming a set of mappings, based on assumptions about user
functionality. User interface objects can be inferred from mechanisms such as detecting
subsumption and classification, and methods can be gleaned from callbacks and other
communications. After building the model, we apply it in the new technology domain. A key
issue here is determining functional correctness - how to prove that the new interface is
functionally equivalent to the original.

Knowledge based transformation
 We have experimented with knowledge based representations for user interface components
(i.e., MS-Windows push buttons as compared to Motif buttons). We used the CLASSIC
knowledge representation system to describe the components, and then devised mappings using
inferencing queries on the collected data [GAN93][MOO94c].
Analysis - In initial experiments with mapping MS-Windows button widgets to Motif widgets, we

February 19, 1996 13

experienced a great degree of difficulty because of basic differences in GUI functionality.
Implementation and organizations across the different GUI APIs proved to be more extensive
than first predicted. Functionality was not necessarily orthogonal between the GUIs, and often no
match could be found for a specific widget. However, upon examination of the failure of the
inferencing to produce matches, we reorganized the descriptions of the components to reflect
more of the salient features of the user interaction techniques, and the inferencing began to work
better. This technique could be very valuable is used in conjunction with other analysis
techniques, such as defining an abstract model of the system. If the abstract model were entered
into the knowledge base, inferencing could be used to determine the closest match for interface
functionality from differing GUI implementation languages, facilitating the migration process.

State machine mappings
 Systems that have been described by Finite State Machines (FSMs) can be transformed by
devising mappings between the states and transitions to specific components and actions of a user
interface environment [MOO92]. The states of the FSM represent menus and choices for the user,
and the transitions or edges represent selections or user input.
Analysis - This technique is sufficient for very simple menu-driven interfaces, but is not
sophisticated enough for most applications. As mentioned in the representation section above,
FSMs provide no method of describing data structures or relationships and therefore much
important information about the application is lost. Although the FSM is quite adequate to show
transitions between menus, it is not sufficient for general transformation of user interfaces.

Model-Based Transformation
 In [FOL91a], another transformation method based on the user interface model is described.
The UIDE system incorporates algorithms that automatically transforms user interface designs
into versions that are slight variations of each other. This is accomplished by utilizing an
underlying knowledge base, similar to the CLASSIC work described above.
Analysis - This technique incorporates algorithms with a knowledge base to accomplish the
transformation. Although the transformations performed are at a higher level than user
interaction techniques (such as the widget set for Motif), the abstraction of the model could be
very useful and the transformation algorithms could be adapted for this kind of transformation.
This technique deserves further consideration for solving the transformation problem.

3.4 Limitations of Commercial Solutions
Portability across platforms is a major concern in the software industry today. As end users

have demanded applications on different platforms, developers have demanded tools to create
those applications. Legacy systems are also being reengineered with portability and multi-
platform considerations as priorities. This demand has created a market for cross-platform tools,
and many have recently been introduced. This section outlines different strategies for cross-
platform tools and analyzes them for applicability to the problem of user interface migration.

February 19, 1996 14

3.4.1 Criteria for Evaluating Tools
Several criteria can be used for evaluating migration tools and strategies:

• Legacy code support - does the tool allow existing code to be migrated, or must the code be
developed from scratch? Naturally, it is desirable to support migration of existing code as well
as development.

• Customization - since many tools are based on high-level abstractions, it is important that the
user have the ability to fine-tune the interface generated by a tool.

• Quality of resulting user interface - Ideally, the interface developed with a tool should fit the
user’s requirements with no modification.

• Native look-and-feel - The resulting user interface should have the true look and feel of the
new environment, rather than retaining the look and feel of the old interface.

• Automation of the migration process - Since many of these legacy systems are quite large,
automation is a requirement of the process of migration.

3.4.2 Architectural Approaches
Current tools for GUI development can be classified based on their underlying architectural

approach they take. This section presents a taxonomy of tools and describes their benefits and
shortcomings.

GUI Builders
Many powerful tools now exist for developing GUIs. These toolsets typically include a

“builder” tool which is a visual editor for developing the GUI graphically. The developer lays out
the GUI using drag-and-drop from a palette of interface components. When the appearance of the
GUI is satisfactory, the developer can then direct the tool to generate code for the interface. Some
GUI builders go a step further and allow the developer to associate code with the user interface
actions directly (these tools are classified as User Interface Management Systems, or UIMSs
[FOL91]). GUI builders can drastically speed up the development process since much of the
code can be generated automatically. However, the graphical editor tools can only provide a
subset of the options available to a developer for a given GUI. Sometimes the abstractions
provided are not sufficient to develop certain parts of the GUI, which means that the developer
must then modify the generated code to fine-tune the interface. Also, GUI builders in themselves
do not produce cross-platform code; conversion from another GUI is done manually, with the
developer making decisions about mappings and translations from one GUI to the other.
Therefore the mappings between the GUI components tend to be arbitrary and may not be
consistent across the application, although the developer has complete control over the design of
the new interface. The lack of automation for the reverse engineering process makes it tedious,
error-prone, and time-consuming.

Abstract Application Programming Interfaces
Other tools, such as XVT [XVT93] and SUIT [SUI93], rely on a custom abstraction model for

a generic user interface description. The developer describes the functionality of the user interface
in an intermediate representation, and then the tool generates the actual code for the cross-

February 19, 1996 15

platform GUI. There is no support for legacy code, but once the code is developed in the abstract
representation, migration across platforms is automated by the tool itself. Drawbacks of these
tools, reported from developers that have used them [GT94], indicate that the abstraction
mechanisms tend to force the GUI to be described in terms that are too general. As with the GUI
Builders listed above, the developer may be required to modify the generated code, which
removes any advantages of having a single source that works across all supported platforms.
Also, the developer is locked into the arbitrary mappings between GUI components decided by
the tool vendor.

Library Substitution
Another technique that has become popular is to implement a library interface that can be

called from an application program. To migrate the application to another platform, libraries can
be substituted to support the new GUI interface, retaining the same library calls. For example the
Win-tif [WAG93] software provides the Motif library, but creates a Microsoft Windows interface.
Therefore, a Motif application can look like a Windows application by substituting the library
calls.

Problems with this technique occur because different GUI technologies are not completely
compatible. Motif is not a subset of MS-Windows or vice versa. Therefore, the application
interface will only support features that are in the original Application Programming Interface
(API), and the resulting interface may not be of the highest quality from a native look-and-feel
perspective. And, as with the Abstract API approach, mappings are decided by the vendor
arbitrarily. This solution has the added disadvantage of locking the developer into the vendor
mappings, because there is no generated code to modify. Therefore customization of the new
interface is not possible. However, this solution does support legacy code migration to different
platforms, since the original GUI is used to describe the new GUI.

