Issues in Visualization for the Comprehension of Parallel Programs

Fileen Kraemer and John T. Stasko

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280
E-mail: {stasko,eileen}@cc.gatech.edu

Abstract

Parallel and distributed computers are becoming
more widely used. Thus, the comprehension of par-
allel programs s increasingly important. Understand-
ing parallel programs is more challenging than un-
derstanding serial programs because of the issues of
concurrency, scale, communications, shared resources,
and shared state. In this article, we arque that the use
of visualizations and animations of programs can be
an wnvaluable asset to program comprehension. We
present example problems and visualizations, showing
how graphical displays can assist program understand-
ing. We also describe the Animation Choreographer,
a tool that helps programmers better comprehend the
temporal characteristics of their programs.

1 Introduction

The comprehension of a program or its design is
an important component of the coding, debugging,
maintaining, testing, and reuse of software. Mainte-
nance, in particular, is an expensive and difficult pro-
cess. This difficulty is exacerbated by the fact that the
maintainer is generally not the author, and that writ-
ten documentation may be out of date, incomplete, or
nonexistent.

A number of models, techniques, program represen-
tations, and tools have been developed to address the
problems of program comprehension. In the top-down
or problem-driven model[5], program comprehension
is achieved through the formation, confirmation, re-
jection, and refinement of expectations of domain con-
cepts. The user may search for confirming beacons [1]
of these expectations. This method is thought to be
common among expert programmers or if the code or

I This research has been supported in part by a grant from
the National Science Foundation (CCR9121607) and a graduate
fellowship from the Intel Corporation.

type of code is familiar. In the bottom-up or code-
driven model[23], comprehension is achieved through
the detection of patterns or plans in the program code.
This approach is common when the code is completely
new to the programmer. In practice, comprehension
may proceed top-down, bottom-up or a combination
of the two.

All tools for program comprehension must perform
three tasks: ertraction or data collection, abstraction
or analysis, and presentation or display of the result
of the analysis. Various tools employ different meth-
ods for extraction, abstraction, and presentation, and
place varying emphasis on the importance of each of
these tasks. The result produced by these tools varies
widely, from written documents, through intermediate
forms passed on to CASE tools or code generators, to
databases that may be browsed or queried, to static
and/or dynamic visualizations of the program. Some
of these tools produce predefined sets of reports or dis-
plays or furnish answers to fixed sets of queries, others
allow the analyst to interactively select the analysis to
be performed or the information to be displayed.

For example, TIBER(described in [22]) and Syn-
chronized Refinement[21] focus on producing im-
proved documentation. Charon[22] produces an inter-
mediate result that can be passed on to a CASE tool.
Ghinsu[15] allows the analyst to interactively explore
the program, select target statements and variables,
and perform analysis such as slicing, dicing, ripple
analysis, and dependence analysis. DOCKET[12] cre-
ates a system model that may be interactively queried
or browsed by the analyst.

A number of graphical representations of program
information have been proposed. These graphical rep-
resentations may be used internally to calculate results
such as program slices or data flow information, or
they may serve as the basis for displays that are pre-
sented to the analyst. See [7], [17], [8], and [9] for a
more detailed discussion of program graph types. Use
of these combined program representations allows a
program comprehension tool to reference a single in-

ternal representation, yet construct a variety of views,
thus allowing the analyst to gain a better understand-
ing of the program.

Systems such as CARE[14], VAPS[4], and
VIFOR[20] visualize program dependencies. VAPS
displays include a control flow graph, declaration and
nesting trees, and a structure chart. VIFOR uses a
two-column entity-relationship display. CARE uses
a similar model, but presents a multi-column, colon-
nade display in addition to the traditional call-graph
display. PUNDIT[16] combines statically collected se-
mantic information with debugging capabilities, and
provides both graphical and textual displays. Graphi-
cal displays include a dynamic call graph, an animated
control flow graph, and data structure displays.

