
Issues in Visualization for the Comprehension of Parallel Programs

Eileen Kraemer and John T� Stasko

College of Computing� Georgia Institute of Technology� Atlanta� GA ����������

E�mail� fstasko�eileeng	cc�gatech�edu

Abstract

Parallel and distributed computers are becoming

more widely used� Thus� the comprehension of par�

allel programs is increasingly important� Understand�

ing parallel programs is more challenging than un�

derstanding serial programs because of the issues of

concurrency� scale� communications� shared resources�

and shared state� In this article� we argue that the use

of visualizations and animations of programs can be

an invaluable asset to program comprehension� We

present example problems and visualizations� showing

how graphical displays can assist program understand�

ing� We also describe the Animation Choreographer�
a tool that helps programmers better comprehend the

temporal characteristics of their programs�

� Introduction

The comprehension of a program or its design is
an important component of the coding� debugging�
maintaining� testing� and reuse of software� Mainte�
nance� in particular� is an expensive and di�cult pro�
cess� This di�culty is exacerbated by the fact that the
maintainer is generally not the author� and that writ�
ten documentation may be out of date� incomplete� or
nonexistent�

A number of models� techniques� program represen�
tations� and tools have been developed to address the
problems of program comprehension� In the top�down
or problem�driven model���� program comprehension
is achieved through the formation� con�rmation� re�
jection� and re�nement of expectations of domain con�
cepts� The user may search for con�rming beacons ���
of these expectations� This method is thought to be
common among expert programmers or if the code or

�This research has been supported in part by a grant from
the National Science Foundation �CCR�������� and a graduate
fellowship from the Intel Corporation�

type of code is familiar� In the bottom�up or code�
driven model�	
�� comprehension is achieved through
the detection of patterns or plans in the program code�
This approach is common when the code is completely
new to the programmer� In practice� comprehension
may proceed top�down� bottom�up or a combination
of the two�

All tools for program comprehension must perform
three tasks� extraction or data collection� abstraction
or analysis� and presentation or display of the result
of the analysis� Various tools employ di�erent meth�
ods for extraction� abstraction� and presentation� and
place varying emphasis on the importance of each of
these tasks� The result produced by these tools varies
widely� fromwritten documents� through intermediate
forms passed on to CASE tools or code generators� to
databases that may be browsed or queried� to static
and
or dynamic visualizations of the program� Some
of these tools produce prede�ned sets of reports or dis�
plays or furnish answers to �xed sets of queries� others
allow the analyst to interactively select the analysis to
be performed or the information to be displayed�

For example� TIBER�described in �		�� and Syn�
chronized Re�nement�	�� focus on producing im�
proved documentation� Charon�		� produces an inter�
mediate result that can be passed on to a CASE tool�
Ghinsu���� allows the analyst to interactively explore
the program� select target statements and variables�
and perform analysis such as slicing� dicing� ripple
analysis� and dependence analysis� DOCKET��	� cre�
ates a system model that may be interactively queried
or browsed by the analyst�

A number of graphical representations of program
information have been proposed� These graphical rep�
resentations may be used internally to calculate results
such as program slices or data �ow information� or
they may serve as the basis for displays that are pre�
sented to the analyst� See ���� ����� ���� and ��� for a
more detailed discussion of program graph types� Use
of these combined program representations allows a
program comprehension tool to reference a single in�



ternal representation� yet construct a variety of views�
thus allowing the analyst to gain a better understand�
ing of the program�

Systems such as CARE����� VAPS���� and
VIFOR�	�� visualize program dependencies� VAPS
displays include a control �ow graph� declaration and
nesting trees� and a structure chart� VIFOR uses a
two�column entity�relationship display� CARE uses
a similar model� but presents a multi�column� colon�
nade display in addition to the traditional call�graph
display� PUNDIT���� combines statically collected se�
mantic information with debugging capabilities� and
provides both graphical and textual displays� Graphi�
cal displays include a dynamic call graph� an animated
control �ow graph� and data structure displays�

Other types of software visualization�	�� ��� sys�
tems including BALSA�	�� Zeus�
�� and TANGO�	��
focus on algorithm animation� they support the user
in the design of arbitrary visualizations� The graph�
ical displays described in preceding paragraphs� and
those constructed using other visualization tools� can
be much more intuitive and e�ective than textual rep�
resentations� and thus can aid the analyst in assimi�
lating the information produced by the program com�
prehension tool� These displays are most useful when
they closely match the mental model���� that the pro�
grammer
analyst forms through the process of pro�
gram comprehension� The presentation of multiple
views� and a facility that allows the viewer to hide�
rearrange� or interact with objects in the display� all
assist the analyst in achieving this match� and thus
facilitate the comprehension of the program�

Thus� the role of visualization in program compre�
hension is that of facilitator� Visualization can help
the analyst develop intuition about the functioning
of the program under study� This intuition can help
the �top�down� analyst form reasonable expectations
about the program� The underlying program com�
prehension analysis tools can extract the information
and perform some analysis or abstraction� Visualiza�
tion can then present this information in such a way
that the analyst will easily recognize its importance
with regard to the expectation�

Similarly� visualization can help the �bottom�up�
analyst proceed in an e�cient manner� For example�
by viewing an animated call graph of the program un�
der study� the analyst can observe the order and fre�
quency of execution of the various subroutines� and
use this information to decide the order in which to
study these pieces of code�

In the remainder of this paper� we will focus on
a relatively new and extremely challenging program

comprehension problem� the comprehension of paral�
lel and distributed programs� We will discuss the role
that visualization can play in facilitating their under�
standing� We will point out some of the issues that
arise in the comprehension and visualization of paral�
lel programs� and present our approach to addressing
these issues�

� Issues in the comprehension of par�
allel programs

The introduction of parallelism adds an additional
twist to the model of program comprehension� Paral�
lel programs are by nature large and complex� They
often produce vast quantities of data� Programmers
must understand and analyze large amounts of in�
formation describing complex relationships� including
the states of each process and interactions among pro�
cesses� Interactions include communication� synchro�
nization� access to shared variables� and competition
for shared resources� In addition to the control and
data dependences� and control �ow and data �ow in�
formation that is essential to the understanding of a
serial program� the user must address the added com�
plexity of concurrency� The analyst now has addi�
tional questions to answer� Which pieces of code may
execute concurrently� What type of synchronization
must occur between these concurrent threads or pro�
cesses� Are there any race conditions� Where and
how is data shared� The analyst must decipher not
only the portions of the code directly related to the
purpose of the program� but also must wade through
the code that creates and synchronizes processes� al�
locates tasks� makes intermediate results available to
other processes� serializes access to shared memory�
and determines some type of global state such as a
termination condition�

Furthermore� performance is the primary motivat�
ing factor for the creation of parallel programs� Design
decisions often hinge on obtaining the best possible
performance on a particular architecture� rather than
on producing a straightforward implementation of the
underlying algorithm� Subsequent ports to other ma�
chines and additional �tweaking� �adjustment� can
further obscure the original design�

We believe that visualization can assist the user in
grasping the concurrency of the program� in manag�
ing the large number of objects� in understanding the
interactions� and in analyzing the data describing the
program�s execution� We know that two�dimensional
displays of information� such as bar charts and graphs�



give viewers insight into the data presented�	�� 	���
Graphical animation can provide additional insight
and allow the viewer to absorb more information by
tapping into our well�developed visual abilities for de�
tecting patterns� for tracking moving objects� and for
spotting anomalies in patterns�

Visualization is a rich medium for communicat�
ing information about a program and its execution�
That is� it allows program attributes to be repre�
sented by colors� shapes� sizes� locations� and mo�
tion� rather than merely as a text label and numer�
ical data� When done well� visualization can improve
understanding� and make obvious details that would
have been obscure in a purely textual presentation�
These �information�dense� displays can convey much
more information than strictly necessary to con�rm
or reject a hypothesis� They can supply these answers
and provide intuition about why the hypothesis is false
or suggest additional re�nement to the viewer�

Why is visualization superior to text for represent�
ing many aspects of parallel programs� Textual pre�
sentations are inherently serial� As stated earlier� dis�
plays are most useful when they closely match the
viewer�s mental model of the computation� A serial�
textual presentation of program information is di��
cult enough to follow for the programmer who wrote
the code and who thus should have a fairly well�
established mental model of the concurrency in the
program� and who has only to map the text back to
this model� The reverse process� required of the ana�
lyst who must comprehend unfamiliar code� the con�

struction of a mental model of this concurrent process
from purely textual� serial data is surely more di��
cult� An animated� graphical display can more easily
convey the concurrency of the program� and can more
naturally deal with the temporal issues of parallel pro�
grams�

For example� suppose we are dealing with a pro�
gram containing barrier synchronizations� The �mas�
ter� process must check in to the barrier before any
�slave� process may proceed past its �barrier check�
in� statement� All �slave� processes must check out of
the barrier before the �master� process may proceed
past its �barrier check�out� statement� In the visual�
ization shown in Figure �� a new two row grid is dis�
played each time a barrier synchronization is invoked�
As each participating process checks in to the barrier�
the appropriate circle in the top row is �lled in� If the
process must wait� its color fades to indicate that it is
inactive� When the master checks in� the processes are
shown as active again� Similarly� as each participat�
ing process checks out of the barrier� the appropriate

circle in the second row is �lled in� If the master has
to wait� it is shown going inactive� When the �nal
slave process checks in� the master process is shown
as active again�

Suppose� in our example� that the analyst knows
that a barrier synchronization is in use� Do all pro�
cesses participate in the barrier� If not all� then which
ones� Which processes have to wait� Which processes
keep the others waiting� An analyst might have to
wade through a good deal of text or make a number
of queries to answer this question� However� a quick
glance at a display such as that shown in Figure � can
answer these questions�

Similarly� an analyst attempting to understand the
pattern of access to a shared variable could easily ob�
serve this from the display in Figure 	� In this dis�
play� the large circle represents a �mutex� � a critical
section of code protected by a mutual exclusion vari�
able� When a process obtains control of the mutex
variable� its icon�a colored circle� is shown entering
the circle� Processes that are waiting to gain access
to that mutex are shown waiting outside the circle� Is
there contention for this variable� That is� are there
many icons waiting around the circle� How much time
does a process spend inside the mutex relative to the
time it spent waiting� This type of display would be
useful in understanding design decisions such as the
use of a distributed list rather than a centralized list�
The analyst who must port this code to a new archi�
tecture can then make a more informed decision about
whether to keep the distributed list or go to a central�
ized list in the new architecture�

Of course� this same information could be provided
without visualization by an �ideal� program compre�
hension tool � a tool that could answer questions like
�Why is there a barrier synchronization at this point��
or �If I add a routine that accesses data structure X� do
I now need to enforce mutual exclusion on X�� In such
a world� visualization would not be necessary� How�
ever� until the time that program comprehension tools
have advanced to this state� visualization can serve the
useful purpose of providing a rich medium for convey�
ing information � information regarding data and con�
trol dependences and �ow as in the serial world� and
information regarding concurrency� distributed state�
and shared variables in the parallel world�

Animated displays� in particular� are useful for con�
veying information regarding concurrency� They em�
ploy the very natural mapping of time to time� rather
than the less natural time to space mapping� or the
more obscure time to �	�digit timestamp value of a
textual report� Events that were concurrent in the



program can be shown as concurrent in the display�
In fact� events that might have been concurrent can be
shown concurrently in the display� This leads us to a
discussion of the importance of time and event order
in the visualization of parallel programs�

� Time and event order in the visual�
ization of parallel programs

A number of systems providing visualizations of
concurrent programs have been developed����� How�
ever� not all visualization systems are designed to
deal with concurrency� Many follow a serial paradigm
in which the visualization system receives some data
from the executing program� animates the display to
represent that event� and then processes another event
�piece of data�� Unfortunately� we then lose the con�
currency inherent in the program�

The POLKA�	�� animation system that we use to
develop visualizations can support concurrent anima�
tions actions� however� POLKA allows designers to
create graphical objects such as lines� text� circles�
rectangles� etc�� and then make the objects move� re�
size� change color� �ash� and so on� A particular object
can be performing many di�erent actions at once� or
multiple objects can be changing at the same time�
thus re�ecting the concurrency of a parallel program�
POLKA is implemented on top of the X Window Sys�
tem and Motif�

Concurrent programs often consist of logical phases
or rounds� The execution of these rounds or phases
may be skewed in time across processors with di�erent
workloads or speeds� If valid timestamps are available�
the user may wish to view the computation with the
events ordered as they actually occurred� However�
the calculation of a complete ordering on program
events may not be possible � clocks may run at dif�
ferent rates� may have insu�cient resolution� or may
not be synchronized across processors� Techniques ex�
ist to minimize this problem� but they do not eliminate
it and they often incur substantial overhead� Synchro�
nization events � message sends and receives� barrier
synchronization� serialized access to shared variables �
can be used to calculate a partial ordering of events�
Within the constraints of partial ordering� a number
of feasible orderings exist� Visualizations that adhere
to di�erent feasible orderings can give the viewer dif�
ferent perspectives on the computation�

Several authors�	��� ��
�� and ���� have emphasized
the value of displaying alternate orderings of a pro�
gram�s execution� To truly comprehend a parallel pro�

gram� the analyst must understand what these various
orderings are and how they can a�ect the program
under study� Of course� the many combinations of
possible event orders makes it unmanageable to gen�
erate and display every feasible ordering� Instead� we
utilize an Animation Choreographer���� that provides
several useful� canonical orderings� based on the syn�
chronization events produced by the program under
study� In addition� the Choreographer allows the user
to interactively adjust these to produce any additional
orderings�

POLKA and the Animation Choreographer are
part of the PARADE �PARallel Animation Develop�
ment Environment� system for the visualization of
concurrent programs� A third component is an instru�
mentation or monitoring tool� The use of the instru�
mentation or monitoring tool� which varies between
architectures and languages� helps identify the event
records for a program�

Using POLKA� libraries of visualizations have been
developed � synchronization� history� and callgraph
views for Pthreads programs on the KSR�as shown
in Figures � and 	�� 
�D visualizations of communi�
cation on the MasPar� algorithmic and performance
views of branch and bound algorithms in the iPSC
hypercube� as well as a number of application�speci�c
visualizations� Using PARADE� programmers may se�
lect visualizations from libraries such as these� or they
may create their own new visualizations�

The Animation Choreographer allows the analyst
to view program visualizations under a variety of or�
derings� As an example we will discuss a program
that performs a parallel quicksort on an array of nu�
meric values� The parallel execution follows a fork�join
paradigm� implementing a tree�structured algorithm�
That is� the computation begins with a single proces�
sor that reads in the data values to be sorted� and then
makes a pass over the data in which it determines a
median value and places all elements with values less
than or equal to the median value on one side of the
array� and all values greater than the median value
on the other side of the array� It then forks o� two
child processes and waits for them to �nish their work
and join back to it� the parent process� Each of the
child processes does the same thing to its portion of
the array and forks o� child processes of its own� This
continues recursively�

The analyst attempting to comprehend the pro�
gram might want to look at some of the same displays
that are helpful with serial programs such as depen�
dence graphs and animated call graphs� In addition�
he might like to see application�speci�c or domain�



speci�c �in this case� we�ll consider sorting as the do�
main� displays such as those shown in �gures 
� � and
� through ���

Figures 
 and � are an animated view of the array�
Each bar represents an element in the array �it could
also represent a group of elements�� The height of the
bar indicates the value of the element� and the hori�
zontal position indicates its index in the array� Color
is used to show the processor that last touched that
element� This use of color allows the viewer to easily
detect and follow the actions of a particular processor
across multiple displays� At the start of the visual�
ization� the bars are arranged to represent the initial�
unsorted array� As elements are swapped in the algo�
rithm the bars are shown changing places in the dis�
play� From this display the viewer can observe the or�
der in which elements are swapped� and see which pro�
cessors act on each portion of the array� giving clues
to the functioning of the underlying algorithm�

Figures � through �� are animated swap histories of
the parallel quicksort program� Again� horizontal po�
sition is used to indicate array index and color is used
to indicate the processor performing the swap� Each
time two elements are swapped� a horizontal line is
drawn between them� in the color associated with the
processor that performed the swap� Time runs upward
on the display� Thus� in a sequence of swaps� the most
recent swap is on top� The triangular patterns in the
display indicate that the algorithm works by compar�
ing the processor�s �rst and last elements in its portion
of the array� and then working in toward the middle
of the subarray� The analyst can also determine the
number of processors active at each stage �by count�
ing the number of triangles in a row�� and the depth
to which the algorithm recurses in this execution �by
counting the number of triangles in a column��

The order in which these swap events are dis�
played can greatly a�ect the appearance of the dis�
plays and the information that can be gained from
them� The Animation Choreographer provides four
orderings� Timestamp� Adjusted Timestamp� Serial�
ized� andMaximum Concurrency� The Choreographer
reads in event records �in this example� each swap of
array elements has an associated event record�� It then
displays an execution graph� an acyclic� directed graph
in which the nodes represent the recorded program
events� and the arcs indicate the temporal precedence
relations between these events� The events produced
by a particular process or thread are displayed in a
column� Arcs between these nodes indicate the se�
quential relationship between the events of a single
process� Arcs between columns are the result of syn�

chronization events such as forks� joins� or barrier syn�
chronizations�

Processors �or threads� etc�� are arranged from left
to right� Vertical position in the graph represents ex�
ecution time� with earlier times appearing above later
times� Shape and color of node objects can be used to
identify di�erent event types� The execution graph
re�ects the program events as they were recorded�
The user can examine the recorded events by scrolling
through the graph� and by clicking on nodes of inter�
est�

To begin viewing a program trace� the user selects
an ordering� An initial ordering choice might be a
timestamp ordering � the execution times are used to
order the events for visualization� Figure � shows the
appearance of the choreographer using events from
parallel quicksort and a timestamp ordering� This or�
dering is frequently very useful to a user wishing to
see the actual order of execution� when such informa�
tion is available� This method relies on the existence
of a global clock with adequate resolution� and will
produce an essentially sequential visualization under
these circumstances� Poor resolution� or timestamps
that are not valid across processors� however� may pro�
duce visualizations that are misleading or incorrect�

Figure � shows the �nal appearance of the array
view when timestamps are used to determine the or�
der of events� As you can see� this does not appear to
be a sorted array� In fact� there seem to be �holes�
in the array� An examination of event records reveals
that there are duplicate timestamps � the clock used
was not of adequate resolution� The overlapping event
symbols in the Choreographer display of �gure � are a
result of these duplicate timestamps� In a timestamp
ordered visualization� all events with the same times�
tamp are animated concurrently� In this case� swaps
that occurred sequentially are animated concurrently
because they received the same timestamp� If a given
element is involved in multiple swaps with the same
timestamp� its �nal location is not correct� and it may
seem to �disappear�� resulting in a misleading visual�
ization� Similarly� �gure � shows the �nal appearance
of the swap history view using a timestamp ordering�
There appear to be very few swaps� Again� this is
a misleading display resulting from inadequate clock
resolution�

Within timestamp ordering we have several choices
for scaling� We can use a ��� mapping from timestamp
units to animation frames� However� this can result in
an animation with long periods of inactivity� punctu�
ated by short bursts of activity too rapid for the viewer
to comprehend� Another option is to use an n�� map�



ping from timestamp units to animation frames� This
shortens the spans in which nothing happens� but in�
tensi�es the short bursts of activity� A third option is
to use the timestamps to order the events for visualiza�
tion� but to ignore them in determining the interevent
waiting time� This eliminates the long waits� and al�
lows the event activity to be visualized at a rate the
viewer can understand� However� in this type of scal�
ing we lose information about the relative timing of
the program events� Ideally� it would be desirable for
the mapping from execution time to animation time to
behave like a �fun�house mirror�� That is� we would
like to compress long inter�event times� and stretch
out periods of high activity� allowing viewers to dis�
criminate between individual events� but preserving a
perspective on the actual timing of events�

The choreographer display under an adjusted times�

tamp ordering� shown in Figure �� represents a com�
promise on these goals� In this ordering the times�
tamps are adjusted just enough so that causal ordering
is maintained �the displays are �correct��� but long in�
terevent times are una�ected� This ordering is useful
in obtaining a valid visualization without losing the
perspective on the true sporadic nature of the pro�
gram�s execution behavior� The use of this ordering
results in a �correct� �nal appearance of the array
display� in which the elements are truly sorted� and a
�correct� swap history view� in which no element is
swapped more than once in any time period�

Figure � shows the choreographer under a serial or�
dering� For a serial ordering� we construct a complete
ordering of events consistent with the partial order de�
termined by the dependence relations� This method
can produce valid� comprehensible visualizations in
the absence of globally synchronized timestamps with
adequate resolution� such as we have in this example�
The array view is again �correct�� The swap history
view appears as in �gure ��� If you look closely you
will see that no two swap lines have the same vertical
position� the visualization has been completely seri�
alized� We have gained a �correct� ordering� but we
have lost the concurrency in the display� In addition�
we have eliminated the long interevent times�

Finally� we may wish to use a maximum concur�

rency ordering� as illustrated by the Choreographer
display of Figure �� �For this particular set of events
and times� the maximum concurrency and adjusted
timestamp orderings are nearly identical � this is not
always the case�� In this ordering� we gather all events
that could have occurred together� and animate them
simultaneously� Essentially� this view shows the max�
imum concurrency possible given the partial order de�

�ned by the synchronization events� This ordering also
produces a correct array view� The �nal appearance of
the swap history view is shown in �gure ��� It is cor�
rect� but you will notice that unlike the serial ordering
of �gure �� there are multiple swaps on the same line�
That is� they are visualized here and in the array view
as concurrent actions� We get correctness and con�
currency without the long interevent times� In other
visualizations we have found this ordering type to be
useful for identifying bugs by illuminating concurrent
situations that were not imagined by the program�s
designer�

These various temporal perspectives can provide
the user with insight into the program�s execution�
with each di�erent ordering of the animation shedding
light on a di�erent aspect of the computation� The
Animation Choreographer allows users to view pro�
gram animations under the orderings described above�
and to specify variations on these orderings�

� Conclusions

Parallel and distributed programs present a number
of challenges to program comprehension� The added
complexity introduced by the multiple threads of con�
trol� the interactions between processes� the peculiar�
ities of the various parallel programming paradigms
and libraries and the tendency to optimize code for
a particular architecture exacerbate the problems of
program comprehension�

Visualization systems allow program attributes to
be represented by colors� shapes� sizes� locations� and
motion� rather than merely a text label and numeri�
cal data� When done well� visualization can improve
understanding� and make obvious details that would
have been obscure in a purely textual presentation�
We believe that computer visualization� the graphical
animation of the behavior and performance of comput�
ers and computer programs� can be an e�ective tool
for understanding how programs work�

POLKA is an animation toolkit designed to sup�
port concurrent animations� The Animation Chore�
ographer� which relies on POLKA� allows the viewer
to easily explore the set of alternate feasible orderings�
We believe that this ability to explore the set of pos�
sible event orders is essential to the comprehension of
parallel programs� We do not claim that visualization
will solve all the problems associated with the com�
plexity of parallel programs� However� we do believe
that visualization provides a rich means of communi�
cating that can lead to better understanding of how
large systems work�



Figure �� A snapshot of the animatedGthreads barrier
display� created by Alex Zhao using POLKA�

Figure 
� A snapshot of the array view of the parallel
quicksort program under a correct ordering�

Figure 	� A snapshot of the animated Gthreads mutex
display� created by Alex Zhao using POLKA�

Figure �� A snapshot of the array view of the parallel
quicksort program under the timestamp ordering�



Figure �� A portion of the execution graph produced
by the choreographer� The events are from a parallel
quicksort program� The ordering type is timestamp�

Figure �� A portion of the execution graph produced
by the choreographer� The events are from a paral�
lel quicksort program� The ordering type is adjusted
timestamp�

Figure �� A portion of the execution graph produced
by the choreographer� The events are from a parallel
quicksort program� The ordering type is serialized�

Figure �� A portion of the execution graph produced
by the choreographer� The events are from a parallel
quicksort program� The ordering type is maximum
concurrency�



Figure �� A snapshot of the swap history view of the
parallel quicksort program under the timestamp or�
dering�

Figure ��� A snapshot of the swap history view of the
parallel quicksort program under the serialized order�
ing�

Figure ��� A snapshot of the swap history view of
the parallel quicksort program under the maximum
concurrency ordering�

References

��� Ruven Brooks� Towards a theory of the compre�
hension of computer programs� International Jour�
nal of Man�Machine Studies� �����
����� ���
�

�	� Marc H� Brown� Exploring algorithms using Balsa�
II� Computer� 	��������
�� May �����

�
� Marc H� Brown� ZEUS� A system for algorithm
animation and multi�view editing� In Proceedings

of the IEEE ���� Workshop on Visual Languages�
pages ���� Kobe Japan� October �����

��� G� Canfora� A� Cimitile� and U� DeCarlini� Vaps�
Visual aids for pascal software comprehension� In
Proceedings of the Program Comprehension Work�

shop� pages �
���� ���	�

��� T� A� Corbi� Program understanding � Challenge
for the �����s� IBM Systems Journal� 	��	�� Febru�
ary �����

��� Janice E� Cuny� Alfred A� Hough� and Joydip
Kundu� Logical time in visualizations produced
by parallel programs� In Visualization ���� Boston�
MA� October ���	�

��� Jeanne Ferrante� Karl J� Ottenstein� and Joe D�
Warren� The program dependence graph and its



use in optimization� ACM Transactions on Pro�

gramming Languages and Systems� ��
�� July �����

��� M� Harrold and B� Malloy� A uni�ed interprocedu�
ral program representation for a maintenance envi�
ronment� In Proceedings of the Conference on Soft�

ware Maintenance� pages �
������ Sorrento� Italy�
October �����

��� David Kinloch and Malcolm Munro� A com�
bined representation for the maintenance of c pro�
grams� In Proceedings of the Program Comprehen�

sion Workshop� pages �����	�� ���
�

���� Eileen Kraemer and John T� Stasko� The visual�
ization of parallel systems� An overview� Journal
of Parallel and Distributed Computing� ���	������
���� June ���
�

���� Eileen Kraemer and John T� Stasko� Toward �ex�
ible control of the temporal mapping from con�
current program events to animations� Proceed�

ings Eighth International Parallel Processing Sym�

posium� pages ��	����� �����

��	� P�J� Layzell� R� Champion� and M�J� Freeman�
Docket� Program comprehension�in�the�large� In
Proceedings of the Program Comprehension Work�

shop� pages �������� ���
�

��
� Thomas J� LeBlanc� John M� Mellor�Crummey�
and Robert J� Fowler� Analyzing parallel program
execution using multiple views� Journal of Paral�
lel and Distributed Computing� ��	��	�
�	��� June
�����

���� Panagiotos Linos� Philippe Aubet� Laurent
Dumas� Yan Helleboid� Patricia Lejeune� and
Philippe Tulula� Facilitating the comprehension of
c programs� An experimental study� In Proceedings
of the Program Comprehension Workshop� pages
����
� ���
�

���� Panos E� Livadas and Scott D� Alden� A toolset
for program understanding� In Proceedings of the

Program Comprehension Workshop� pages ����
���� ���
�

���� David P� Olshefski� Position paper� Tools facili�
tating software comprehension� In Proceedings of

the Program Comprehension Workshop� pages 
	�

�� ���	�

���� Karl J� Ottenstein and Linda M� Ottenstein� The
program dependence graph in a software develop�
ment environment� SIGPLAN Notices� ����������
May �����

���� Cherri M� Pancake and Sue Utter� Models for
visualization in parallel debuggers� In Proceedings

of Supercomputing ���� pages �	���
�� Reno� NV�
November �����

���� Blaine A� Price� Ronald M� Baecker� and Ian S�
Small� A principled taxonomy of software visual�
ization� Journal of Visual Languages and Comput�

ing� ��
��	���	��� September ���
�

�	�� V� Rajlich� N� Damaskinos� P� Linos� and
W� Khorsid� Vifor� A tool for software mainte�
nance� Software � Practice and Experience� pages
������ January �����

�	�� Spencer Rugaber� Reverse engineering by simul�
taneous program analysis and domain synthesis� In
Proceedings of the Program Comprehension Work�

shop� pages ������ ���	�

�		� Oreste Signore and Mario Lo�redo� Charon� a
tool for code redocumentation and re�engineering�
In Proceedings of the Program Comprehension

Workshop� pages �������� ���
�

�	
� E� Soloway and K� Ehrlich� Empirical studies of
programming knowledgekk� IEEE Transactions on

Software Engineering� SE��������������� �����

�	�� John T� Stasko� TANGO� A framework and sys�
tem for algorithm animation� Computer� 	
����	��

�� September �����

�	�� John T� Stasko and Eileen Kraemer� A methodol�
ogy for building application�speci�c visualizations
of parallel programs� Journal of Parallel and Dis�

tributed Computing� ���	��	���	��� June ���
�

�	�� John T� Stasko and Charles Patterson� Under�
standing and characterizing software visualization
systems� In Proceedings of the IEEE ���� Work�

shop on Visual Languages� pages 
���� Seattle�
WA� September ���	�

�	�� Janice M� Stone� A graphical representation
of concurrent processes� SIGPLAN Notices�
	�����		��	
�� January ����� �Proceedings of the
Workshop on Parallel and Distributed Debugging�
Madison� WI� May ������

�	�� E� Tufte� The Visual Display of Quantitative In�

formation� Graphics Press� Cheshire� CT� ���
�

�	�� E� Tufte� Envisioning Information� Graphics
Press� Cheshire� CT� �����


