
Representation Issues for
Reengineering User Interfaces

Research Report

Melody M. Moore

Open Systems Laboratory and Graphics, Visualization, and Usability Center
College of Computing

Georgia Institute of Technology

Feb 19, 1996

Prepared for Depth Exam Committee:

Dr. James D. Foley (chair)
Dr. Ann Chervenak
Dr. Richard LeBlanc
Dr. Spencer Rugaber

 Representation Issues for Reengineering User Interfaces 2

Introduction
In [RUG93], Rugaber and Clayton assert that a foundational issue in reengineering is the abstract
representation of the system. This is especially true of user interface reengineering - we need to
be able to describe the behavior and functionality of the user interface in an abstract manner that
is not dependent on any specific display technology or user interface techniques. Yet, the repre-
sentation must be complete and robust enough to adequately represent all of the functional
requirements of the user interface through out the evolution process. Solving this representation
problem and building a model of the user interface is key to understanding the process of reengi-
neering.

Several good taxonomies of representations for designing user interfaces exist [ABO89],[DIX93],
[FOL90], [HAR89], [GRE87]. While the representations surveyed give the designer a frame-
work to generate a new interface, they were not intended to support the recovery of an existing
interface from a legacy system. The goal of this work was to investigate categories of user inter-
face design and analysis representations for suitability to the reengineering process.

Information Systems
The domain of this study is text-based interactive information systems for several reasons. First,
most information systems are very large, some on the order of millions of lines of code. Many old
systems are text-based or use simple terminal controls (such as curses). In order to fully utilize
new graphical workstation technology, these systems need to be reengineered and their user inter-
faces retrofitted to adapt to graphical user interface (GUI) environments. The sheer size of many
information systems makes this a daunting task without the aid of automation.

A Process for Reengineering
There are three steps in the reengineering process:
• Detection - (also called Reverse Engineering) Analyzing source code to identify and extract

user interface components from the legacy system.
• Representation - Building a model of the existing user interface from the detection step.
• Transformation - Manipulating, augmenting, or restructuring the resulting model to allow for-

ward engineering to a graphical environment.

This paper addresses the detection and representation steps, specifically, evaluating representa-
tions as the target of the detection process. We also consider some of the transformation issues
inherent in adding or modifying user interface functionality once the model is built. Figure 1
describes options in the reengineering process:

 Representation Issues for Reengineering User Interfaces 3

Figure 1 : The Reengineering Process

There are several options for reengineering user interfaces in this process model. The user inter-
face calls in the text-based legacy system could be simply replaced by GUI counterparts, repre-
sented by the “translation” edge in Figure 1. There are tools currently available (“screen
scrapers”) that accomplish this. However, this strategy does not address the necessary shift in
control from application-driven to interface-driven (discussed in more detail in the “Modeling
Strategy” section below). A better strategy is to extract the user interface from the computational
legacy code, using program understanding techniques to build an abstraction, or model, of the
existing interface. This path is depicted by the “detection” edge and the “abstract model” box in
Figure 1. The application-driven model can then be transformed to an interface-driven model,
shown by the “transformation” edge. Once the model has been restructured, a forward-engineer-
ing tool, such as a UIMS, could be used to automatically generate a new graphical interface for
the system. Another possibility is that the interface-driven model could be directly detected from
the legacy code, without modeling the existing structure, shown by the “direct transformation”
edge.

A Modeling Strategy
Text-based legacy applications are almost always Computation-Dominant as opposed to Dialog-
Dominant. [HAR89]. This means that the user interface is intertwined in and controlled by the
computational algorithms of the application. Most modern GUI interfaces are just the opposite;
the user interface dialog structure controls the application (Dialog-Dominant). In order to transi-
tion the Computation-Dominant legacy system to the new Dialog-Dominant paradigm, the legacy
system must be restructured.

Green’s Seeheim model [GRE85] defines an architecture for an interactive system that separates

Legacy
text-based
system

New GUI-
based
system

Abstract
Model

Restructured
Abstract
Model

Detection

Transformation

Generation
(Forward
 Engineering)(Reverse

 Engineering) Direct
Transformation

Translation

Representation Representation

 Representation Issues for Reengineering User Interfaces 4

the computational code from the details of the user interface. The Seeheim model is the basis for
many User Interface Management Systems (UIMS), which allow designers to specify the presen-
tation, dialog control, and application interface separately from the computational code. A signif-
icant advantage could be gained by reverse engineering an existing text-based system into a
representation that could be then transformed into a UIMS representation. Since the legacy appli-
cation could be maintained separately from its user interface, the user interface could be tailored
and updated as needed without having to modify the computational code. Another advantage of
separating the user interface from the computational code is in migration to client-server architec-
tures. Reverse engineering to a Seeheim model requires extracting several different models from
the original legacy code:

Figure 2 : Reverse Engineering to the Seeheim Model

• The Presentation Component of the legacy system includes information such as output
groupings (such as in an error message), output-input pairs (such as in a dialog box), contents
of screens, and any visible state information. Since the presentation changes drastically
between a text-based system and a GUI-based system, the analyst/designer may need to sup-
ply further presentation information, such as choosing a selection mechanism (pushbuttons vs.
a cascade menu, for example).

• Dialogue Control is essentially a “map” of the system, its states and transitions, and also stor-
age for information that allows the interface to be traversed. Sequencing of menus and dia-
logs are kept in this model, and as a result, control flow analysis can be used to build it.

end
user

Presentation
Component Dialogue

Control
Application
Interface
Model

Application
Computational
Code

Seeheim Runtime Architecture Model

Legacy
Application
(Monolithic)Analyst/

Designer

Extracting parts of the model

state
transition
info

Data and
Comm
Model

Code and
Callbacks
(Application
 Semantics)

Display
infoGUI

design
choices

 Representation Issues for Reengineering User Interfaces 5

Preconditions and Postconditions are also maintained here to ensure control to flow only in
allowed circumstances.