Other types of software visualization[26, 19] sys-
tems including BALSA[2], Zeus[3], and TANGO[24]
focus on algorithm animation; they support the user
in the design of arbitrary visualizations. The graph-
ical displays described in preceding paragraphs, and
those constructed using other visualization tools, can
be much more intuitive and effective than textual rep-
resentations, and thus can aid the analyst in assimi-
lating the information produced by the program com-
prehension tool. These displays are most useful when
they closely match the mental model[18] that the pro-
grammer/analyst forms through the process of pro-
gram comprehension. The presentation of multiple
views, and a facility that allows the viewer to hide,
rearrange, or interact with objects in the display, all
assist the analyst in achieving this match, and thus
facilitate the comprehension of the program.

Thus, the role of visualization in program compre-
hension is that of facilitator. Visualization can help
the analyst develop intuition about the functioning
of the program under study. This intuition can help
the “top-down” analyst form reasonable expectations
about the program. The underlying program com-
prehension analysis tools can extract the information
and perform some analysis or abstraction. Visualiza-
tion can then present this information in such a way
that the analyst will easily recognize its importance
with regard to the expectation.

Similarly, visualization can help the “bottom-up”
analyst proceed in an efficient manner. For example,
by viewing an animated call graph of the program un-
der study, the analyst can observe the order and fre-
quency of execution of the various subroutines, and
use this information to decide the order in which to
study these pieces of code.

In the remainder of this paper, we will focus on
a relatively new and extremely challenging program

comprehension problem: the comprehension of paral-
lel and distributed programs. We will discuss the role
that visualization can play in facilitating their under-
standing. We will point out some of the issues that
arise in the comprehension and visualization of paral-
lel programs, and present our approach to addressing
these issues.

2 Issues in the comprehension of par-
allel programs

The introduction of parallelism adds an additional
twist to the model of program comprehension. Paral-
lel programs are by nature large and complex. They
often produce vast quantities of data. Programmers
must understand and analyze large amounts of in-
formation describing complex relationships, including
the states of each process and interactions among pro-
cesses. Interactions include communication, synchro-
nization, access to shared variables, and competition
for shared resources. In addition to the control and
data dependences, and control flow and data flow in-
formation that is essential to the understanding of a
serial program, the user must address the added com-
plexity of concurrency. The analyst now has addi-
tional questions to answer: Which pieces of code may
execute concurrently? What type of synchronization
must occur between these concurrent threads or pro-
cesses? Are there any race conditions? Where and
how is data shared? The analyst must decipher not
only the portions of the code directly related to the
purpose of the program, but also must wade through
the code that creates and synchronizes processes, al-
locates tasks, makes intermediate results available to
other processes, serializes access to shared memory,
and determines some type of global state such as a
termination condition.

Furthermore, performance is the primary motivat-
ing factor for the creation of parallel programs. Design
decisions often hinge on obtaining the best possible
performance on a particular architecture, rather than
on producing a straightforward implementation of the
underlying algorithm. Subsequent ports to other ma-
chines and additional “tweaking” (adjustment) can
further obscure the original design.

We believe that visualization can assist the user in
grasping the concurrency of the program, in manag-
ing the large number of objects; in understanding the
interactions, and in analyzing the data describing the
program’s execution. We know that two-dimensional
displays of information, such as bar charts and graphs,

give viewers insight into the data presented[28, 29].
Graphical animation can provide additional insight
and allow the viewer to absorb more information by
tapping into our well-developed visual abilities for de-
tecting patterns, for tracking moving objects, and for
spotting anomalies in patterns.

Visualization is a rich medium for communicat-
ing information about a program and its execution.
That is, it allows program attributes to be repre-
sented by colors, shapes, sizes, locations, and mo-
tion, rather than merely as a text label and numer-
ical data. When done well, visualization can improve
understanding, and make obvious details that would
have been obscure in a purely textual presentation.
These “information-dense” displays can convey much
more information than strictly necessary to confirm
or reject a hypothesis. They can supply these answers
and provide intuition about why the hypothesis is false
or suggest additional refinement to the viewer.