Front-Ending
 Another strategy is to insert a “front end” between the user and the text-based application. The
ALEX tool [ALE90] communicates with the application through a pipe, intercepting program
output and channeling user input back to the program. The tool “parses” the output of the
application and converts it to an X-based representation. ALEX is capable of handling terminal
control-type graphics (such as curses) that could affect the position of the cursor, such as split
screens. While this tool would allow quick conversion of an application to a GUI environment, it
does not produce a model of the user interface. It also introduces the obligatory overhead of an
extra communication layer on top of the original interface. It does adequately support legacy
code, however, and as such, could be a good intermediate step in the migration process.

Translation
A related migration technique is pure translation, as implemented by tools such as ACCENT

STP [BAL93]. The original code is modified to substitute new GUI calls for original interface
components. The ACCENT STP tool translates C or C++ applications written in XView,
Devguide, or OLIT to Motif, although the tool does not completely automate the process and
some hand-customization of the code is necessary to produce an acceptable native look-and-feel.

February 19, 1996 16

However, since the code is available to be modified, customization is possible. This solution
specifically supports legacy code because the original GUI is translated to the new GUI.

Emulation
A final technique for cross-platform migration is emulation. Several emulators, such as Liken

[XSI93], which emulates the MacIntosh interface on X Windows, are available. These emulators
require no modification to the original application code, since the application runs on top of an
emulation of its native environment. While this solution is simple, it does not address the native
look-and-feel problem. A historical problem with emulation is slowed response due to the
overhead of emulation, which has been made more tolerable by the faster and more powerful
hardware on the market today. Emulation itself is not truly a migration technique, but an
accommodation technique.

3.4.3 Summary of Problems with Commercial Solutions
None of the tools on the market today offer a complete solution to the user interface migration

problem. The drawbacks can be summarized into categories:
• No cross-platform migration support or automation
• Arbitrary mappings of GUI components
• Customization of generated code required to achieve desired look-and-feel
• Generated interfaces can be poor quality or may not meet requirements
• Abstractions between GUIs are too specific to particular toolsets

3.5 Summary of Related Research and Solutions
 Although there has been some considerable effort to solve the migration problem in the
commercial market, none of the solutions is completely satisfactory. In the research community,
there is a rich collection of work on the representation problem, with several good solutions to
choose from. Once the user interface can be represented, there are generative user interface
development tools (such as UIDE) that can accomplish the forward engineering step. Therefore,
this work should focus on the area of greatest need, the detection of the user interface
components from legacy code.

February 19, 1996 17

4.0 Experimental Groundwork
 An important first step in building a foundation for studying user interface migration was to gain
a solid perspective by experimenting with real legacy code . This section summarizes experiences
collected during experimental manual reengineering of legacy system user interfaces [MOO94a].
The goal of this work was to gain an understanding of the problems and challenges inherent in
updating user interfaces, both for migrating to different platforms, and for reengineering a text-
based user interface to a Graphical User Interface (GUI). Many insights were discovered in this
process, including a categorization of migration scenarios, pivotal issues, and clues to solutions.
As a result of these experiments, a technique for reverse engineering user interface began to
emerge (described in the next section).

4.1 Approach
 The experiments began by obtaining 22 legacy code systems from various sources. The
applications were restricted to being small for manageability (under 2000 lines of code) and in the
information systems domain. Implementation languages varied, from C to Pascal to Cobol. The
existing user interfaces also varied, from strictly text-based, to curses-based (simple terminal
control in the interface), to full Graphical User Interfaces (Sunview). The application code was
compiled (when possible) and executed to be able to provide a dynamic view of the program.
Then the code was closely examined manually to distill the user interface components from the
application. Several of the applications were taken through a complete reengineering including
dynamic analysis, static analysis of the code, detection of the user interface components.
representation of the user interface using the UIDE representation [Suka92], [Suka93], and
designing possible alternatives for a new Graphical User Interface (GUI).

4.2 Experimental Results
 The initial experiments consisted of compiling the code and running the application
dynamically to observe the user interface behavior. Then, the code was examined manually to
determine mappings between user interface functionality and code components. Details of the
results and issues discovered are described below.

4.2.1 A Taxonomy of Migration Problems
 The first and most striking observation is that user interface migration is actually three
completely different reengineering problems. These three problems can be characterized as
follows:
• Reengineering a batch-based application to create an interactive interface that can be imple-

mented by a GUI
• Reengineering an interactive text-based interface to produce a GUI
• Migrating one GUI to another GUI, such as Sunview to Motif

February 19, 1996 18

 These three problems have very different natures, although their solutions may contain common
elements. It is important to analyze the characteristics and salient issues for each of these
problem classifications.

Batch Applications
 The problem of identifying the user interface components is extremely difficult in a batch
application that does not have an interactive user interface to begin with. Since the application is
not structured for interaction, chances are that substantial portions of the code will need to be
rewritten or reorganized. The behavior of the user interface cannot easily be determined from the
code, since it is likely that the program depends upon a continuous stream of input, with no
dialogue with the user other than a continuous stream of output. However, it may be possible to
recognize patterns in the code that could be mapped to abstract user interface components. Still,
adding a GUI to a batch application probably requires a great deal of human intervention,
although some automation could be added to make the process more efficient.

Text-Based Applications
 The problem is less difficult with a text-based interactive interface, since the interactive nature
of the application makes it more suitable for a GUI. Still, text-based systems tend to operate on a
“synchronous” model (prompt and response) rather than the typical “asynchronous” GUI model
(user selects a command by pressing a button). This may require some restructuring of the
legacy code. Also, a slightly different flavor of this problem is text-based systems with terminal
control (such as curses), which present other problems in comprehending the user interface
abstractions. Still, there is a large number of legacy systems that are text-based, and developing a
solution to this problem would constitute a major contribution to the field.

GUI-Based Applications
 The third problem is that of migrating an application that already has a GUI interface to a
different environment. This would seem to be a simple matter of translation, but in reality it is a
complicated process of determining appropriate mappings between GUI functionalities. The
organizations of different GUI technologies are usually similar, but not identical, and therefore
the transition is not as straightforward as it may seem at first. Still, it is likely that the application
code is already well-structured for an interactive, asynchronous GUI, and therefore it is possible
that very little changes need to be made to the non-user-interface code.

4.2.2 A Technique Emerges
 As the experiments progressed, it became apparent that there was an identifiable natural process
involved in understanding the user interface components of the legacy code. In the course of this
intuitive process, a set of general, non-language-dependent coding patterns began to become
recognizable for different user interface behaviors. These patterns grew into a set of rules which
could be applied to the code and used to statically identify user interface components. The rules
were then evolved into a technique, which was applied to statically analyze other legacy system
user interfaces, with surprisingly consistent results. The technique that grew out of this analysis is
detailed in section 5 below.