• The Application Interface is the connection between the application and the user interface,
essentially a communication model. Values and messages to be displayed are computed in the
algorithmic code, and relationships between these “user interface variables” and correspond-
ing user interface objects must be maintained. Slicing and dataflow analysis can be used to
extract this model from the legacy code.

• The Computational Code is everything that is left when the user interface models have been
extracted. Although the computational aspects of the code should not need to be altered, the
control structure of the program is likely to be reorganized to fit the new Dialog-Dominant
paradigm. The result is that the computational code may be restructured in the form of call-
backs that respond to user input events.

The user interface components that can be extracted directly from the legacy code consist of parts
of the Presentation component and the Dialogue control component. The Application Interface is
built as a result of the reverse engineering step (although information needed to build this model
is derived from reverse engineering).

Evaluation Criteria
In light of the discussion above, it is obvious that we will have several different interoperating
models as the result of reverse engineering rather than one monolithic one. We must evaluate can-
didate representations against the requirements of each modeling task to determine which task, if
any, the representation is best suited for. This section outlines the evaluation criteria for the Pre-
sentation component, the Dialogue Control component, and the Application Interface models.

Presentation Component
The Presentation Component is the “lexical” level of the user interface [GRE87], responsible for
direct contact with the end user via input and output devices. Details of the “look and feel” of the
interface are preserved here, as well as information about what is displayed at a given point in the
interface. A text-based legacy system typically contains little presentation information - except
for systems that use simple terminal control semantics (such as the Unix library “curses”). In the
transition from text-based to GUI-based structure, the majority of the presentation information
will be added by the analyst/designer. However, some presentation information, such as group-
ings of output statements that belong together in one dialogue box, can be recovered from the
text-based legacy system. Following are the requirements of a representation for the Presentation
Component:
• The capability to represent and characterize user interface entities or “presentation objects” in

abstract terms - for example, to be able to specify that a particular window contains a “selec-
tion” without having to specify “group of pushbuttons” or “cascade menu”.

• The ability to define “containers” for presentation objects in order to group them.
• A mapping capability that allows the analyst/designer to choose specific user interface tech-

niques to be associated with the abstract model. For example, mapping “selection” to a
Scrolling Textbox widget.

• The ability to express screen layout and organization.
• Interaction with the Application Interface in order to communicate values and selections from

 Representation Issues for Reengineering User Interfaces 6

the user to the application program.

Dialogue Control
Dialogue Control is the engine of the user interface, implementing the “syntax” of the interaction
[GRE87]. This component contains the “map” of the system, and maintains state information as
the user traverses the interface. Dialogue control interprets and handles events, both from the user
and from the algorithmic code. Most of the research in user interface representation has
addressed the Dialogue Control component of the Seeheim model. Following are the reverse
engineering requirements for Dialogue Control:
• Accurately representing the states of the user interface and the transitions that occur as a result

of user interface or system action.
• Defining conditions or “guards” and associating them with transitions in order to represent

preconditions.
• Focus on describing control paths through the interface.
• Support for asynchronous events, such as an interrupt handler invoked from an escape

sequence.
• Understandability - since the analyst/designer will be refining and manipulating the model, it

must be able to be expressed in a human-understandable form as well as in a form that can be
easily used for analysis. Graphical representations will be preferred for this reason.

• Scalability - Since this method will be used to reengineer very large applications, the resulting
model must be hierarchical to allow understanding of the “big picture” as well as the details of
a particular state.

• Ability to represent modal semantics - Certain choices are available in certain modes and not
available in others - represents a restriction of the control paths. This includes maintenance of
precondition and postcondition information.

Application Interface
The Application Interface is a communication model between the user interface and the computa-
tional code. Relationships between user interface entities and variables in the code must be main-
tained here, as well as information about entry points into the legacy code (converted to
“callbacks”). Following are the requirements of the Application Interface:
• A fairly powerful data model is needed to describe the user interface variables and how they

map to entities in the user interface. Information about data organization, types, and values
needs to be maintained here.

• Relationships between the data in the application and user interface must be maintained,
although these will typically be straightforward mappings rather than complex functions.

• A method for identifying and invoking appropriate computational procedures must be sup-
ported, including handling input and output parameters and potentially even side effects. (For
example, if a user action invokes a procedure that changes a user interface entity in another
window, this needs to be reflected in the user interface.)

Recoverability
Previous experiments with recoverability of user interface components from legacy applications
[MOO94a] have shown that a set of recognition rules can be devised to locate user interface pat-

 Representation Issues for Reengineering User Interfaces 7

terns in the code. This section lists the user interface constructs that can be detected using reverse
engineering techniques, to serve as a framework for evaluating the representation models.

Selection
 Selection mechanisms in a text-based interface are much more limited than in a GUI interface.
Following are methods that have been detected:
• Menus are used to present lists of commands in a hierarchical fashion - submenus are brought

up by textual commands, and another command is used to traverse back up the menu hierar-
chy. Menus have an associated set of choices.

• Text letters or words are used to select commands. The user types the command which
causes the application to perform the associated action. Typically the user must press an
“enter” key to cause the input event, but some systems are implemented in “immediate” mode
and the characters are directly sent to the application as they are typed.