Why is visualization superior to text for represent-
ing many aspects of parallel programs? Textual pre-
sentations are inherently serial. As stated earlier, dis-
plays are most useful when they closely match the
viewer’s mental model of the computation. A serial,
textual presentation of program information is diffi-
cult enough to follow for the programmer who wrote
the code and who thus should have a fairly well-
established mental model of the concurrency in the
program, and who has only to map the text back to
this model. The reverse process, required of the ana-
lyst who must comprehend unfamiliar code, the con-
struction of a mental model of this concurrent process
from purely textual, serial data is surely more diffi-
cult. An animated, graphical display can more easily
convey the concurrency of the program, and can more
naturally deal with the temporal issues of parallel pro-
grams.

For example, suppose we are dealing with a pro-
gram containing barrier synchronizations. The “mas-
ter” process must check in to the barrier before any
“slave” process may proceed past its “barrier check-
in” statement. All “slave” processes must check out of
the barrier before the “master” process may proceed
past its “barrier check-out” statement. In the visual-
ization shown in Figure 1, a new two row grid is dis-
played each time a barrier synchronization is invoked.
As each participating process checks in to the barrier,
the appropriate circle in the top row is filled in. If the
process must wait, 1ts color fades to indicate that 1t is
inactive. When the master checks in, the processes are
shown as active again. Similarly, as each participat-
ing process checks out of the barrier, the appropriate

circle in the second row is filled in. If the master has
to wait, it is shown going inactive. When the final
slave process checks in, the master process is shown
as active again.

Suppose, in our example, that the analyst knows
that a barrier synchronization is in use. Do all pro-
cesses participate in the barrier? If not all, then which
ones? Which processes have to wait? Which processes
keep the others waiting” An analyst might have to
wade through a good deal of text or make a number
of queries to answer this question. However, a quick
glance at a display such as that shown in Figure 1 can
answer these questions.

Similarly, an analyst attempting to understand the
pattern of access to a shared variable could easily ob-
serve this from the display in Figure 2. In this dis-
play, the large circle represents a “mutex” - a critical
section of code protected by a mutual exclusion vari-
able. When a process obtains control of the mutex
variable, its icon(a colored circle) is shown entering
the circle. Processes that are waiting to gain access
to that mutex are shown waiting outside the circle. Is
there contention for this variable? That is, are there
many icons waiting around the circle? How much time
does a process spend inside the mutex relative to the
time it spent waiting? This type of display would be
useful in understanding design decisions such as the
use of a distributed list rather than a centralized list.
The analyst who must port this code to a new archi-
tecture can then make a more informed decision about
whether to keep the distributed list or go to a central-
ized list in the new architecture.

Of course, this same information could be provided
without visualization by an “ideal” program compre-
hension tool - a tool that could answer questions like
“Why is there a barrier synchronization at this point?”
or “If I add a routine that accesses data structure X, do
I now need to enforce mutual exclusion on X?” In such
a world, visualization would not be necessary. How-
ever, until the time that program comprehension tools
have advanced to this state, visualization can serve the
useful purpose of providing a rich medium for convey-
ing information - information regarding data and con-
trol dependences and flow as in the serial world, and
information regarding concurrency, distributed state,
and shared variables in the parallel world.

Animated displays, in particular, are useful for con-
veying information regarding concurrency. They em-
ploy the very natural mapping of time to time, rather
than the less natural time to space mapping, or the
more obscure time to 12-digit timestamp value of a
textual report. Events that were concurrent in the

program can be shown as concurrent in the display.
In fact, events that meght have been concurrent can be
shown concurrently in the display. This leads us to a
discussion of the importance of time and event order
in the visualization of parallel programs.