February 19, 1996 19

4.2.3 A Verification Step
 To remove any danger of prejudice or foreknowledge from the experiment, some of the legacy
code applications and a description of the reverse engineering technique were distributed to a set
of three volunteers, ranging in experience from an undergraduate CS student, to a graduate CS
student, to an industry Software Engineer with 20 years of work experience. The volunteers were
instructed to “play computer”, following the guidelines in the technique exactly to reverse
engineer the legacy code and identify user interface components from patterns in the code. Five
legacy systems were reverse engineered by the volunteers, and in all five cases, the results of the
process duplicated the original results with only minor differences (mostly attributable to human
error). The volunteers produced several good suggestions to identify user interface components
more readily, and the rules were refined as a result. The consistency of the results of this
experiment is a good indicator that the technique is automatable, since the volunteers were
instructed not to use intuition, but to follow the rules exactly.

4.2.4 The Aliasing Problem and Dynamic Analysis
 The experiments brought to light one critical issue that implies that static analysis of the code is
not sufficient to fully determine the user interface components in the general case. This issue is
called aliasing, and it occurs in two forms:
• Indirection (function pointers) - in some languages, it is not possible to tell which routine is

being called until runtime, such as calling a C function through a function pointer. The tech-
nique depends upon being able to locate I/O routines in the code, and therefore any I/O rou-
tines called through function pointers would not be detected statically.

• File aliasing - In searching for user interface components, the technique concentrates on I/O to
standard in and standard out (or the equivalent, depending upon language). However, files can
be bound dynamically to the terminal. Therefore, I/O to files could actually be interactive I/O
with the user, depending on the runtime value of the file descriptor.

 The aliasing problem requires that there be a dynamic component to the solution of user
interface migration, because a complete model of the interface cannot be guaranteed from static
analysis.

4.2.5 General Issues and Observations
 In the course of examining and experimenting with the 22 applications, a list of issues was
generated. Some of these are of immediate concern, and some are for future consideration.
• Terminal control. In text-based applications with terminal control (i.e., curses), there can be

semantics associated with the location of the cursor. For example, the screen may be divided
in two parts, and input or output may have different meanings depending upon where the cur-
sor is. Navigation with these interfaces is still text based (curses does not handle mouse
input), but positional information plays a semantic role.

February 19, 1996 20

• Output values. It appears that it is not necessary to trace the origins of an output value, rather,
the only time that an output value is important to the user interface is when it is actually being
written to the user. Can the calculations and manipulations be ignored?

• Vector tables. Menu choices can be hard to glean from code. Some programs build vector
tables for functions that make it very difficult to tell what the commands are from the code.
Dynamic analysis may be required to solve this (a form of the aliasing problem).

• Functionality changes. A GUI allows more asynchronous activity than text interfaces. For
example, to modify a record in the text interface, the user steps through each field of the record
and then changes the desired one. A GUI could allow the user to directly edit the desired field
in the record. How will this affect the code?

• Bug propagation. Is it possible to ensure that bugs in the current interface aren’t propagated?
One legacy interface had a bug when deleting a record - a garbled message was sent to the user.

• Buffered input. Program input is not always processed directly; sometimes a line of user
input is buffered and then parsed later. It might be difficult to tell where the user input is actu-
ally being used. (Variable tracing could help to solve this problem.)

• Improvements. It is easy to spot improvements that could be added to the interface. For
example, a “confirm” could be added to a delete command, and the series of prompts after an
“update record” could be replaced with free-form editing. Also, the designer might want to
add a scrolling list for items previously entered by hand How much of this is feasible?

4.3 Conclusions
 These experiments in reverse engineering legacy user interfaces were very illustrative and a
valuable source of issues and ideas. The salient discovery is that user interface migration
consists of three distinct problems: modifying a batch application, migrating a text-based
application, or transitioning from one GUI technology to another. The three problems have some
similar aspects, but in general, they are very different. This work will initially address the second
problem, migrating text-based user interfaces to GUI technology. The third problem is being
addressed in related work, using knowledge-based techniques [MOO94c].
 Several important problems were also discovered in the course of the experiments. The aliasing
problem is a pivotal issue, since it determines that static analysis alone is not sufficient for a
general solution to the user interface migration problem. The solution must incorporate some
form of dynamic analysis, since there are decisions about the code that cannot be made statically.
 The technique that evolved as a result of the manual reverse engineering work was a repeatable
process, and therefore it shows good promise of being automatable Since automation is a
primary goal of the reverse engineering process, this will be paramount to the migration solution.

February 19, 1996 21

5.0 A Technique for Reverse Engineering User Interfaces

 This section describes the technique developed as the result of the experiments described above,
involving reverse-engineering several text-based applications “manually” (without the aid of
tools) to discover rules and processes for identifying user interface components from legacy code.
The aim of this effort is to develop a technique that could at least partially automate the reverse
engineering process, and allow user interface designers to replace textual interfaces with
Graphical User Interfaces (GUIs) for existing applications.

5.1 Goals of the Reengineering Process
 In order for the reengineering process to be successful, several criteria must be met:
• The resulting application must be functionally equivalent to the original application, or a func-

tional superset of the original application. (In other words, enhancements may be made in the
reengineering process, but original functionality should not be left out).

• The existing interface must be described with an abstraction that allows forward engineering to
occur. (Since there are many tools on the market to aid the forward engineering process, we
will concentrate only on the reverse engineering part of the migration problem.)

• Relationships between code segments and user interface components must be retained.
• The reverse engineering technique must be at least semi-automatable.

5.2 Approach
 This technique aids the designer in identifying the existing user interface abstractions in the
legacy system, and allows specification of the detected interface. Once the user interface
components have been identified, the resulting functional description is generated. This section
elaborates on the elements of the technique.

5.2.1 Abstracting the Application Model
 In order to forward engineer to a GUI, the designer must understand the model of the
application being reengineered from a user interface perspective. This includes identifying data
entities and actions that are involved in the user interface, as well as relationships between user
interface components. The goal is to detect components in the model, including user interface
objects and actions, preconditions and postconditions for activating the objects, and
organizational information such as hierarchy. The model can then be described in a
representation language, such as the one provided with the UIDE environment [SUKA92].
However, for the purposes of this paper, an informal abstract description is used to illustrate the
user interface concepts.

5.2.2 User Interface Slicing
 It is not necessary to understand all of an application’s functionality to reengineer its user
interface. Time and resources can be saved if only the salient parts of the legacy system are

February 19, 1996 22

examined and processed. Also, removing extraneous information from the application model can
make the representation much more clear and understandable. Weiser [WEI84] introduced the
concept of slicing as a means of subsetting a program to examine a particular behavior or
functionality. Therefore, the first step in our technique is to identify the User Interface Slice (UIS).
Essentially, the UIS is a “user interface subset”, including all routines and data structures that are
affected by user I/O. After the UIS is identified, only this subset of the code needs to be
processed to detect user interface components. The algorithmic (non-user-interface) components
of the program remain the same.