• Numeric values can be entered to specify quantifiable inputs. These are distinct from charac-
ter inputs because they may transform to different kinds of presentation in the resulting GUI
(for example, a numeric value might be represented by a slider in a GUI, whereas text could
not).

• Cursor position can be used in a system that contains terminal-control semantics to deter-
mine a selection from a list. The selection is actually accomplished by the user pressing the
“enter” key, and the choice is determined from the location of the cursor.

• Interrupts can be used to select a state that is available from any other state, for example, a
“quit” or “return to main menu” escape key that causes the application to abandon the current
state and vector to the new state.

State
 The notion of continuously displayed state or status is also much more limited in a textual inter-
face than in a GUI. Many text-based applications have states or modes that can be changed by the
user (for example, the Unix mailer “elm” is a modal textual interface, having a display mode, a
command mode, and a text entry mode). The current mode is indicated by the context (menus or
command descriptions present). Text commands and escape sequences are used to change modes.
In contrast, GUI interfaces can easily show state, such as the “bold” toggle button in a word pro-
cessor that changes color when the mode is “on”.

Textual Inputs and Outputs
 Inputs and outputs in a text-based interface are typically simple character strings. There may be
semantics associated with the location of the text on the screen, for example, an error message in
elm usually appears on the bottom line of the screen.
• Prompt - response dialogs are used to get information from the user. These consist of a

series of output statements followed by an associated input statement.
• Messages to the user are simply textual outputs and generally appear underneath the com-

mand prompt that caused the message. Terminal control semantics may place the message at
a specific place on the screen.

Preconditions and Postconditions
Preconditions are simply conditions that must be true in order for the system to change its state.
For example, if the system is directed to delete a record in a database, then it must be true that
there is at least one record in the database. Postconditions are the results of system transitions,

 Representation Issues for Reengineering User Interfaces 8

such as in creating a new record for the database, causing the postcondition of incrementing the
number of records. In text-based systems, preconditions are often implemented as conditional
expressions that share data objects with associated I/O statements. [RUG95] contains an excellent
discussion of a method for extracting preconditions from legacy code. When data objects associ-
ated with preconditions are identified, then the postconditions for those data objects can be also
detected by dataflow analysis techniques by checking to see how those data values are modified.

Experimental Method
Almost all user interface representations were developed for the task of designing - not reverse
engineering (the only exception being AUIDL [MER93]). They are organizational tools designed
to focus and formalize a generative effort. The ultimate goal for representation in reverse engi-
neering is to produce a high-level abstraction that adequately models the existing legacy user
interface, allows the model to be analyzed and reasoned about, and then allows forward engineer-
ing of the new user interface. The major difference between choosing a representation for design-
ing new interfaces and recovering old user interface information is that the existing control
structure and the data model in the code both need to be preserved in reverse engineering, other-
wise some of the semantics of the user interface may be lost.
In order to fairly evaluate different user interface representations, a small legacy system was cho-
sen to be the subject of experiments in which the user interface model in the legacy system was
described in each of several different representations. The resulting models were then evaluated
for recoverability - in other words, could the model be obtained from analysis of the source code
for the legacy application. The remainder of this paper describes a series of thought experiments
in which the legacy system was manually reverse engineered into each of the different representa-
tions. The resulting models were then analyzed for recoverability and other evaluative criteria.
The generated models and the results of the analysis follow.

A Sample Legacy System
The code used in these experiments is contained in a simple, genuine legacy information system
called the “Date-A-Base”. It was developed to assist in a computerized dating service. The sys-
tem collects data from individuals from a set of questions, maintained in an external file. The user
can browse the member database, and can also ask the system to do automatic matching based on
a user-supplied threshold of matched answers. The “Date-A-Base” is text-based, menu-driven,
and is written in Pascal.

Although the original system does not contain any asynchronous interactions, for the purpose of
these experiments an interrupt handler for the SIGINT signal (usually mapped to <cntl>-C on
Unix keyboards) was added to the system. (This is representative of a change that might occur in
ordinary software maintenance.) Also as part of the thought experiment, we assert that two of the
commands, “browse”, and “answer”, can be done in parallel. For example, a user might want to
browse an old record while filling out a new questionnaire, thereby revising and updating
answers. This possibility of this parallelism should be representable in the notation.

The user starts the system with a command-line command “date”. For a new user (a system state
determined by the application, not the user), the menu structure begins with an initial screen:

 Representation Issues for Reengineering User Interfaces 9

 The
 Date-A-Base

 The Computerized Dating Service

 To use the Date-A-Base you will have to answer a
 personal questionnaire. Your answers to all the
 questions will be available for anyone registered
 in the Date-A-Base to look at.

 Do you want to continue?__

This is the first prompt-response dialog with the user. If the user types “Y”, then the program con-
tinues, reading a set of questions from a file and displaying them on the screen, saving the user’s
responses. At this point, the main menu is displayed:

 Menu

 [a] Answer Questionnaire
 [b] Browse Questionnaire
 [c] Make a match
 [d] Delete your questionnaire
 [e] Quit

 Your choice: __

The user can then choose any of the commands, which then display specific menus for the com-
mands, such as the browse menu:

 Whose questionnaire do you want to browse?
 ? __

 A series of prompts guides the user through the browse process (although there is no way to list
the registered users of the database, a functionality that might be added in a reengineering sce-
nario). The other commands are similar, using a series of prompt-response dialogs to accomplish
the user’s tasks.