3 Time and event order in the visual-
ization of parallel programs

A number of systems providing visualizations of
concurrent programs have been developed[10]. How-
ever, not all visualization systems are designed to
deal with concurrency. Many follow a serial paradigm
in which the visualization system receives some data
from the executing program, animates the display to
represent that event, and then processes another event
(piece of data). Unfortunately, we then lose the con-
currency inherent in the program.

The POLKA[25] animation system that we use to
develop visualizations can support concurrent anima-
tions actions, however. POLKA allows designers to
create graphical objects such as lines, text, circles,
rectangles, etc., and then make the objects move, re-
size, change color, flash, and so on. A particular object
can be performing many different actions at once, or
multiple objects can be changing at the same time,
thus reflecting the concurrency of a parallel program.
POLKA is implemented on top of the X Window Sys-
tem and Motif.

Concurrent programs often consist of logical phases
or rounds. The execution of these rounds or phases
may be skewed in time across processors with different
workloads or speeds. If valid timestamps are available,
the user may wish to view the computation with the
events ordered as they actually occurred. However,
the calculation of a complete ordering on program
events may not be possible - clocks may run at dif-
ferent rates, may have insufficient resolution, or may
not be synchronized across processors. Techniques ex-
1st to minimize this problem, but they do not eliminate
it and they often incur substantial overhead. Synchro-
nization events - message sends and receives, barrier
synchronization, serialized access to shared variables -
can be used to calculate a partial ordering of events.
Within the constraints of partial ordering, a number
of feasible orderings exist. Visualizations that adhere
to different feasible orderings can give the viewer dif-
ferent perspectives on the computation.

Several authors[27], [13], and [6], have emphasized
the value of displaying alternate orderings of a pro-
gram’s execution. To truly comprehend a parallel pro-

gram, the analyst must understand what these various
orderings are and how they can affect the program
under study. Of course, the many combinations of
possible event orders makes it unmanageable to gen-
erate and display every feasible ordering. Instead, we
utilize an Animation Choreographer[11] that provides
several useful, canonical orderings, based on the syn-
chronization events produced by the program under
study. In addition, the Choreographer allows the user
to interactively adjust these to produce any additional
orderings.

POLKA and the Animation Choreographer are
part of the PARADE (PARallel Animation Develop-
ment Environment) system for the visualization of
concurrent programs. A third component is an instru-
mentation or monitoring tool. The use of the instru-
mentation or monitoring tool, which varies between
architectures and languages, helps identify the event
records for a program.

Using POLKA, libraries of visualizations have been
developed - synchronization, history, and callgraph
views for Pthreads programs on the KSR(as shown
in Figures 1 and 2), 3-D visualizations of communi-
cation on the MasPar, algorithmic and performance
views of branch and bound algorithms in the iPSC
hypercube, as well as a number of application-specific
visualizations. Using PARADE, programmers may se-
lect visualizations from libraries such as these, or they
may create their own new visualizations.

The Animation Choreographer allows the analyst
to view program visualizations under a variety of or-
derings. As an example we will discuss a program
that performs a parallel quicksort on an array of nu-
meric values. The parallel execution follows a fork-join
paradigm, implementing a tree-structured algorithm.
That is, the computation begins with a single proces-
sor that reads in the data values to be sorted, and then
makes a pass over the data in which 1t determines a
median value and places all elements with values less
than or equal to the median value on one side of the
array, and all values greater than the median value
on the other side of the array. It then forks off two
child processes and waits for them to finish their work
and join back to 1t, the parent process. Each of the
child processes does the same thing to its portion of
the array and forks off child processes of its own. This
continues recursively.

The analyst attempting to comprehend the pro-
gram might want to look at some of the same displays
that are helpful with serial programs such as depen-
dence graphs and animated call graphs. In addition,
he might like to see application-specific or domain-

specific (in this case, we’ll consider sorting as the do-
main) displays such as those shown in figures 3, 4 and

9 through 11.