5.2.3 Rule Base
 The experience gained from hand reverse-engineering a series of text-based applications led to
the generation of a set of coding paradigms, or rules, for identifying user interface components.
The rules are stated informally using Structured English in this paper, but formal descriptions of
the rules could be generated to allow detection of the user interface to be partially automated. As
the rules are applied to the User Interface Set code, the model of the application is built in a
bottom-up fashion.

5.3 Synopsis of the Technique
 This section describes the steps in the user interface reverse engineering process.
1. Compose the User Interface Subset (UIS) of the program
The first step is to identify program modules that are affected by I/O.
• Generate the call tree for the program. This is easily automatable with parsing technology and

there are many tools that can provide this capability. The only caveats to this is that all system
calls must also be represented in the call tree (in other words, routines not declared inside the
program or called from external libraries must be included).

• Identify all leaves in the call tree that are I/O primitives to standard input, standard output, and
standard error. Since all system-level calls (such as I/O) will always be leaves of a call tree,
this allows us to identify all of the program modules that do I/O. I/O to files or pipes can be
ignored, since these calls typically indicate data transmission or interprocess communication
rather than interaction with the user.

• From these leaves, do a bottom-up traversal of the tree from leaf to root. Mark each visited
node as a member of the UIS. Therefore, through transitivity, all I/O routines and all ances-
tors in the call tree will be part of the UIS.

• Prune all non-UIS-member nodes from the tree. This allows us to remove unnecessary detail
and see just the user interface subset.

 At this point, we have a call tree that just consists of the routines that affect the user interface.
2. Identify UIS data structures
The next step is to identify data structures that are directly affected by I/O. These data structures
can give clues about user interface objects in the program.

February 19, 1996 23

• For each node in the UIS, examine the UIS module calls in the parent node and mark parame-
ters as UIS members. Since data structures in the parent node are being passed to UIS rou-
tines, they are candidates for involvement in the user interface.

• For any I/O primitive to standard input, output, or error, mark its parameters as UIS members.
This step identifies local and global variables that are part of I/O.

 Now we have identified all data structures that can be read or displayed from the user interface.
3. Apply the rule base
• For each node in the UIS, apply the rules to the code. As user interface components are identi-
fied, expand the node description to include the new components. Add “sub-nodes” to the
graph to describe internal workings of nodes.

 At this point, we have a node graph that bears a resemblance to a Finite State Machine, which
describes the functional user interface for the application.

5.4 User Interface Functional Components
 User interfaces for applications in the information systems domain generally center around
dialogues with the user. Data is added, deleted, and queried from the information system. This
allows us to define a typical set of abstractions for the interactions between the user and the
system. Since we have identified ubiquitous programming paradigms for information system
interfaces, these are the abstractions that we look for in the legacy code. Following is an informal
description of the user interface abstractions than can be recognized in code:
• Error Message - A simple one-way communication from application to user. Error messages

are distinguished from “normal” messages because sometimes its output may be handled spe-
cially (such as a write to a standard error file). The user interface designer may also want error
messages to be handled differently than “normal” messages (for example, placed in a certain
area of the screen, or colored red).

• User Input - Any data solicited from the user.
• Output to User (Message) - One-way output to the user, informational. Messages can be static

strings or calculated using variables.
• User Output Variable - An abstraction used to “mark” variables for further analysis. There are

several ways a variable can be designated an Output Variable, including being a parameter to
an output primitive.

• User Input Variable - Similar to Output Variable, except that the variable might be a parameter
to an input primitive.

• Command Selection (i.e., menu) - This abstraction represents a choice that the user can make
between several different application actions, such as a command menu.

• Continuous Selection (i.e., slider) - This represents a user action that iterates through a com-
pound object, such as paging through a set of records.

• User Action Function (i.e., Callback) - This is an action that is performed as the result of user
input.

February 19, 1996 24

• User Dialog (prompt-response) - This is a two-way communication involving the application
generating a message (a prompt) and the user providing a response.

• Preconditions - A precondition has to exist in order for a user interface component to be
accessed; for example, a selection mechanism has the precondition that a certain command
must be selected in order for the associated action to be invoked.

• Postconditions - Related to preconditions, postconditions are true after a user interface action
has been performed. For example, after selection, a user interface component might be high-
lighted.

5.5 Preliminary Experimental Results
 Through experiments described in section 4 above, we have preliminary results of using this
technique to reverse engineer legacy code manually, described below.

5.5.1 Successes - What the Technique does well
• User Interface slice analysis would be easily automatable with language processing tools. The

UIS has been shown to cut out 20 - 50% of the code.

• The informations systems domain has a rather narrow range of user interface abstractions,
which makes them easier to detect.

• The technique consistently detects user output messages (informational and error messages).

• The technique also consistently detects user dialogues.

• Command selection abstractions (i.e., menus) can be detected, as well as the preconditions for
the selection mechanism choices (such as commands).

• Asynchronous (signal handler) I/O can be detected.

• No “false positives” were detected in any of the experiments - in other words, if the rules iden-
tified a user interface component in the code, then there was always a corresponding function-
ality in the user interface.

5.5.2 Problems to be Solved
• Aliasing - as described above, the aliasing problem requires dynamic analysis to solve, since

some code cannot be analyzed statically (such as function pointers and file aliasing).

• Conditionals - can give false negatives for user dialogues. This can be solved with flow analy-
sis techniques:

 if (expression)
 then
 output_statement_1
 else
 output_statement_2
 end if

 input_statement -- this is a dialog, but how to detect?

February 19, 1996 25

• Some applications contain cursor-dependent I/O semantics (not for truly text-based systems,
but occurs with curses, vt-100 escape sequences)
- split screens
- different input semantics based on cursor location

• “Routine substitution” - when a routine implements only a user interface abstraction, we need
to be able to detect that abstraction everywhere it is called in the code:

 procedure Get_Answer ()
 begin
 write (“What’s the answer?”)
 read (Answer) -- dialog detected here
 end Get_Answer

 ...
 write (“What is Life, the Universe, and Everything?”)
 Get_Answer -- This is a dialog - we need to detect this

5.5.3 Further Issues
• Asynchronous events (signals) - what user interface abstraction should they map to?

• What effect does variable scope have on the UIS? This could save some processing time. UIS
may be totally based on variables, not on routines.

• Do output variables make a difference in the behavior of the user interface? If not, we can con-
centrate on identifying only input variables that can affect program control flow.

• What is the most efficient representation for the “call list”?
- Tree
- Directed Graph
- Simple list

• What other preconditions can be detected? Can we detect some postconditions?

