
Apendix I - Hierarchy.query Query to Generate the Analyzer June 6, 1994 4

Apendix I - Hierarchy.query
Query to Generate the Analyzer

ROOTPROC hierarchy

FILE dot “hier.dot”

PROC hierarchy

ROOT CFile;

{

LOCAL GNODE BASE;

LOCAL GNODE DERIVED;

<globals

 {Declaration

 [(?ClassDef

 <defname (ASSIGN DERIVED $token)>

 <bases

 {BaseSpec

 <refname (ASSIGN BASE $token)>

 (PRINT dot “%s@%s” DERIVED BASE)

 (PRINT dot “\n”)

 }

 >

)]

 }

>

}

Building a Simple Class Hierarchy Browser with GEN++ June 6, 1994 3

4. The Visualizer

The visualizer employed, DirVis, was developed for directory visualization by Mark Gray
at the GVU Lab. For more information, he can be reached by email at
vatavian@cc.gatech.edu.

The visualizer is called with the interface file using the command:

dirvis -h <interface filename>

The fullpath of DirVis is:

/net/gvu.1/public/bin/dirvis

5. Conclusions

The process involved in the development of this class visualizer was rather simple, what
says a lot about the power of the tools involved. The analyzer generated sees robust and
worked well not only with small programs but also with complex systems involving the
inclusion of many standard and customized files. The key in those cases was to use the
same makefiles employed for compilation but replacing the compiler name by the name of
the script that invokes the analyzer. The documentation provided was clear and concise,
but some features (like UNPARSE) were mentioned but not documented. Getting infor-
mation about class containment, member functions, and other class attributes that should
be available to a full-fleshed class hierarchy browser seems to be straightforward. Clearly
the most challenging part would be designing the user-machine interaction and program-
ming the visualization tool.

Building a Simple Class Hierarchy Browser with GEN++ June 6, 1994 2

3. The Interface

For a class hierarchy like:

The output of the analyzer would be of the form:

C@A

D@A

D@B

E@D

F@D

To adapt that output to the input structure required by the visualizer two small C programs
were written to generate the inheritance paths. The visualizer, designed for a tree-like
directory structure expects linear sequences of paths and generates automatically a tree
rooted at the interface file. Two approaches were implemented:

In the first approach each root’s child is a base class without parents in the C++ class hier-
archy. This allows immediate access to each subclass of a given class. The output for the
example above would be:

xxxx E.D.A

xxxx F.D.A

xxxx C.A

In the alternative approach each root’s child is a class without subclasses. Thus we can
have immediate access to each base class of a given class. For this case each path in the
output would be the reverse of the example above.

A B

C D

E F

Building a Simple Class Hierarchy Browser with GEN++ June 6, 1994 1

Building a Simple Class Hierarchy Browser
with GEN++

D. Alberto Rama

1. Objective

This report summarizes how the prototype of a class hierarchy browser was built using
GEN++ to generate an analyzer of C++ programs and adapting its output to interface with
DirVis, a directory visualizer developed at the GVU Lab.

2. The Analyzer

GEN++ is a generator of analyzers for C++ programs based on GENOA, a language inde-
pendent specification language and generation system developed by AT&T Labs. GEN++
essentially implements a query language for a semantic tree generated after parsing the
program or set of programs to be analyzed. For each class declaration the base classes
were determined in order to get a list of pairs (base class, derived class). App. I reproduces
the query used in the generation of the analyzer, that was based on one example provided
with the beta version of the package. The file with the query can be found at jazz:/
hs1/alber/gen++/pkg/hierarchy.query, the example used as a base is on
jazz:/hs1/alber/gen++/pkg/examples/hier.query.

The analyzer can be regenerated by typing:

mk hierarchy

(have to be logged onto jazz and the command should be run on directory /hs1/alber/
gen++/pkg

The analyzer was renamed as /hs1/alber/gen++/analyzers/hierarchy.

More information on GEN++, the location of the documentation and how to generate and
run analyzers can be found on the README files at directories gen++, pkg and ana-
lyzers.