Figures 3 and 4 are an animated view of the array.
Each bar represents an element in the array (it could
also represent a group of elements). The height of the
bar indicates the value of the element, and the hori-
zontal position indicates its index in the array. Color
i1s used to show the processor that last touched that
element. This use of color allows the viewer to easily
detect and follow the actions of a particular processor
across multiple displays. At the start of the visual-
ization, the bars are arranged to represent the initial,
unsorted array. As elements are swapped in the algo-
rithm the bars are shown changing places in the dis-
play. From this display the viewer can observe the or-
der in which elements are swapped, and see which pro-
cessors act on each portion of the array, giving clues
to the functioning of the underlying algorithm.

Figures 9 through 11 are animated swap histories of
the parallel quicksort program. Again, horizontal po-
sition is used to indicate array index and color is used
to indicate the processor performing the swap. Each
time two elements are swapped, a horizontal line is
drawn between them, in the color associated with the
processor that performed the swap. Time runs upward
on the display. Thus, in a sequence of swaps, the most
recent swap is on top. The triangular patterns in the
display indicate that the algorithm works by compar-
ing the processor’s first and last elements in its portion
of the array, and then working in toward the middle
of the subarray. The analyst can also determine the
number of processors active at each stage (by count-
ing the number of triangles in a row), and the depth
to which the algorithm recurses in this execution (by
counting the number of triangles in a column).

The order in which these swap events are dis-
played can greatly affect the appearance of the dis-
plays and the information that can be gained from
them. The Animation Choreographer provides four
orderings: Timestamp, Adjusted Timestamp, Serial-
1zed, and Mazimum_Concurrency. The Choreographer
reads in event records (in this example, each swap of
array elements has an associated event record). It then
displays an execution graph, an acyclic, directed graph
in which the nodes represent the recorded program
events, and the arcs indicate the temporal precedence
relations between these events. The events produced
by a particular process or thread are displayed in a
column. Arcs between these nodes indicate the se-
quential relationship between the events of a single
process. Arcs between columns are the result of syn-

chronization events such as forks, joins, or barrier syn-
chronizations.

Processors (or threads, etc.) are arranged from left
to right. Vertical position in the graph represents ex-
ecution time, with earlier times appearing above later
times. Shape and color of node objects can be used to
identify different event types. The execution graph
reflects the program events as they were recorded.
The user can examine the recorded events by scrolling
through the graph, and by clicking on nodes of inter-
est.

To begin viewing a program trace, the user selects
an ordering. An initial ordering choice might be a
timestamp ordering - the execution times are used to
order the events for visualization. Figure 8 shows the
appearance of the choreographer using events from
parallel quicksort and a timestamp ordering. This or-
dering is frequently very useful to a user wishing to
see the actual order of execution, when such informa-
tion is available. This method relies on the existence
of a global clock with adequate resolution, and will
produce an essentially sequential visualization under
these circumstances. Poor resolution, or timestamps
that are not valid across processors, however, may pro-
duce visualizations that are misleading or incorrect.

Figure 4 shows the final appearance of the array
view when timestamps are used to determine the or-
der of events. As you can see, this does not appear to
be a sorted array. In fact, there seem to be “holes”
in the array. An examination of event records reveals
that there are duplicate timestamps - the clock used
was not of adequate resolution. The overlapping event
symbols in the Choreographer display of figure b are a
result of these duplicate timestamps. In a timestamp
ordered visualization, all events with the same times-
tamp are animated concurrently. In this case, swaps
that occurred sequentially are animated concurrently
because they received the same timestamp. If a given
element 1s involved in multiple swaps with the same
timestamp, its final location is not correct, and it may
seem to “disappear,” resulting in a misleading visual-
ization. Similarly, figure 9 shows the final appearance
of the swap history view using a timestamp ordering.
There appear to be very few swaps. Again, this is
a misleading display resulting from inadequate clock
resolution.