• What place do system calls, such as “clear” and “refresh”, have in the user interface abstrac-
tion?

5.6 Potential Drawbacks and Problems with the Technique
 As with any new technique, there are several areas that may be anticipated as problems:
• False positives - it is possible that certain coding paradigms may look like user interface com-

ponents when they are not. In these instances the user must be allowed to override the identifi-
cation of an interface component.

• Failure to detect interface components (false negatives) - this is harder to detect because of the
degree of freedom with coding styles. Heavily maintained or modified code may be more dif-
ficult to analyze if coding styles are not consistent.

February 19, 1996 26

• Dynamic analysis is required to solve the aliasing problem. This introduces a new realm of
issues including adequacy of coverage, instrumentation, interpretation, and other issues.
Dynamic analysis is a powerful tool that has a lot of potential, but this is a relatively new tech-
nique that merits study.

February 19, 1996 27

6.0 Automating the Migration Process
 Any solution to the user interface migration problem must be scalable to large systems,
especially in the information systems domain. This implies that automation is a critical factor,
since manual reengineering of large systems is usually infeasible from a resource and time
perspective. Although the migration process cannot be completely automated, there are many
ways in which a tool could aid a user interface designer in reengineering a legacy application.
This section proposes requirements for such a tool, and describes a scenario in which it might be
used.

6.1 Requirements for an Automated Reverse Engineering Tool
In order to implement the reverse engineering technique described above, a semi-automated tool
should have the following requirements:
• The tools should be able to produce a representation of the existing system, in the form of a call

tree or call graph, down to the system call level. A graphical representation of the program
would be best for usability.

• The User Interface Slice should be determined automatically. A static analysis can define the
initial UIS, and if any aliasing is detected (function pointers), the rest of the UIS can be deter-
mined dynamically. Metrics could be added to inform the user of the percentage of code in the
UIS.

• Input and output variables should be detected, and input variable values should be traceable
(for example, if a switch statement discriminator is assigned a value from an input variable,
then it should be identified as an input variable also).

• The tool should be able to apply the rules to the legacy code both statically and dynamically,
since the aliasing problem prevents completely using static analysis. Cliche recognition and
“plan matching” techniques could be used for this.

• Once user interface components have been detected in the code, the tool should automatically
represent the abstractions and build a model of the interface.

• The user should be able to see the detected code segments (by highlighting or some other
method) to confirm the detection of user interface components.

• The user should be able to navigate through the old user interface, and see the corresponding
abstractions in the user interface model.

6.2 The Software Refinery
 The Refine Language Tools from Reasoning Systems [REA94] offer a good basis for automating
the user interface migration process. These tools perform static analysis of code, including
generating structure charts, entity-relationship diagrams, control flow diagrams, data model
tables, and abstract syntax tree diagrams for a variety of languages. Refine supports code
restructuring and reverse engineering. Although the Refine tools do not specifically address the
user interface, the information produced by this toolset can be analyzed and modified to aid
reverse engineering for user interface migration.

February 19, 1996 28

6.3 Dynamic Analysis
 Although a complete model of the user interface cannot be guaranteed with static analysis, it
certainly can create a base model for the rest of the reverse engineering process. Static analysis
can build an initial model, and can also detect the presence of aliasing, which requires dynamic
analysis to complete the model. So, static analysis can determine if dynamic analysis is
necessary.
 Dynamic analysis can be accomplished in a variety of ways. In [RIT92], Ritsch and Sneed
propose a method of instrumenting a legacy system to perform dynamic analysis for reverse
engineering. There are several advantages to dynamic analysis:
• The aliasing problem can be solved, since function pointers and other dynamically-bound pro-

gram components can be resolved
• Terminal control semantics can be observed and represented in the user interface model
• Unreachable or unused code can be identified
• Performance information can be obtained.
 The main challenge of dynamic analysis is completeness and the nondeterminism inherent in
running code. For example, a function pointer within a loop may have a different value at each
iteration of the loop. Therefore, it is not possible to completely guarantee coverage of every path
through the program. However, the user interface technique described in the previous section
depends upon subprogram calls to determine the User Interface Slice, so procedure call coverage
may be adequate to build the dynamic model of the user interface.
 Dynamic analysis also requires that the legacy code run on the reverse engineering platform,
since it must run in conjunction with the reverse engineering tool. Presumably, the reverse
engineering tool will reside on the desired target platform for migration, so this is not an
overriding issue, since the legacy code would have to be ported anyway. However, static code
analysis could be performed on any platform, whereas dynamic analysis does restrict the platform
somewhat.

6.4 A Scenario
 Following is a proposed initial scenario for the functionality and operation of a reverse
engineering tool for user interface migration.

Static Analysis
 The first step is a static analysis of the code. The user instructs the system to process the code,
and the output is a representation of the User Interface Slice, in graphical form (probably a
directed graph). The nodes of the graph represent subprograms in the User Interface slice.
Selecting a node would bring up an associated window, with the code for the subprogram, and
user interface slice code and variables highlighted:

February 19, 1996 29

Figure 2 UIS Call Graph

 At this point, the reverse engineer can examine the static model of the user interface by
traversing the nodes of the UIS graph. If there is no aliasing detected, the resulting model can be
used for the forward engineering step.

Figure 3 Code Analysis

The user interface model would also be viewable, in graphical or formal notation form.

main

foo bar

get put

error

print read

No aliasing detected

main ()
{
 if A > B
 then
 {
 do_stuff;
 }
 else
 {
 printf (%s,”Excuse me?”);
 gets (response);
 }
 do_something_else;
 . . .

Dialog

February 19, 1996 30

Dynamic Analysis
 If static analysis determines the presence of aliasing, then a dynamic step will be required. The
UIS built during the static analysis phase will have some unresolved subprogram nodes:

Figure 4 Aliasing Detected in UIS Analysis

 The system would then perform automated instrumentation of the source code to prepare for
dynamic analysis. A window for the old interface to run in would appear alongside the UIS
window and the code window. The user would then step through the old user interface, and as
nodes were traversed on the UIS, they would be marked or highlighted.

Figure 5 Dynamic Analysis

main

foo bar

get put

error

print read

Aliasing detected

??

main

foo bar

get put

error

print read ?

Main Menu

R - Read
P - Print
B - Browse
Q - Quit

Enter choice ___

February 19, 1996 31

 After all nodes of the UIS graph have been visited, (or after the user determines that the user
interface analysis is complete), the user interface model can be generated in graphical or formal
form.
 A future scenario would incorporate a forward-engineering tool such as UIDE to dynamically
show the composition of the new interface as the model is built. This way the user can have input
to design decisions to complete the reengineering process.

February 19, 1996 32

7.0 Research Plan
 This section outlines a plan for accomplishing this work, including focusing the research,
identifying issues and questions, evaluating alternatives, and implementing a prototype solution
to the user interface migration problem.