Analysis of the Models
This section presents the results of the thought experiments with each of ten user interface repre-
sentation techniques. They are grouped into the following categories:
• Task Oriented Representations
• Linguistic Representations
• State-Transition Notations
• Production Systems
• Event and Process Algebras

 Representation Issues for Reengineering User Interfaces 10

• Formal Model Based Notations
• Knowledge Representations

The first two categories, Task-Oriented and Linguistic representations, are considered “User-Cen-
tered” in that they model the interaction of the user with the system from the user’s view. They
are typically used as evaluative models rather than generative models, and as such are weaker
candidates for reverse engineering. The remaining five categories represent “System-Centered”
models, presenting a view of the behavior and semantics of the system from inside its compo-
nents. These, in varying degrees, are more promising as the target of the detection process.

Task Oriented Representations

Goals, Operators, Methods, and Selection (GOMS)
GOMS [CAR83] is an informal task analysis description method with a wide range of applicabil-
ity. GOMS can express highly abstract goals (such as “wash the dishes”) all the way down to the
keystroke level (“press the escape key”). Often used in analysis techniques for existing systems,
GOMS models the user’s interaction with the system, organized in a hierarchical fashion. Fol-
lowing is a GOMS decomposition of the Date-A-Base application:

GOAL : ADD-NEW-USER
GOAL: ANSWER-QUESTIONS repeat until EOF

* * READ-QUESTION
* * RESPOND

GOAL : USE-DATABASE
[select GOAL: ANSWER

* * ANSWER-QUESTIONS repeat until EOF
* * * READ-QUESTION
* * * RESPOND

GOAL : BROWSE
* * ASK-WHO
* * READ-DISPLAYED-RECORD

GOAL : MATCH
* * GET_PERCENT
* * GET_RESULTS]

Figure 3 : GOMS Description

Analysis - GOMS can represent the control flow through the system, driven dynamically by the
user (although this does not necessarily reflect the system architecture). It is possible that
dynamic analysis could be used to generate GOMS hierarchies, but GOMS has many drawbacks
for recoverability:
• Goal naming in an automated reverse engineering scenario would be difficult - without user

input, goal names could be meaningless.

 Representation Issues for Reengineering User Interfaces 11

• There is no way to detect duplicate goals (such as the ANSWER-QUESTIONS goal, which is
repeated in USE-DATABASE).

• It also includes physical user actions that are not recoverable from legacy code, such as
“READ-DISPLAYED-RECORD”.

• Although multiple selections can be specified, concurrency is not explicitly representable.
(For example, the “ANSWER” and “BROWSE” goals can be concurrent, but we cannot show
this in the representation.)

• Semantics such as preconditions and postconditions cannot be represented.

Linguistic Representations

Task-Action Grammar (TAG)
TAG [PAY86] is used to predict learning and performance of command-language user interfaces.
It uses parameterized grammar rules to enforce consistency in design. Since some text-based
interfaces are purely command language driven, TAG is included for completeness. However,
since the nature of the legacy system we are reverse engineering is menu-driven, it cannot be rep-
resented using TAG. Recoverability of linguistic representations can best be approached with
reverse-compiling techniques (recovering the language grammar from a sample of the language).

State-Transition Notations

Finite State Machines (FSMs)
Also called State Transition Networks [DIX93], FSMs are one of the earliest representation meth-
ods for describing human-computer interaction. FSMs were originally developed for language
processing, and for simple sequential systems, they are easy to generate and to read. However,
their inability to represent complex systems, events, and parallelism make them generally inade-
quate for modern user interfaces. For example, here is the FSM for our Date-A-Base legacy sys-
tem:

 Representation Issues for Reengineering User Interfaces 12

Figure 4 : Finite State Machine

Analysis - While FSM’s are strong for representing ordered sequential dialogs, they have many
limitations, including:
• There is no convenient way to specify an interrupt handler in a FSM. The only correct way

would be to show a transition out of every state into the interrupt handler, which would be
unmanageably messy.

• Transitions are initiated both by the system (such as the “newuser/olduser” transition in the
initialization state) and by the user. There is no way to differentiate where the transition orig-
inated from in a FSM, and if the object of reverse engineering is to identify the user interface
components, then information important to the application interface model cannot be repre-
sented.

• A purely state-based representation causes the loss of some of the information about the user
interface. For example, when the menu state transitions to the browse state, there is a prompt
for the name of the person to look for in the database. Since the transition out of the browse
state depends on the user response, the original prompt information is lost.

• As with any graphical representation, in order to do automated analysis (and generation of the
diagram), there would need to be an intermediate representation of the FSM in some non-
graphical form.

• States do not necessarily have user interface actions associated with them - for example, the
“delete record” state after confirmation. This mixes some of the computational model in with
the user interface model.

• There is no good way to indicate possible concurrency - for example, we would like to repre-

start

init
olduser

newuser
questions

EOF

user
response

menu
answer

‘a’
‘y’

‘n’
browse

‘b’

match

‘c’

enddelete
output

rec

who ‘n’

‘y’, who
output

rec

yes no

no
match

‘d’ ‘e’

del
rec

‘y’

‘n’

 Representation Issues for Reengineering User Interfaces 13

sent that the user can answer questions while using the browse function to look at another
record simultaneously. The FSM cannot express this.

• Another well-known problem with FSM’s is state explosion on more complex systems - the
number of states can grow exponentially if concurrency is modeled [DIX93].

Augmented Transition Networks (ATN), a variant of FSM that adds a stack and conditions to the
transitions, allowing preconditions to be specified. However, the conditions do not support post-
conditions or solve the other problems with FSMs.