Within timestamp ordering we have several choices
for scaling. We can use a 1:1 mapping from timestamp
units to animation frames. However, this can result in
an animation with long periods of inactivity, punctu-
ated by short bursts of activity too rapid for the viewer
to comprehend. Another option is to use an n:1 map-

ping from timestamp units to animation frames. This
shortens the spans in which nothing happens, but in-
tensifies the short bursts of activity. A third option is
to use the timestamps to order the events for visualiza-
tion, but to ignore them in determining the interevent
waiting time. This eliminates the long waits, and al-
lows the event activity to be visualized at a rate the
viewer can understand. However, in this type of scal-
ing we lose information about the relative timing of
the program events. Ideally, it would be desirable for
the mapping from execution time to animation time to
behave like a “fun-house mirror.” That is, we would
like to compress long inter-event times, and stretch
out periods of high activity, allowing viewers to dis-
criminate between individual events, but preserving a
perspective on the actual timing of events.

The choreographer display under an adjusted times-
tamp ordering, shown in Figure 7, represents a com-
promise on these goals. In this ordering the times-
tamps are adjusted just enough so that causal ordering
is maintained (the displays are “correct”), but long in-
terevent times are unaffected. This ordering is useful
in obtaining a valid visualization without losing the
perspective on the true sporadic nature of the pro-
gram’s execution behavior. The use of this ordering
results in a “correct” final appearance of the array
display, in which the elements are truly sorted, and a
“correct” swap history view, in which no element is
swapped more than once in any time period.

Figure 6 shows the choreographer under a serial or-
dering. For a serial ordering, we construct a complete
ordering of events consistent with the partial order de-
termined by the dependence relations. This method
can produce valid, comprehensible visualizations in
the absence of globally synchronized timestamps with
adequate resolution, such as we have in this example.
The array view is again “correct”. The swap history
view appears as in figure 10. If you look closely you
will see that no two swap lines have the same vertical
position; the visualization has been completely seri-
alized. We have gained a “correct” ordering, but we
have lost the concurrency in the display. In addition,
we have eliminated the long interevent times.

Finally, we may wish to use a mazimum concur-
rency ordering, as illustrated by the Choreographer
display of Figure 8. (For this particular set of events
and times, the maximum concurrency and adjusted
timestamp orderings are nearly identical - this is not
always the case.) In this ordering, we gather all events
that could have occurred together, and animate them
simultaneously. Essentially, this view shows the max-
imum concurrency possible given the partial order de-

fined by the synchronization events. This ordering also
produces a correct array view. The final appearance of
the swap history view is shown in figure 11. It is cor-
rect, but you will notice that unlike the serial ordering
of figure 10 there are multiple swaps on the same line.
That is, they are visualized here and in the array view
as concurrent actions. We get correctness and con-
currency without the long interevent times. In other
visualizations we have found this ordering type to be
useful for identifying bugs by illuminating concurrent
situations that were not imagined by the program’s
designer.

These various temporal perspectives can provide
the user with insight into the program’s execution,
with each different ordering of the animation shedding
light on a different aspect of the computation. The
Animation Choreographer allows users to view pro-
gram animations under the orderings described above,
and to specify variations on these orderings.

4 Conclusions

Parallel and distributed programs present a number
of challenges to program comprehension. The added
complexity introduced by the multiple threads of con-
trol, the interactions between processes, the peculiar-
ities of the various parallel programming paradigms
and libraries and the tendency to optimize code for
a particular architecture exacerbate the problems of
program comprehension.

Visualization systems allow program attributes to
be represented by colors, shapes, sizes, locations, and
motion, rather than merely a text label and numeri-
cal data. When done well, visualization can improve
understanding, and make obvious details that would
have been obscure in a purely textual presentation.
We believe that computer visualization, the graphical
animation of the behavior and performance of comput-
ers and computer programs, can be an effective tool
for understanding how programs work.

POLKA is an animation toolkit designed to sup-
port concurrent animations. The Animation Chore-
ographer, which relies on POLKA, allows the viewer
to easily explore the set of alternate feasible orderings.
We believe that this ability to explore the set of pos-
sible event orders is essential to the comprehension of
parallel programs. We do not claim that visualization
will solve all the problems associated with the com-
plexity of parallel programs. However, we do believe
that visualization provides a rich means of communi-
cating that can lead to better understanding of how
large systems work.

