
User Interface Reengineering

Ph.D. Research Proposal
Update Summary

Melody M. Moore

College of Computing
Software Research Center / Open Systems Laboratory and

Graphics, Visualization, and Usability Center
Georgia Institute of Technology

Feb 19, 1996

Committee: Dr. James Foley (chair)
Dr. Gregory Abowd
Dean Peter Freeman
Dr. Richard LeBlanc
Dr. Ettore Merlo (Ecole Polytechnique de Montreal)
Dr. Spencer Rugaber

2/19/96 2

User Interface Reengineering
Proposal Update Summary

Purpose
This document is an update to a research proposal originally submitted in June 1994 [MOO94a].
Since that time, research in this field has progressed, necessitating changes and additions to the
initial proposal. While the majority of the original proposal is still valid, this addendum summa-
rizes the evolution of the research and plans.

The Reengineering Problem
The increasing need to migrate systems across very different platforms has created difficult prob-
lems for software maintainers. Often, it is simpler to completely rewrite the old application rather
than attempting to adapt it to the new environment. However, rewriting large systems is prohibi-
tive in both time and cost. Transition technologies, which allow applications to be quickly
migrated to new environments with automated assistance, are becoming critical to the mainte-
nance process. Although reengineering research has progressed substantially, the focus has been
on techniques and tools to recover algorithms and data models from legacy systems. However,
these tools do not address a significant and difficult problem in migration - reengineering the user
interface. With estimates asserting that up to 50% of the code of an interactive system is devoted
to the user interface [SUT78], this is a significant deficiency in maintenance technology. Further-
more, the user interface is the most likely component of the system to change drastically during
migration. Often the entire legacy system is thrown away and rebuilt from scratch because of the
difficulty of migrating the user interface.

Many of these aging information systems were originally implemented with character or text-
based user interfaces, and are usually menu-driven. Migration to newer platforms, such as graph-
ical workstations, requires the text-based user interface to be replaced by graphical interaction
techniques. The default interaction style of almost all modern interactive systems is “WIMP”
(Windows, Icons, Menus, and Pointers) [DIX93]. Since there is a dramatic paradigm shift
between the control aspects of a text-based interface and a WIMP interface, it is not sufficient to
simply replace the textual output statements of the legacy system with graphical counterparts.
The user interface components and their interaction with the computational components of the
system need to be understood in order to restructure the application. Traditional reverse engineer-
ing techniques have not addressed recovering user interface models from code, a necessary step in
automation-assisted migration.

Revised Thesis
Adding automation to the reengineering process can significantly reduce the time, cost, and effort
of migrating systems. It is possible to apply reverse engineering techniques to text-based legacy
applications in order to recover and extract an abstract model of the user interface. The resulting
model can then be transformed to generate a new graphical WIMP-style user interface for the sys-
tem.

2/19/96 3

A Process for Reengineering
There are three steps in the reengineering process:
• Detection - (also called Reverse Engineering) Analyzing source code to identify and extract

user interface components from the legacy system.
• Representation - Building a model of the existing user interface from the detection step.
• Transformation - Manipulating, augmenting, or restructuring the resulting model to allow for-

ward engineering to a graphical environment.

 Figure 1 describes options in the reengineering process:

Figure 1 : The Reengineering Process

There are several options for reengineering user interfaces in this process model. The user inter-
face calls in the text-based legacy system could be simply replaced by GUI counterparts, repre-
sented by the “translation” edge in Figure 1. There are tools currently available (“screen
scrapers”) that accomplish this. However, this strategy does not address the necessary shift in
control from application-driven to interface-driven (discussed in more detail in the “Modeling
Strategy” section below). A better strategy is to extract the user interface from the computational
legacy code, using program understanding techniques to build an abstraction, or model, of the
existing interface. This path is depicted by the “detection” edge and the “abstract model” box in
Figure 1. The application-driven model can then be transformed to an interface-driven model,
shown by the “transformation” edge. Once the model has been restructured, a forward-engineer-
ing tool, such as a UIMS, could be used to automatically generate a new graphical interface for
the system. Another possibility is that the interface-driven model could be directly detected from
the legacy code, without modeling the existing structure, shown by the “direct transformation”
edge. This research will address the detection-transformation path shown in the diagram.