State Charts
Harel’s State Charts [HAR87], [HAR88] solve many, but not all, of the problems of FSMs. State
charts allow hierarchies to be expressed, as well as concurrency. This allows constructs such as
our interrupt handler to be expressed without having an explicit transition from each state to the
interrupt handler. (However, resumption from the interrupt would be very hard to express, since
the transition depends upon a previous state-transition pair, and State Charts do not have a con-
cept of memory.) They also support the concept of a “broadcast” event, which allows several
states to transition in parallel (although this is difficult to see from the diagrams - each transition
has to be checked to see if the event that occurs affects it). Following is the State Chart represen-
tation of our legacy system, showing the concurrency between the “answer” and “browse” states:

Figure 5 : State Chart

Date_A_Base

Initialize

Main

olduser

Answer

Browse
“a”

“b”

newusercont
quest

“y”

EOF

“n”resp

who

display

resp

Match
percent

match
none

print
rec

msg

“c”

Delete
confirm

delrec

“y”

“n”

“d”

Exit“e”

signal
handler

SIGINT

 Representation Issues for Reengineering User Interfaces 14

Analysis - State Charts have many strengths for reverse engineering menu-driven interfaces,
including:
• The graphical notation is fairly easy to read, and the hierarchical capabilities of the State

Charts keep the number of states and transitions to a minimum. A tool with a “zoom” capabil-
ity would be able to show a big-picture view and also detail without overwhelming the user,
even for a large complex system.

• The concurrency of the “browse” and “answer” states can be expressed quite adequately.
• The interrupt handler can be efficiently and succinctly represented as a state that can be transi-

tioned to from any of the other states.
• The sequential nature of the dialogs is preserved, orderings can be easily observed.
• Control-flow analysis can be used to identify the states and transitions in the legacy code.

The limitations of State Charts for recoverability are:
• As a state-based representation, State Charts are subject to some of the same limitations as

FSMs. For example, differentiating between user-caused and system-caused events (such as
the “new user/old user” transition at initialization). Also, there are user interface states and
system states, as in the “delete record” state in the Delete command - this is something accom-
plished by the application and not neccessarily reflected in the user interface.

• Preconditions cannot be expressed with State Charts - although adding the annotations of
ATNs (described above) to each state node could provide this functionality.

• Postconditions (the result of a transition into a new state) also cannot be modeled and would
need to be added.

• Since there is no data model in a State Chart, retaining information about the origins of data
values in the code would be lost.

• Naming the states and transitions automatically would be a somewhat arbitrary process based
on variable and procedure names - a facility to allow the analyst to modify the names would
be useful.

Petri Nets
Petri Nets [PET62] were developed for automata theory and have been used for many applica-
tions, especially specifying highly parallel systems and real-time systems. The notion of state
(“places”) and transitions is similar to State Charts, except that the transitions are guarded by con-
ditions that must be true in order for the transition to “fire”. Tokens pass through the Petri net to
represent control flow.

Analysis - Petri nets are a very powerful concept for highly parallel and concurrent systems, and
as a result, are excellent for describing event-driven systems. Describing sequential flow through
a Petri Net, while possible, is not as straightforward as State Charts. Since our legacy system
model is largely sequential, the expressive power of Petri Nets somewhat wasted. Also, Petri
Nets are somewhat more difficult to understand than a State Chart. Petri Nets also do not incorpo-
rate a data model or a notion of saved state information. Preconditions for transitions are directly
supported in Petri Nets. In [GRE87], Green states that event-based representations are more pow-
erful than pure state-transition networks, and also shows that an equivalent event representation
can be derived for any state-transition network. Petri nets do not have a hierarchical structure,
and therefore scalability could be a problem, as with FSM’s.

 Representation Issues for Reengineering User Interfaces 15

Production Systems

Propositional Production Systems (PPS)
A PPS [OLS91] combines the notions of states, transitions, and events. Propositional logic is
used to determine which states (using productions defined by a set of rules) should be transformed
upon the occurrence of a particular event. A PPS consists of a state space, a set of rules, and a
description of semantic actions for the states. Following is a PPS for the Date-A-Base applica-
tion:

State Space:
Field ActiveCommand (AnswerCmd, BrowseCmd, MatchCmd,

DeleteCmd, ExitCmd, NoCmd)
Semantic Field CommandSelected (AnswerSel, BrowseSel,

MatchSel, DeleteSel, ExitSel, NoSel,
QuestionsSel)

Query Field YesNo (YesAns, NoAns)
Field Action (DrawMain, DrawAnswer, DrawBrowse, DrawMatch)
Input Field Input (NoInput, ‘a’, ‘b’, ‘c’, ‘d’, ‘d’, ‘e’,

TextEntry)
Semantic Field Questions (QuestDone, QuestNotDone)

Production Rules:
1. NoCommand, ‘a’ -> AnswerCmd
2. NoCommand, ‘b’ -> BrowseCmd
3. NoCommand, ‘c’ -> MatchCmd
4. NoCommand, ‘d’ -> DeleteCmd
5. NoCommand, ‘e’ -> ExitCmd
6. AnswerCmd, YesAns -> Questions
7. Questions, QuestNotDone -> Questions
8. Questions, QuestDone -> NoCommand
9. AnswerCmd, NoAns -> NoCommand
10. BrowseCmd, GetWho, WhoValid -> DisplayWho, NoCommand
11. MatchCmd, GetPercent -> DoMatch, NoCommand
12. DeleteCmd, YesAns -> DelAction, NoCommand
13. ExitCmd, YesAns -> ExitProg

Semantic Actions (note: These are all outputs)

NoCommand : Display Main Menu
AnswerCmd : Display Answer Prompt
BrowseCmd : Display Browse Prompt
MatchCmd : Display Match Prompt
DeleteCmd : Display Delete Prompt
ExitCmd : Exit System
YesNo : Display YesNo Prompt

Figure 6 : PPS Representation

 Representation Issues for Reengineering User Interfaces 16

Analysis - While Production rules are very good for describing concurrency and state transitions,
they are not good for describing sequential dialog. The dialog control model is expressed in the
PPS, but it is difficult to see. For example, the state “NoCommand” actually is the main menu,
which is expressed in the semantic actions, but piecing this together from the production rules
takes some study. A PPS can handle interrupts quite easily since it is event-driven. Preconditions
also can be implemented through the rules, although the rule syntax does not provide expressions,
these could be calculated in the semantic actions. A positive feature of PPS for recoverability is
the inclusion of code as the semantic actions; legacy code could be directly tied into the PPS.