(8] Barrier 0x517DB56 [@] Murtex OXBOAEGO0 El
mn |le|le|le|oe|o]|o|o|le]e

S @ (® | ©[,0]©|.0|.C|.©|.C

In o |0 | ol.o|lo|] o | O|.C|C

0 1 2 3 4 5] 7 2
Out

0. 1 2 SO 4 EO] 7 2
In

0 1 2 3 4 5) 7 g
Out

0 1 2 3 4 5) 7 g

R RIS o e

Figure 1: A snapshot of the animated Gthreads barrier Figure 2: A snapshot of the animated Gthreads mutex
display, created by Alex Zhao using POLKA. display, created by Alex Zhao using POLKA.

@] Quicksort Bects0 = [®] Quicksort Rects? N

Al '\” Ll

Figure 3: A snapshot of the array view of the parallel Figure 4: A snapshot of the array view of the parallel
quicksort program under a correct ordering. quicksort program under the timestamp ordering.

(8] iegend) @] choreographer 2] (8] chareogrepher ‘ 2
[[Fte | Move Parameters | Ordering | Views \‘ [Fle [move Parameters | Ordering | Views |
Figure 5: A portion of the execution graph produced Figure 6: A portion of the execution graph produced
by the choreographer. The events are from a parallel by the choreographer. The events are from a parallel
quicksort program. The ordering type is timestamp. quicksort program. The ordering type is serialized.
(@] choreographer 2u} (@] choreographer 21
[Fte T Move Parameters | Ordering | Views \‘ [Fe] move Parameters | Ordering | Views \‘
Figure 7: A portion of the execution graph produced Figure 8: A portion of the execution graph produced
by the choreographer. The events are from a paral- by the choreographer. The events are from a parallel
lel quicksort program. The ordering type 1s adjusted quicksort program. The ordering type is maximum

timestamp. concurrency.

Figure 9: A snapshot of the swap history view of the
parallel quicksort program under the timestamp or-

[®] Quicksart Chart0

5 e

dering.

Figure 10: A snapshot of the swap history view of the
parallel quicksort program under the serialized order-
ing.

[®] Quicksort Chart?

I I

(@] Quicksort Chart3 B
= m———
EEEREE

Figure 11: A snapshot of the swap history view of
the parallel quicksort program under the maximum
concurrency ordering.

References

(1]

Ruven Brooks. Towards a theory of the compre-
hension of computer programs. International Jour-

nal of Man-Machine Studies, 18:543-5564, 1983.

Marc H. Brown. Exploring algorithms using Balsa-

IT1. Computer, 21(5):14-36, May 1988.

Marc H. Brown. ZEUS: A system for algorithm
animation and multi-view editing. In Proceedings
of the IEEFE 1991 Workshop on Visual Languages,
pages 4-9, Kobe Japan, October 1991.

G. Canfora, A. Cimitile, and U. DeCarlini. Vaps:
Visual aids for pascal software comprehension. In
Proceedings of the Program Comprehension Work-
shop, pages 13-15, 1992.

T. A. Corbi. Program understanding : Challenge
for the 1990’s. IBM Systems Journal, 28(2), Febru-
ary 1989.

Janice E. Cuny, Alfred A. Hough, and Joydip
Kundu. Logical time in visualizations produced
by parallel programs. In Visualization ’92, Boston,

MA, October 1992.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D.
Warren. The program dependence graph and its

use 1n optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9(3), July 1987.

[8] M. Harrold and B. Malloy. A unified interprocedu-
ral program representation for a maintenance envi-
ronment. In Proceedings of the Conference on Soft-
ware Maintenance, pages 138-147, Sorrento, Italy,
October 1991.

[9] David Kinloch and Malcolm Munro. A com-
bined representation for the maintenance of ¢ pro-
grams. In Proceedings of the Program Comprehen-

ston Workshop, pages 119-127, 1993.