Legacy
text-based
system

New GUI-
based
system

Abstract
Model

Restructured
Abstract
Model

Detection

Transformation

Generation
(Forward
 Engineering)(Reverse

 Engineering) Direct
Transformation

Translation

Representation Representation

2/19/96 4

A Modeling Strategy
Text-based legacy applications are almost always Computation-Dominant as opposed to Dialog-
Dominant. [HAR89]. This means that the user interface is intertwined in and controlled by the
computational algorithms of the application. Most modern GUI interfaces are just the opposite;
the user interface dialog structure controls the application (Dialog-Dominant). In order to transi-
tion the Computation-Dominant legacy system to the new Dialog-Dominant paradigm, the legacy
system must be restructured.

Green’s Seeheim model [GRE85] defines an architecture for an interactive system that separates
the computational code from the details of the user interface. The Seeheim model is the basis for
many User Interface Management Systems (UIMS), which allow designers to specify the presen-
tation, dialog control, and application interface separately from the computational code. A signif-
icant advantage could be gained by reverse engineering an existing text-based system into a
representation that could be then transformed into a UIMS representation. Since the legacy appli-
cation could be maintained separately from its user interface, the user interface could be tailored
and updated as needed without having to modify the computational code. Another advantage of
separating the user interface from the computational code is in migration to client-server architec-
tures. Reverse engineering to a Seeheim model requires extracting several different models from
the original legacy code, as depicted in Figure 2:

Figure 2 : Reverse Engineering to the Seeheim Model

end
user

Presentation
Component Dialogue

Control
Application
Interface
Model

Application
Computational
Code

Seeheim Runtime Architecture Model

Legacy
Application
(Monolithic)Analyst/

Designer

Extracting parts of the model

state
transition
info

Data and
Comm
Model

Code and
Callbacks
(Application
 Semantics)

Display
infoGUI

design
choices

2/19/96 5

• The Presentation Component of the legacy system includes information such as output
groupings (such as in an error message), output-input pairs (such as in a dialog box), contents
of screens, and any visible state information. Since the presentation changes drastically
between a text-based system and a GUI-based system, the analyst/designer may need to sup-
ply further presentation information, such as choosing a selection mechanism (pushbuttons vs.
a cascade menu, for example).

• Dialogue Control is essentially a “map” of the system, its states and transitions, and also stor-
age for information that allows the interface to be traversed. Sequencing of menus and dia-
logs are kept in this model, and as a result, control flow analysis can be used to build it.
Preconditions and Postconditions are also maintained here to ensure control to flow only in
allowed circumstances.

• The Application Interface is the connection between the application and the user interface,
essentially a communication model. Values and messages to be displayed are computed in the
algorithmic code, and relationships between these “user interface variables” and correspond-
ing user interface objects must be maintained. Slicing and dataflow analysis can be used to
extract this model from the legacy code.

• The Computational Code is everything that is left when the user interface models have been
extracted. Although the computational aspects of the code should not need to be altered, the
control structure of the program is likely to be reorganized to fit the new Dialog-Dominant
paradigm. The result is that the computational code may be restructured in the form of call-
backs that respond to user input events.

The user interface components that can be extracted directly from the legacy code consist of parts
of the Presentation component and the Dialogue control component. The Application Interface is
built as a result of the reverse engineering step (although information needed to build this model
is derived from reverse engineering).

A Technique for Reengineering
As described in the original proposal and in [MOO94b], I have developed a technique for reverse
engineering user interfaces based on a set of recognition rules. An initial model is built using
static analysis, which is then refined during dynamic analysis and then transformed into a repre-
sentation that supports generation of a new user interface. A new facet of this technique is the
goal of extracting and building several user interface models and the connections between them
from the legacy code to match the components of the Seeheim model. This will allow the user
interface to be transformed into a UIMS representation for automated generation of the new user
interface. Figure 3 illustrates the steps in the technique:

2/19/96 6

Figure 3 : Technique for Reengineering User Interfaces

Static Analysis
The static analysis step of the reengineering technique begins with the identification of the “User
Interface Slice” of the system. The procedural code is translated to an Abstract Syntax Tree
(AST) and then, using control flow and data flow analysis, the components of the legacy code that
are involved in I/O are identified. The recognition rules are applied statically to the AST to iden-
tify user interface paradigms in the code and to build the initial model.