7.1 Research Focus
 Since the representation and transformation components of this research have been well covered
elsewhere, this work will concentrate on the detection or reverse engineering aspect of the
reengineering problem. An initial focus will be to identify the best candidates for a representation
model and for a forward-engineering transformation technique to base the prototype on, but no
attempt will be made to generate a new technique in these areas.
 The main technical focus will be to develop reverse engineering techniques for text-based
systems in the Information Systems Domain. These systems are targeted because there are many
benefits in automating the reengineering process for these large, mostly form-based applications.
Significant savings in development time and cost can be achieved with automation.
 The UIDE system will be considered as a forward engineering environment, and the UIDE
model of user interface representation will be the initial output of the detection system. Since the
UIDE model is evolving, it will be evaluated for suitability in the detection of user interfaces.
 The technique described in this proposal will be refined to be more general, to detect more UIF
components and abstractions, and to be more consistent. A strong focus will be on automation,
and existing technology, such as cliche recognizers, that can be adapted to provide functionality.

7.2 Issues and Questions
 There are many interesting issues and questions in this problem area. This work will address:
• Maximizing static analysis to detect user interface components
• Utilizing dynamic analysis to complete the detection process, including instrumentation or

interpretation of legacy code
• Handling dataflow and control flow to enhance the user interface model
• Choosing a representation technique or model for the resulting user interface design
• Handling terminal and cursor control semantics
• Giving the reverse engineer control over decisions as the user interface model is built.

7.3 Validation
 Validation will need to be performed in several dimensions for this work:
• Productivity Gain - A major emphasis of automated maintenance tools is the productivity gain.

The time to reverse engineer a user interface with this automated tool will be compared against
the time required to hand-reverse engineer the same application.

February 19, 1996 33

• Functional equivalence to the original system. We need to show that the detected user inter-
face model is equivalent to the legacy system, and that it covers all of the functionality of the
legacy system. This could be accomplished with parallel dynamic testing, or hand-inspection
of the user interfaces. More formal methods of proving functional equivalence will be investi-
gated.

• Quality of interface - If the user interface model detected does not allow a high-quality user
interface to be produced, then it is useless. For this validation, we could compare the automat-
ically generated interface against hand-reverse-engineered systems as a basis of comparison.

• Scalability - can it scale up to large systems? Since this is a primary attribute of information
systems, a large-scale reverse engineering task should be attempted to assess the scalability of
the technique.

7.4 Plan
 Deliverables for this work include:
• A refined rule base for recognition
• Identification and adaptation of an abstract representation for the user interface model
• A working research prototype for detection and representation, with potential to tie into a for-

ward engineering tool such as UIDE
• Analysis of experiments with the prototype to assess performance, quality of detection, and

functional equivalence to the original code.

7.5 Completion Criteria
 This work will be considered to be complete when the deliverables mentioned above are
completed and have been demonstrated to be valid, plus the development of the associated thesis
documenting the research.

February 19, 1996 34

8.0 Conclusions
 Program understanding and reverse engineering techniques for user interfaces is not the same
as simply replacing the old user interface with the veneer of a new, flashy interface. Although the
production of a new user interface can be a transition step, the information gleaned from the
detection process can ease the entire process of reengineering. Developing an abstract model of
a user interface can make the application more maintainable, portable, and usable.
 While traditional reverse engineering techniques have concentrated on understanding program
data structures and control flow, the user interface has been ignored. It is important to understand
this facet of a legacy system in order to adequately reengineer it. Automating this process
represents a significant savings in cost, time, and effort.

8.1 Contribution to the field
 This work will contribute to the field of software maintenance in the following ways:
• Increase the body of knowledge in program understanding, by introducing techniques for

detecting user interface abstractions;
• Improve the state of the art for software maintenance, and show significant productivity gains

in the reverse engineering process;
• Improve application migration by providing a path for upgrading a user interface; and
• Add to the body of experience with software transition techniques.

February 19, 1996 35

Appendix A - User Interface Identification Rules
 This appendix lists rules that can be used to identify user interface components from legacy code
statically. Following these rules and procedures should aid in detecting the functionality of the
existing user interface. Structured English is used as an informal representation language. These
rules are generated from the analysis of C programs and therefore are sometimes C-specific. As
much as possible, however, the rules have been generalized for any language.

Identify the User Interface Slice (UIS)
To identify routines involved in user interface, the first step is to compose User Interface Slice
(UIS) following these rules:
• Generate the call list to the system call level. This may be represented as a tree (if duplicates

are not removed) or a directed graph (if duplicates are removed).
• From the call list, start a bottom-up search of the list, identifying leaves that are calls to I/O

functions to standard in, standard out, or standard error.
• Mark the parents of the identified leaves as members of the UIS.
• Continue the bottom-up traversal of the tree, marking all parents of UIS members as UIS mem-

bers also.
• The UIS is complete when there are no more UIS leaves and all parents have been marked.

Identify data structures involved in the UIS
Again, begin a bottom-up traversal of the tree, this time only considering UIS member routines.
Apply these rules to the variables:

1. If a variable is in the parameter list of an output statement to standard out or standard error
 then classify that variable as a User Output Variable (OV)

2. If a variable is in the parameter list of an input statement to standard in
 then classify that variable as a User Input Variable (IV)

3. If a variable is on the RHS of an assignment statement and an OV is on the LHS
 then mark that variable as a OV

4. If a variable is on the LHS of an assignment statement in which a UIV is on the RHS
 then mark that variable as a IV

5. If a variable that is already classified as a UIV is used in an output statement
 then classify it as an I/O variable (IOV)

February 19, 1996 36

6. If a variable that is already classified as a OV is used in an input statement
 then classify it as an I/O variable (IOV)

 (propagation)
7. If an input parameter of a routine is used in an output statement
 then mark the corresponding actual parameter *in the parent routine* as an OV.

8. If an output parameter of a routine is assigned from an input statement
 then mark the corresponding actual parameter *in the parent routine* as an IV.

9. If an IV is on the RHS of an assignment statement
 then the variable on the LHS is marked as an IV also. (If the variable takes its value from an
 IV, it is also an IV.)

Detection Rules

Once the UIS has been detected, and all I/O variables have been identified, then a third bottom-up
traversal of the tree is done, applying these rules to the code in each routine. As user interface
components are identified, they are marked in the code and added to the model.