Event and Process Algebras

Communicating Sequential Processes (CSP)
CSP [HOA85] has been incorporated into several dialogue specification notations, as described in
[ABO90]. It has the advantage of being able to specify sequential dialogue and concurrency. Fol-
lowing is a CSP description of the Date-A-Base application:

Init = (olduser [] newuser)
Newuser = Askquestions
Askquestions = Giveprompt; Getanswer? -> Askquestions

 [] EOF -> SKIP
MainMenu = (Answer -> DoAnswer

[] Browse? -> DoBrowse
[] Match? -> DoMatch
[] Delete? -> DoDelete
[] Exit? -> SKIP

DoAnswer = Askquestion; GetResponse?
DoBrowse = AskWho? -> DisplayRec!
DoMatch = AskWho? -> GetPercent? -> DoMatch
DoDelete = Delete

Figure 7 : CSP Model

Analysis - CSP is very effective for modeling events and also for retaining the structure of
sequential dialogues. Even repetition can be expressed using recursion, as in the “Askquestions”
example above. However, there is no notion of conditions on the states, so preconditions are not
represented. Concurrency is inherent but not explicit; it might be difficult for a user to quickly see
points of concurrency from the representation. CSP events also do not retain causality, so a sys-
tem-generated event (such as EOF) is treated the same as user inputs, making it difficult to differ-
entiate. CSP also does not contain a data model, which is why it has been combined with other
representations such as Z for user interface specification. Recoverability issues for CSP:
• Determining sequential dialogs can be accomplished with control-flow analysis, so identify-

ing the processes within sequence should be possible.
• With sequential text-based systems the events map to keystroke commands that change the

state of the system. This is also detectable with control-flow and dataflow analysis.

 Representation Issues for Reengineering User Interfaces 17

Abstract User Interface Description Language (AUIDL)
AUIDL [MER93],[MER95] is actually a hybrid of an object oriented representation combined
with Milner’s process algebra [MIL89]. The structure of the data model in the legacy system is
accomplished with inheritance, and system behavior is described with the process algebra.
AUIDL is the only representation that was developed specifically as the target of reverse engi-
neering, and it has successfully been used to represent reverse engineered COBOL programs.
Following is a partial AUIDL specification for the Date-A-Base application:

instance MACHINE : MAIN
contains

init; answer; browse; delete; exit;
parameters

x : char;

behavior
C = if (Get_X = ‘a’)

then
answer.display

else if (Get_X = ‘b’)
then

browse.display
else if (Get_X = ‘c’)
then

match.display
else if (Get_X = ‘d’)
then

delete.display
else

exit

instance ANSWER

Figure 8 : AUIDL Specification

Analysis - Since AUIDL was specifically designed for reengineering, it naturally scores highly
on our evaluation criteria. The incorporation of the process algebra allows process behaviors to
be described and reasoned about, supporting the dialog control model. The behavioral description
of the state and transition sequences can be detected by control flow analysis techniques. It incor-
porates an object-oriented data model that allows presentation information and application inter-
faces to be specified as well. It supports events from both the system and the user that affect the
user interface. It can also handle preconditions that link conditions with behavioral agents, and
can keep status information as well. AUIDL is also hierarchical, which makes it good for scal-
ability. Although process algebras can be difficult to read for the analyst, there is also an associ-
ated graphical representation for AUIDL.

The drawback of AUIDL for our particular purpose is that AUIDL produces a single incorporated

 Representation Issues for Reengineering User Interfaces 18

specification for the entire user interface model. The aspects of the Seeheim architectural organi-
zation are present, but they are not separated out as we would desire. AUIDL also has a prag-
matic drawback in that it is a proprietary representation, owned by a private corporation. This
could make it difficult to obtain specifications and tools for AUIDL that might be eventually used
for commercial purposes.

Formal Model-Based Notations

Z
The Model-based notations such as Z [SPI88] are based on the definitions of data objects (sets)
and functions that act on the data objects. Functions may be used to assign or calculate values, or
to provide mappings between objects. Following is a Z representation of the Date-A-Base:

Commands : P command

Commands == { answer, browse, match, delete, exit, main, newuser }

Events : P Valid_Keystrokes

Events == { ‘a’, ‘b’, ‘c’, ‘d’, ‘e’ }

State
CurrentState : Commands

Event�() A A• a CurrentState� Answer= =
Event�() B B b CurrentState�=()• Browse=
Event�() C c c CurrentState�=()• Match=
Event�() D D d CurrentState�=()• Delete=
Event�() E E e CurrentState�=()• Exit=