Dynamic Analysis
 Static analysis is limited in a number of ways. In order to be able to broaden the scope of appli-
cations that could be reengineered and make the technique more general, dynamic analysis
allows:
• Resolution of aliasing problems (ie, pointers to functions) that cannot be resolved statically.
• Resolution of filename and other dynamically bound issues
• Terminal control semantics - often text-based systems make use of simple terminal control

techniques, which can add semantics to the interface that cannot be detected statically.
• Path analysis and usage data - instrumentation can be used to gather data about often used

Legacy
Code

Presentation
Model

Dialog
Model
Application
Interface

Static
Analysis

Presentation
Model

Dialog
Model
Application
Interface

Initial Model

Dynamic
Analysis

Refined
Model

UIMS
Representation

presentation

dialog

app
I/F

Transformation

designer
inputs

2/19/96 7

sequences and potentially for unused code detection.
• Dynamic analysis could be used in conjunction with static analysis to provide a more com-

plete and accurate model of the interface. Adding static analysis as a first step reduces some
of the issues with dynamic analysis, such as path coverage. Comparisons between static and
dynamic approaches would be interesting also.

Transformation
In order to shift the control paradigm for the user interface, the legacy system must be restruc-
tured to reflect a dialog-controlled model rather than a computation-controlled model. To accom-
plish this, the dialog control model and parts of the application interface elicited from the
detection step needs to be transformed to reflect a more event-driven organization. Action proce-
dures in the computational code need to be identified and restructured in order to serve as callback
mechanisms, which is maintained by the application interface. A communication model is also
needed to allow data to be passed back and forth from the computational code to the dialog con-
trol and presentation components of the model.

Detection of Higher-Level Semantics
Current work has been successful in detecting basic user interface paradigms, such as menu and
screen structure, and prompt-response dialogs in purely sequential interfaces. However, there are
many capabilities present in GUIs that are not present in text-based interfaces, for example gray-
ing out commands that are unavailable or determining which sequences of commands could be
performed concurrently (such as multi-threaded dialogues). This work might entail identifying
user interface objects from the legacy code and attempting to restructure the code to allow concur-
rency. Other higher-level semantics might include preconditions and postconditions of com-
mands, and passive status indicators (for modes or toggles).

Recent Research Results - Representation Issues
In order to choose appropriate notations and modeling techniques for each of the three Seeheim
model components, I undertook a study of existing user interface representation techniques. After
an extensive survey of the literature, I chose ten candidate notations in seven strategic categories,
detailed in [MOO96]. In a series of thought experiments, I reengineered a small legacy informa-
tion system using each of the notations in order to evaluate them for a number of criteria including
recoverability, human understanding, expressive power, and capability to express the require-
ments of the transformed system (ie, preconditions, postconditions, concurrency). The results
showed, not surprisingly, that no single representation technique is sufficient to describe all of the
user interface models. Consequently, I plan to develop a hybrid representation, based on Harel’s
State Charts for dialog control, adding a data and connection model for the application interface
and a data model for the presentation component model. I plan to pursue an object-oriented data
model in order to better reflect the transformation to the WIMP-style interface, and to make it eas-
ier to integrate a UIMS as a forward engineering tool.

Background Developments
Since 1994, a very significant achievement in user interface reengineering was accomplished by
Merlo et al [MER95] at the Computer Research Institute of Montreal. As part of the Macroscope

2/19/96 8

project a method, representation, and supporting toolset for migrating a character-based legacy
system to a graphical system were developed. A summary of their accomplishments:
• Static analysis of legacy code, including:

 - Parsing to an Abstract Syntax Tree
 - Slicing to isolate user interface components
 - Using a cliche recognizer to produce an initial specification
 - A representation, AUIDL [MER93], based on Milner’s process algebra for dialog control
 - An object-oriented data model incorporated into AUIDL
 - Allowing the user to manipulate the model (a graphical representation is used)
 - Generation of the new interface

• Targets
 - COBOL / CICS, Basic Mapping Support for terminal display to client-server architecture
under OS/2.
 - Basic to Visual C++ (using a similar method)

• Replacement of the old user interface with the new

The static analysis technique implemented and validated in this research is very similar to part of
the strategy outlined in my original proposal. The success of Merlo’s group is encouraging and
indicates that user interface components can be detected from legacy code using automated meth-
ods, strongly supporting my thesis.