1. If a statement calls an output to standard error
 then identify Error Message

2. If a statement calls an output routine to standard out
 then identify user message

3. If a statement calls an input routine to standard in
 then identify user input

4. If a switch statement has an Input Variable for a discriminator
 then identify Command Selection

5. If Command Selection identified
 then for each alternative in the switch body list
 identify the choice list as preconditions

February 19, 1996 37

 identify the alternative body as a User Action

6. If a series of output calls is immediately followed by an input call
6a. then identify User Dialog
6b. else identify Output to User

7. If a routine’s sole purpose is a user dialog, then identify that routine as a user dialog.

8. If a series of write statements occurs in a loop, then identify user message.

February 19, 1996 38

References
[ABO89] Abowd, Gregory, and Bowen, Jonathan, User Interface Languages: A Survey

of Existing Methods, Technical Report PRG-TR-5-89, Programming Research
Group, Oxford University, October 1989.

[ABO90] Abowd, Gregory, “Agents: Communicating Interactive Processes”, Proceedings
of the Human-Computer Interaction conference - INTERACT ‘90, Eisevier
Science Publishers, 1990.

[ABO91] Abowd, Gregory, Formal Aspects of Human-Computer Interaction, PhD Thesis,
Technical Monograph PRG-97, Oxford University Computing Laboratory, Oct 1991.

[ALE90] Alex tool documentation.
[ARN93] Arnold, Robert S., Software Reengineering, IEEE Computer Society Press, Los

Alamitos, California, 1993.
[BEC93] Beck, Jon, and Eichmann, David. “Program and Interface Slicing for Reverse

Engineering”, Proceedings of the Working Conference on Reverse Engineering,
Baltimore, MD, IEEE Computer Society Press, May 21-23 1993.

[BOR89] Borgida, Alexander, Brachman, Ronald J., McGuinness, Deborah L, and Resnick,
Lori Alperin, “CLASSIC: A Structural Data Model for Objects”, Proceedings of
the 1989 ACM SIGMOD International Conference on Management of Data,
Portland, Oregon, May 1989.

[BRA90] Brachman, Ronald J, McGuiness, Deborah L, Patel-Schneider, Peter F., and Resnick,
Lori A., “Living with CLASSIC: When and How to Use a KL-ONE-Like Language”,
Principles of Semantic Networks, J. Sowa, Morgan Kaufmann Inc., 1990.

[CAR88] Cardelli, Luca, “Building User Interfaces by Direct Manipulation”, Proceedings of
the ACM SIGGRAPH Symposium on User Interface Software, Oct 1988.

[CHI90] Chikofsky, Elliot J., and Cross, James H. “Reverse Engineering and Design Recovery:
A Taxonomy”, IEEE Software, January 1990.

[CHI93] Chikofsky, Elliot J., Waters, Richard C., and Selfridge, Peter G., “Challenges to the
Field of Reverse Engineering”, Proceedings of the IEEE Working Conference on
 Reverse Engineering, May 1993.

[DEB94] Debaud, Jean-Marc, Moopen, Bijith, and Rugaber, Spencer. “Experience Report:
Domain Analysis and Reverse Engineering”, to appear in the Proceedings of the
1994 International Conference on Software Maintenance, Victoria, B.C., Sept 1994.

[EDW93] Edwards, Helen M., and Munro, Malcolm. “RECAST: Reverse Engineering from
COBOL to SSADM Specification”, Proceedings of the Working Conference on
Reverse Engineering, Baltimore, MD, IEEE Computer Society Press, May 21-23
 1993.

[FOL86] Foley, James. “Transformations on a Formal Specification of User-Computer
Interfaces”, Report GWU-IIST-86-27, Department of EE and CS, George Washington
University, Washington, D.C., December 1986.

[FOL87] Foley, James D., Kim, Won Chul, and Gibbs, Christina A. “Algorithms to Transform
the Formal Specification of a User-Computer Interface”, Report GWU-IIST-87-05,
Department of EE and CS, George Washington University, Washington, D.C.,
April 1987.

February 19, 1996 39

[FOL91a] Foley, James, Kim, Won Chul, Kovacevic, Srdjan, and Murry, Kevin. “UIDE - An
Intelligent User Interface Design Environment”, Intelligent User Interfaces, edited by
Sullivan & Tyler, ACM Press 1991.

[FOL91b] Foley, James, D., and Gieskens, Daniel F. “Controlling User Interface Objects
Through Pre- and Post-Conditions, Technical Report number GIT-GVU-91-09,
Graphics, Visualization, and Usability Center, Georgia Institute of Technology, 1991.

[FOL91c] Foley, James D., De Baar, Dennis, and Mullet, Kevin. “Coupling Application Design
and User Interface Design”, Technical Report number GIT-GVU-91-10, Graphics,
Visualization, and Usability Center, Georgia Institute of Technology, Sept 1991.

[FOL91d] Foley, James D. “User Interface Software Tools”, Technical Report number
GIT-GVU-91-29, Graphics, Visualization, and Usability Center, Georgia Institute
of Technology, Nov 1991

[FOL93] Foley, James D. “Future Directions in User-Computer Interface Software”, Graphics,
Visualization, and Usability Center, College of Computing, Georgia Institute of
Technology, Sept 1993.

[FOL94] Foley, James D. “Future Directions in User-Computer Interface Software”.
[GAN93] Gan, Yee Huat. “User Interface Knowledge Base”, Special Problem Report for

Dr. Spencer Rugaber, College of Computing, Georgia Institute of Technology,
August 1993.

[HAN94] Hanna, Mary. “Passage to Open Systems Cleared by Migration Tools”, Software
Magazine, April 1994.

[HUA93] Huat, Gan Yee, “User Interface Knowledge Base”, Technical Report SRC
Special Topic with Spencer Rugaber, 1993.

[HUD90] Hudson, Scott E., and Mohamed, Shamim P., “Interactive Specification of Flexible
User Interface Displays”, ACM Transactions on Information Systems, Vol. 8
No. 3, July 1990.

[HUD91] Hudson, Scott E., and Yeatts, Andrey K. “Smoothly Integrating Rule-Based
Techniques into a Direct Manipulation Interface Builder”, Proceedings of the 1991
User Interface Software Technology conference, November 1991.

[HUD93] Hudson, Scott, “User Interface Specification Using an Enhanced Spreadsheet Model”,
GVU Technical Report number GIT-GVU-93-20, Graphics, Visualization and
Usability Center, Georgia Institute of Technology, May 1993.

[KAM91] Kamper, Kit, and Rugaber, Spencer. “A Reverse Engineering Methodology for Data
Processing Applications”, College of Computing and Software Engineering Research
Center, Georgia Institute of Technology, 1991.

[KAZ94] Kazman, Rick, Bass, Len, Abowd, Gregory, and Webb, Mike, “SAAM: A Method
for Analyzing the Properties of Software Architectures”, Proceedings of the
International Conference on Software Engineering, 1994.

[LU93] Lu, Tianling, “User Interface Software Requirements Specification”, Depth Paper,
submitted to the Department of Computing and Information Science, Queen’s
University, Canada, March 1993.

[MCC90] McClure, Carma, “The Three R’s of Software Automation: Re-engineering,
Repositories, Reusability”, Extended Intelligence, 1990.