[10] Eileen Kraemer and John T. Stasko. The visual-
ization of parallel systems: An overview. Journal
of Parallel and Distributed Computing, 18(2):105—
117, June 1993.

[11] Eileen Kraemer and John T. Stasko. Toward flex-
ible control of the temporal mapping from con-
current program events to animations. Proceed-
wngs Eighth International Parallel Processing Sym-
postum, pages 902-908, 1994.

[12] P.J. Layzell, R. Champion, and M.J. Freeman.
Docket: Program comprehension-in-the-large. In
Proceedings of the Program Comprehension Work-

shop, pages 140-148, 1993.

[13] Thomas J. LeBlanc, John M. Mellor-Crummey,
and Robert J. Fowler. Analyzing parallel program
execution using multiple views. Journal of Paral-
lel and Distributed Computing, 9(2):203-217, June
1990.

[14] Panagiotos Linos, Philippe Aubet, Laurent
Dumas, Yan Helleboid, Patricia Lejeune, and
Philippe Tulula. Facilitating the comprehension of
c programs: An experimental study. In Proceedings
of the Program Comprehension Workshop, pages
55-63, 1993.

[15] Panos E. Livadas and Scott D. Alden. A toolset
for program understanding. In Proceedings of the
Program Comprehension Workshop, pages 110-
118, 1993.

[16] David P. Olshefski. Position paper: Tools facili-
tating software comprehension. In Proceedings of
the Program Comprehension Workshop, pages 32—
34, 1992.

[17] Karl J. Ottenstein and Linda M. Ottenstein. The
program dependence graph in a software develop-
ment environment. SIGPLAN Notices, 9:177-184,
May 1984.

[18] Cherri M. Pancake and Sue Utter. Models for
visualization in parallel debuggers. In Proceedings
of Supercomputing 89, pages 627-636, Reno, NV,
November 1989.

[19] Blaine A. Price, Ronald M. Baecker, and Tan S.
Small. A principled taxonomy of software visual-
ization. Journal of Visual Languages and Comput-

ing, 4(3):211-266, September 1993.

[20] V. Rajlich, N. Damaskinos, P. Linos, and
W. Khorsid. Vifor: A tool for software mainte-
nance. Software - Practice and Ezperience, pages

6777, January 1990.

[21] Spencer Rugaber. Reverse engineering by simul-
taneous program analysis and domain synthesis. In
Proceedings of the Program Comprehension Work-
shop, pages 45-47, 1992.

[22] Oreste Signore and Mario Loffredo. Charon: a
tool for code redocumentation and re-engineering.
In Proceedings of the Program Comprehension

Workshop, pages 169-175, 1993.

[23] E. Soloway and K. Ehrlich. Empirical studies of
programming knowledgekk. IEEE Transactions on
Software Engineering, SE-10(5):595-609, 1984.

[24] John T. Stasko. TANGO: A framework and sys-
tem for algorithm animation. Computer, 23(9):27-

39, September 1990.

[25] John T. Stasko and Eileen Kraemer. A methodol-
ogy for building application-specific visualizations
of parallel programs. Journal of Parallel and Dis-

tributed Computing, 18(2):258-264, June 1993.

[26] John T. Stasko and Charles Patterson. Under-
standing and characterizing software visualization
systems. In Proceedings of the IEEE 1992 Work-
shop on Visual Languages, pages 3-10, Seattle,
WA, September 1992.

[27] Janice M. Stone. A graphical representation
of concurrent processes. SIGPLAN Notices,
24(1):226-235, January 1989. (Proceedings of the
Workshop on Parallel and Distributed Debugging,
Madison, WI, May 1988).

[28] E. Tufte. The Visual Display of Quantitative In-
formation. Graphics Press, Cheshire, CT, 1983.

[29] E. Tufte. Envisioning Information.
Press, Cheshire, CT, 1990.

Graphics