UserRec
Login : P char
Sex : char
Timeson : N
Answers : P char
Laston : N

 Representation Issues for Reengineering User Interfaces 19

Figure 9 : Partial Z Model

Analysis - Z is a powerful notation for expressing rigorous mathematical specifications of sys-
tems. It has been incorporated into user interface representations in conjunction with event mod-
els [ABO91]. As seen in the example above, Z is capable of richly defining the data model of the
system and part of the control flow. However, the obvious difficulty of using pure Z is in repre-
senting events and concurrency. Sequential dialog can be expressed, but in general the mathemat-
ical notation of Z requires a significant background in discrete mathematics that may be beyond
the capabilities of the average systems analyst. There are also several recoverability issues for Z:

NewUser

Name? : Login
Info? : UserRecord

DataBase
State

Database’ = Database U {Name |-> info? }
State’ = Main

Answer
Name? : Login
NewInfo? : UserRecord

DataBase
State

Info’ = {Name? -> NewInfo?}
State’ = Main

Browse
Name? : Login

State

Name? : {display this record}
State’ = Main

Match
Name? : Login
Percent? : N

State

a DataBase Name info \temp info percent())A()={ }•D()�

State’ = Main

 Representation Issues for Reengineering User Interfaces 20

• User Interface variables and types are a matter of simple translation from declarations in the
legacy code. However, identifying “arity” from legacy code - which variables denote single
instances, and which denote sets - may not be trivial. Especially if variables are dynamically
allocated, dynamic analysis may be required to determine whether a given variable is a set.
One assumption that could be made is that anonymously-typed variables are singletons, but
any variable declared from a type definition could be a set.

• Detecting the existence of a relationship between variables can be done with slicing and data-
flow analysis, but characterizing the relationship would be very difficult. For example, it
would be very hard to tell if a relationship was a partial injection vs. a true one-to-one onto
relationship without extensive dynamic analysis.

• Detection of functions requires extensive understanding of program semantics which may not
be possible with current recovery techniques.

• Constraints on values could be detected from declarations in the legacy code, but this is not
guaranteed - much range constraint checking is done in the computational code. Range-con-
straints could be detected with cliches, but if filters are implemented in the code it could con-
fuse the recognizer.

In general, legacy code contains too little information to recover significant Z specifications with
current reverse engineering technology. A small subset of the Z notation could be recoverable,
but the full power of Z could not be utilized with purely automated detection (analyst input could
add human judgement and detail to the specifications). Z is weak for describing dialog control,
but it would be a powerful notation for describing the data model of the system, used both in the
presentation component and in the application interface. Z is relatively difficult to learn as well,
requiring the analyst to have an extensive knowledge of discrete mathematical notations.

Knowledge Representations

User Interface Development Environment (UIDE)
A possible candidate for the target of reverse engineering that is not as ubiquitous in the HCI liter-
ature is Knowledge Representations. The UIDE system [FOL91] uses a series of knowledge
schemata to represent objects and their attributes, actions and associated parameters, precondi-
tions, and postconditions. With this design knowledge at the base of the system, the user interface
can be generated automatically. It also allows the automated generation of context-sensitive auto-
mated help.

Analysis - The UIDE representation is organized around an object-oriented paradigm. The major-
ity of text-based legacy systems are organized in a structured manner, and a shift to objects would
require restructuring the code. There is ongoing research in the area of object detection
[BAI90],[GAR90], mostly with the goal of extracting reusable components from legacy code.
These techniques are based on identifying key variables as the objects, and then tracing parame-
ters types in the functions to group them and to associate actions with the data objects. While this
has met with some success as an extraction process for individual objects, whether they could be
used to restructure an entire program to an object-oriented architecture would require experimen-
tation.
The UIDE knowledge base maintains a great deal of semantic information about the objects in the
action schema descriptions. This feature would make it a possibility for describing the applica-
tion interface. The knowledge representation itself does not describe the dialog control function

 Representation Issues for Reengineering User Interfaces 21

in UIDE, that implemented in a separate module. Hence, the knowledge representation would not
be a good candidate for the Seeheim dialog control model. For presentation semantics and appli-
cation interface components, however, a knowledge representation scheme would be a good can-
didate.

Summary of Findings
In order to get a “big picture” view, we can compose a matrix of results from our thought experi-
ments. The following matrix (Table 1) summarizes the characteristics of each representation tech-
nique according to our evaluation criteria. Each representation is rated on a scale of low to high
for each of the criteria.

* Assuming annotations (such as in ATN) have been added to represent preconditions.

The next table (Table 2) indicates which of the three models, Presentation, Dialogue Control, or
Application Interface, a particular representation might be appropriate for. “Yes” means that the
representation could be applied without modification, “no” means that the representation would
not be a good candidate for that model (even though it might be possible to describe the model in
that representation). “Maybe” means that parts of the model, but not the entire model, could be
expressed in that representation:

Table 1: Comparison of Representation Features

Representa-
tion

Recovera-
bility

Human
Understand-

ing
Scalability Expressive

Power
Concurren-

cy

GOMS low high high med yes

TAG N/A

FSMs high high low low no

State Charts high high high high* yes

PPS med med med med yes

Petri Nets med med low med yes

Z low low low high no

CSP med med low med yes

AUIDL high med/high high med yes

Knowledge
Rep (UIDE)

low med high med yes

 Representation Issues for Reengineering User Interfaces 22

Conclusions
It is clear from observing and experimenting with user interface representation techniques that no
one technique is sufficient to fully describe the models generated from reverse engineering. Not
surprisingly, the AUIDL specification language, developed expressly for reengineering, fulfills
the bulk of the requirements. However, even AUIDL does not separate out the components of the
models in order to describe a Seeheim architecture for the new system. Therefore, the solution to
our problem lies in developing a hybrid representation, combining different techniques for differ-
ent models in the architecture.