[MER93] Merlo, E., Girard, J.F., Kontogiannis, K., Panangaden, P., and De Mori, R. “Reverse
Engineering of User Interfaces”, Proceedings of the Working Conference on Reverse
Engineering, May 21-23 1993, Baltimore, MD. IEEE Computer Society Press, 1993.

February 19, 1996 40

[MOO93a]Moore, M., Rugaber, Spencer, et al. “Transitioning to the Open Systems
Environment” (TRANSOPEN) Final Report, College of Computing, Georgia Institute
 of Technology. Prepared for The Software Technology Branch of the Army Research
Laboratory under contract number DAKF11-91-D-0004-0014, 1993.

[MOO93b]Moore, Melody, Rugaber, Spencer, et al. “Knowledge Worker Platform Analysis”,
Draft Final Report, College of Computing, Georgia Institute of Technology.
Sponsored by the U.S. Army Construction Engineering Research Laboratory, June
1993.

[MOO93c]Moore, Melody, and Rugaber, Spencer. “Issues in User Interface Migration”,
Proceedings of the Third Software Engineering Research Forum, Orlando, FL, Nov.
1993.

[MOO94a]Moore, Melody. “Challenges in Reverse Engineering User Interfaces”, Research
Experience Report, Open Systems Lab, Georgia Institute of Technology, Atlanta, GA,
March 15, 1994.

[MOO94b]Moore, Melody. “A Technique for Reverse Engineering User Interfaces”, Research
Report, Open Systems Lab, Georgia Institute of Technology, Atlanta, GA, March 16,
1994. Accepted to the 1994 Reverse Engineering Forum, Victoria, B.C., Sept 1994.

[MOO94c]Moore, Melody, Rugaber, Spencer, and Seaver, Phil, “Experience Report: Knowledge-
Based User Interface Migration”, to appear in the Proceedings of the 1994
International Conference on Software Maintenance, Victoria, B.C., Sept 1994.

[MYN93] Mynatt, Elizabeth D. “Auditory Presentation of Graphical User Interfaces”,
Graphics, Visualization, and Usability Center, Georgia Institute of Technology,
May 21, 1993.

[PAR83] Partsch, H., and Steinbruggen, R. “Program Transformation Systems”, Computing
Surveys, Volume 15, Number 3, Sept 1983.

[REA94] Reasoning Systems, The Refine Language Tools, Marketing literature, 3260 Hillview
Avenue, Palo Alto, CA, 94304, 1994.

[RIT92] Ritsch, Herbert, and Sneed, Harry M. “Reverse Engineering Programs via Dynamic
Analysis”, Proceedings of the IEEE Conference on Software Maintenance, 1992.

[ROB91] Robson, D.J., Bennett, K.H., Cornelius, B.J., and Munro, M. “Approaches to Program
Comprehension”, Journal of Systems and Software, Vol 14, Feb. 1991.

[RUG92] Rugaber, Spencer. “White Paper on Reverse Engineering”, College of Computing
and Software Engineering Research Center, Georgia Institute of Technology, 1992.

[RUG93] Rugaber, Spencer, and Clayton, Richard. “The Representation Problem in Reverse
Engineering”, Proceedings of the Working Conference on Reverse Engineer-
ing, May 21-23 1993, Baltimore, MD. IEEE Computer Society Press, 1993.

[SAL92] Salisin, John. “The Design Record: Keystone of Software Engineering”, Keynote
Speech of the Third Reverse Engineering Forum, 1992.

[SEL93] Selfridge, Peter G., Waters, Richard C., and Chikofsky, Elliot J. “Challenges to the
Field of Reverse Engineering”, Proceedings of the Working Conference on Reverse
Engineering, May 21-23 1993, Baltimore, MD. IEEE Computer Society Press, 1993.

[SUK90] Sukaviriya, Piyawadee, and Foley, James D. “Coupling a UI Framework with
Automatic Generation of Context-Sensitive Animated Help”, Tech Report
GIT-GVU-90-64, Center for Graphics, Visualization, and Usability, Georgia
Institute of Technology, 1990.

February 19, 1996 41

[SUK92a] Sukaviriya, Piyawadee, and de Graaff, Hans, “Automatic Generation of Context-
Sensitive “Show and Tell” Help, Technical Report number GIT-GVU-92-18,
Graphics, Visualization and Usability Center, College of Computing, Georgia
Institute of Technology, July 1992.

[SUK92b] Sukaviriya, Piyawadee, and Foley, James D. “Built-in User Modelling Support,
Adaptive Interfaces, and Adaptive Help in UIDE”, Technical report number 92-25,
Graphics, Visualization, and Usability Center, Georgia Institute of Technology, 1992.

[SUK92c] Sukaviriya, Piyawadee, Foley, James D., and Griffith, Todd, “A Second Generation
User Interface Design Environment: The Model and Runtime Architecture”,
Technical Report number GIT-GVU-92-24, Sept 1992.

[SUK93] Sukaviriya, Piyawadee, Frank, M., Spaans, A., Griffith, T, Bharat, K., and
Muthukumarasamy, J. “A Model-Based User Interface Architecture: Enhancing
a Runtime Environment with Declarative Knowledge”, Technical Report number
GIT-GVU-93-12, Graphics, Visualization, and Usability Center, Georgia Institute
of Technology, April 1993.

[SUT78] Sutton, J., and Sprague, R. “A Survey of Business Applications”, Proceedings
of the American Institute for Decision Sciences 10th Annual Conference, Part II
Atlanta, GA, 1978.

[UNI93] Uniforum, “Uniforum Research Released: ‘93 to be the Year of Change”, UniNews,
Vol VII, Number 6, April 7, 1993.

[VAN93] Van Sickle, Larry, Liu, Zheng Yang, and Ballantyne, Michael, “Recovering User
Interface Specifications for Porting Transaction Processing Applications”, EDS
Research, Austin Laboratory, 1601 Rio Grande, Suite 500, Austin TX 78701, 1993.

[WEG87] Wegner, Peter, “Dimensions of Object-Based Language Design”, Proceedings of
the 1987 OOPSLA conference, October 1987.

[WEI84] Weiser, M., “Program Slicing”, IEEE Transactions on Software Engineering, vol
SE-10, July 1984.

[WIL90a] Wills, Linda Mary. “Automated Program Recognition: A Feasibility Demonstration”,
Artificial Intelligence, Elsevier Science Publishers B.V., (North-Holland), 1990.

[WIL90b] Wills, Linda Mary, and Rich, Charles. “Recognizing a Program’s Design: A Graph-
Parsing Approach”, IEEE Software, January 1990.

[WIL93] Willson, Jane R. “Making a Move Off Mainframes”, Open Systems Today,
April 26, 1993.