Comparison to Proposed Research
Although the Macroscope findings will be very valuable to this research, there are still significant
differences in the approach proposed here and that of Merlo’s group. These have been elaborated
above, but to summarize:
• The Macroscope approach uses purely static analysis to obtain and refine the model. I pro-

pose to use a combination of static and dynamic analysis in the recovery process.
• The Macroscope approach treats the user interface model as a single combined entity. I pro-

pose to extract several different interoperating models to restructure to a Seeheim architecture,
in order to take advantage of a UIMS for forward engineering of the user interface.

• I propose to address detection of concurrency and higher level semantics such as context-sen-
sitive availability of user interface objects which are not addressed in Macroscope.

• I propose to use a different representation method (Harel’s State Charts) for the dialog control
model rather than the process algebra-based representation used by Macroscope.

Revised Research Plan
 This section replaces the “Research Plan” section of the original proposal. It outlines a plan for
accomplishing this work, including focusing the research, identifying issues and questions,
evaluating alternatives, and implementing a prototype solution to the user interface reengineering
problem.

Research Focus
The main technical focus of this research will be to develop reverse engineering techniques and
representation models for extracting components of the Seeheim user interface architecture from
text-based systems in the Information Systems Domain. These systems are targeted because there

2/19/96 9

are many benefits in automating the reengineering process for these large, mostly text-based
applications. The Seeheim model is chosen because it allows the legacy system to be restructured
to take advantage of the power, flexibility, and abstraction of a UIMS.
The Mastermind UIMS system will be considered as a forward engineering environment, and the
Mastermind Task Format (MTF) representation will be considered for the data model and also as
the target of the transformation step. The MTF representation is still evolving, which presents the
opportunity of potentially influencing the design of the representation to accommodate both
forward and reverse engineering. Harel’s State Charts will be used to represent the dialog control
model, and the MTF object-oriented data modeling features will be incorporated into the State
Chart representation.

Issues and Questions
 There are many interesting issues and questions in this problem area. This work will address:
• Refining three sets of recognition rules for extracting dialog control components, application

interface components, and presentation components from the legacy code
• Maximizing static analysis to detect user interface objects, actions, preconditions, postcondi-

tions, and semantics
• Utilizing dynamic analysis to complete the detection process, including instrumentation or

interpretation of legacy code
• Developing a representation technique by incorporating a data and condition model into

Harel’s State Charts
• Giving the analyst control over decisions and the capability of adding human judgement to

refine the model as the user interface model is built.

Validation and Evaluation Criteria
 Validation will need to be performed in several dimensions for this work:
• Productivity Gain - A major emphasis of automated maintenance tools is the productivity gain.

The time to reverse engineer a user interface with this automated tool will be compared against
the time required to hand-reverse engineer the same application.

• Quality of interface - If the user interface model detected does not allow a high-quality user
interface to be produced, then it is useless. For this validation, I will compare the automati-
cally generated interface against hand-reverse-engineered systems described above in usabil-
ity studies as a basis of comparison.

• Scalability - Since large size is a primary attribute of information systems, a large-scale
reverse engineering task will be attempted to assess the scalability of the technique.

• Analysis Technique - The approach of combining static and dynamic detection will be com-
pared against a purely static detection technique, as implemented in the Macroscope project.

• Quality of Representation - The models that result from the extraction process will be evalu-
ated for human readability and understandability, and the power and flexibility of the represen-
tation technique will be evaluated against the AUIDL representation of the Macroscope
project.

2/19/96 10

Plan
 Deliverables for this work include:
• A set of recognition rules to perform detection on the presentation component model, the dia-

log control model, and the application interface model for the legacy application.
• Development and adaptation of an abstract representation for each of the three Seeheim user

interface model components
• Investigation of transformation techniques to perform the application-control to dialog-control

paradigm shift.
• A working research prototype for static and dynamic detection and representation of the com-

plete model, investigating transformation into the Mastermind UIMS for forward engineering.
• Analysis of experiments with the prototype to assess performance, quality of detection, and

functional equivalence to the original code.

Projected Schedule

Research Tasks:
• Develop and refine a dialog control model representation based on Harel’s State Charts, add-

ing a data model compatible with Mastermind MTF for presentation and application interface
models. March 22

• Develop and refine recognition rules and express formally for each of the Seeheim model
components:
 - Presentation Model April 5
 - Dialog Control Model April 26
 - Application Interface Model May 10

• Implement the static detection framework
 - Using Refine [REA94], implement the three rule bases May 31
 - Implement the extraction of the User Interface Slice from Abstract Syntax Trees built with
Refine-based tools June 21
 - Implement a tool to apply the rules statically and generate the appropriate representation for
each model July 12

• Implement dynamic detection framework
 - From information gathered in static analysis, build a tool to instrument the code at critical
points of interest in the dynamic analysis phase Aug 9
 - Implement a dynamic rule recognizer Aug 30

• Develop a simple communication model between the user interface and the application to map
values from the interface to the computational code Sept 20

• Investigate strategies for transforming the State Chart dialog control model into Mastermind
MTF task descriptions. Oct 25

• Experiments with prototype toolset
 - Reengineer a small legacy system using both automated and manual methods and compare
the results. Nov 8
 - Reengineer a large system using the prototype toolset to evaluate scalability

Nov 29

2/19/96 11

Completion Criteria
 This work will be considered to be complete when the deliverables mentioned above are
completed and have been demonstrated to be valid, plus the development of the associated thesis
documenting the research.

Contribution to the field
 This work will contribute to the field of software maintenance in the following ways:
• It will increase the body of knowledge in program understanding, by introducing techniques

for detecting user interface abstractions;
• It will improve the state of the art for software maintenance, and show significant productivity

gains in the reverse engineering process;
• It will significantly improve application migration by providing a path for upgrading a user

interface; and
• It will add to the body of experience with software transition techniques.

Conclusions
 Program understanding and reverse engineering techniques for user interfaces goes far beyond
simply replacing the old text-based user interface with the veneer of a new, flashy, graphical
interface. Although the production of a new user interface is a primary goal, the information
gleaned from the detection process can ease the entire process of reengineering. Developing an
abstract model of a user interface can make the application more maintainable, portable, and
usable.
 While traditional reverse engineering techniques have concentrated on understanding program
data structures and control flow, the user interface has been almost ignored. It is important to
understand this facet of a legacy system in order to adequately reengineer it. Automating this
process represents a significant savings in cost, time, and effort.

2/19/96 12

References
[DIX93] Dix, Alan; Finlay, Janet; Abowd, Gregory; and Beale, Russell. Human-Computer

Interaction, Prentice Hall International (UK) Limited, 1993.
[GRE85] Green, Mark. “The University of Alberta User Interface Management System”,

Proceedings of SIGGRAPH, 12th Annual Conference, San Francisco, CA,
July 1985.

[HAR89] Hartson, H. Rex, and Hix, Deborah. “Human-Computer Interface Development:
Concepts and Systems for Its Management”, ACM Computing Surveys, Vol 21.,
No. 1, March 1989.

[MER93] Merlo, E.; Girard, J.F.; Kontogiannis, K.; Panangaden, P.; and De Mori, R.,
“Reverse Engineering of User Interfaces” Proceedings of the Working Conference
on Reverse Engineering, Baltimore, MD, May 21-23, 1993.

[MER95] Merlo, Ettore; Gagne, Pierre-Yves; Girard, Jean-Francois; Kontogiannis, Kostas;
Hendren, Laurie; Panangaden, Prakash, and DeMori, Renato; “Reengineering
User Interfaces” IEEE Software, Vol. 12 No. 1, January 1995.

[MOO94a] Moore, Melody. User Interface Reverse Engineering, a Research Proposal Draft,
College of Computing, Georgia Institute of Technology, June 10, 1994.

[MOO94b] Moore, Melody. “A Technique for Reverse Engineering User Interfaces”,
Proceedings of the 1994 Reverse Engineering Forum, Victoria, B.C., Sept 1994.

[MOO96] Moore, Melody. Representation Issues for Reengineering User Interfaces,
Research Report, College of Computing, Georgia Institute of Technology,
Feb 19, 1996.

[REA94] Reasoning Systems, The Refine Language Tools, Marketing literature, 3260
Hillview Avenue, Palo Alto, CA, 94304, 1994.

[SUT78] Sutton, J., and Sprague, R. “A Survey of Business Applications”, Proceedings of
the American Institute for Decisions Sciences 10th Annual Conference, Part II,
Atlanta, GA, 1978.