Table 2: Applicability of Representations

Representa-
tion

Presentation
Component

Dialog
Control

Application
Interface

GOMS no maybe no

TAG no no no

FSMs maybe yes no

State Charts maybe yes no

PPS no yes no

Petri Nets no yes no

Z maybe no yes

CSP no yes no

AUIDL yes yes yes

Knowledge
Rep (UIDE)

yes no yes

 Representation Issues for Reengineering User Interfaces 23

References
[ABO89] Abowd, Gregory, and Bowen, Jonathan, User Interface Languages: A Survey

of Existing Methods, Technical Report PRG-TR-5-89, Programming Research
Group, Oxford University, October 1989.

[ABO90] Abowd, Gregory D. “Agents: Recognition and Interaction Models”, Proceedings
of Interact ‘90, North-Holland, Amsterdam, 1990.

[ABO91] Abowd, Gregory D. Formal Aspects of Human-Computer Interaction, Ph.D.
Thesis, Oxford University Computing Laboratory Programming Research
Group, 11 Keble Road, Oxford OX13QD, England, 1991.

[BAI90] Bailey, John W., and Basili, Victor. “Software Reclamation: Improving Post-
Development Reusability”, in Software Reengineering, by Robert Arnold,
IEEE Computer Society, 1993.

[CAR83] Card, S.K.; Moran, T.P.; and Newell, A. The Psychology of Human Computer
Interaction., Lawrence Erlbaum Associates Publishers, 1983.

[DIX93] Dix, Alan; Finlay, Janet; Abowd, Gregory; and Beale, Russell. Human-Computer
Interaction, Prentice Hall International (UK) Limited, 1993.

[FOL90] Foley, James D., van Dam, Andries, Feiner, Steven K., and Hughes, John F.
Computer Graphics Principles and Practice, Second Edition, Addison-Wesley
Publishing Company, Addison-Wesley Systems Programming Series, 1990.

[FOL91] Foley, James; Kim, Won Chul; Kovacevic, Srdjan; and Murray, Kevin. “UIDE -
an Intelligent User Interface Design Environment”, in Intelligent User Interfaces,
Edited by Sullivan and Tyler, ACM Press, 1991.

[GAR90] Garnett, E.S., and Mariani, J.A., “Software Reclamation”, in Software
Reengineering, by Robert Arnold, IEEE Computer Society, 1993.

[GRE85] Green, Mark. “The University of Alberta User Interface Management System”,
Proceedings of SIGGRAPH, 12th Annual Conference, San Francisco, CA,
July 1985.

[GRE87] Green, Mark. “A Survey of Three Dialogue Models”, ACM Transactions on
Graphics, Vol. 5, No. 3, July 1986.

[HAR87] Harel, David; Pnueli, A.; Schmidt, J.P.; Sherman, R. “On the Formal Semantics
of Statecharts”, Proceedings of the Second IEEE Symposium on Logic in
Computer Science, IEEE, 1987.

[HAR88] Harel, David. “On Visual Formalisms”, Communications of the ACM, Volume 31,
Number 5, May 1988.

[HAR89] Hartson, H. Rex, and Hix, Deborah. “Human-Computer Interface Development:
Concepts and Systems for Its Management”, ACM Computing Surveys, Vol 21.,
No. 1, March 1989.

[HOA85] Hoare, C.A.R. Communicating Sequential Processes, Prentice-Hall International,
Englewood Cliffs, N.J., 1985.

[MER93] Merlo, E.; Girard, J.F.; Kontogiannis, K.; Panangaden, P.; and De Mori, R.,
“Reverse Engineering of User Interfaces” Proceedings of the Working Conference
on Reverse Engineering, Baltimore, MD, May 21-23, 1993.

[MER95] Merlo, Ettore; Gagne, Pierre-Yves; Girard, Jean-Francois; Kontogiannis, Kostas;
Hendren, Laurie; Panangaden, Prakash, and DeMori, Renato; “Reengineering
User Interfaces” IEEE Software, Vol. 12 No. 1, January 1995.

 Representation Issues for Reengineering User Interfaces 24

[MIL89] Milner, Robin. Communication and Concurrency, Prentice Hall International
Series in Computer Science, 1989.

[MOO94a] Moore, Melody. “A Technique for Reverse Engineering User Interfaces”,
Proceedings of the 1994 Reverse Engineering Forum, Victoria, B.C., Sept 1994.

[MOO94b] Moore, Melody, Rugaber, Spencer, and Seaver, Phil, “Experience Report:
Knowledge-Based User Interface Migration”, Proceedings of the 1994
International Conference on Software Maintenance, Victoria, B.C., Sept 1994.

[OLS91] Olsen, Dan. User Interface Management Systems: Models and Algorithms,
Morgan Kaufman Publishers, 1991.

[PAY86] Payne, S.J., and Green, T. “Task-Action Grammars: A Model of Mental
Representation of Task Languages”, Human-Computer Interaction, Vol 2, No.2,
1986.

[PET62] Petri, C.A., “Kommunikation mit Automaten”, Ph.D. Dissertation, University of
Bonn, Germany, 1962.

[RUG93] Rugaber, Spencer, and Clayton, Richard. “The Representation Problem in Reverse
Engineering”, Proceedings of the Working Conference on Reverse Engineering
May 21-23 1993, Baltimore, MD. IEEE Computer Society Press, 1993.

[RUG95] Rugaber, Spencer; Stirewalt, Kurt; and Wills, Linda. “Detecting Interleaving”,
Proceedings of the International Conference on Software Maintenance, Nice,
France, 1995.

[SPI88] Spivey, J.M. The Z Notation: A Reference Manual. Prentice-Hall International,
Hemel Hempstead, 1988.

