
1	
	

Managing	 Software	 Complexity	 and	 Variability	 in	 Coupled	
Climate	 Models	

Spencer	 Rugaber,	 Rocky	 Dunlap,	 Leo	 Mark,	 Sameer	 Ansari	
College	 of	 Computing,	 Georgia	 Institute	 of	 Technology	

Modern coupled climate modeling software is complex, supporting multiple modeling domains,
grids, numerical methods and interprocess communication mechanisms in scientifically rigorous
ways to predict future climate. However, this complexity hides a rich design space that scientists
can exploit to produce a wide variety of simulation systems. In this article, we describe the
complications that arise from such diversity and techniques that can be used to control it. In
particular, we describe a detailed feature analysis we have conducted of the climate modeling
technology design space and present two example applications that demonstrate how the
complexity can be controlled.

Coupled	 Climate	 Models	
Climate models are complex simulation programs used to predict future climate. In a climate
model, the Earth is partitioned into cells with various associated data items (fields), such as
temperature and wind speed. At every simulated time step, data from a given cell propagates to
neighboring cells in a way that conserves physical properties such as total energy. The partition is
called a grid, and it may be two or three dimensional, plus a temporal dimension. A variety of
different domains have been modeled, such as the Earth's atmosphere, ocean, land surface and
cryosphere.

It has been recognized for some time that integrating two or more models taken from different
domains can yield a more credible estimate of future climate than can a single model. When this
is done, the models are said to be coupled, and a coupler component is responsible for the
transfer of data across domain boundaries. Although simple in principle, couplers are complex
software components. Among their responsibilities are transferring field data, which may involve
data type and unit conversion, ensuring that conservation laws are upheld, coordinating different
time step lengths, interpolating data when different grid resolutions and topologies are used, and
supporting computations divided across multiple processors and address spaces.

Coupled climate models are variation-intensive software systems. The software must be flexible
enough to handle experimental variation—that is, to enable sensitivity analyses through
ensembles of related runs. The software may also provide the experimenter with a set of diverse
scientific components that allow the user to test the effects of different physical parameterizations
on climate. Additionally, variation at the architectural level allows software engineers to take
advantage of different parallel computing and memory configurations.

The software engineering community has developed analysis and implementation techniques for
dealing with variation-intensive software. Feature analysis is one such technique that we have
employed to better understand the climate-coupling problem. Our feature analysis has pointed
out many variations on the underlying theme of coupling. We have identified the main design
dimensions and determined how effectively existing technologies address the dimensions. We
first describe the dimensions and then give two examples of applications that our feature analysis

2	
	

enables: automatic generation of couplers and automatic configuration of coupled models on the
cloud. We conclude by discussing some of the issues that our analysis has raised, both for the
climate modeling community and for software engineers.

An	 Example	 Coupled	 Model	
The Community Earth System Model (CESM) is an example of a complex coupled climate model
[1]. It was developed at the National Center for Atmospheric Research (NCAR) to study climate
change and is a participant in an ambitious set of climate experiments to be featured in the Fifth
Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), scheduled
for release in 2013–14. It is designed to be configured in many different ways to support a wide
range of scientific requirements. However, specifying all possible parameters and configuration
options is laborious and time-consuming for users [2].
	
The CESM 1.0 distribution contains roughly 800 files consisting of over half a million lines of
code, 45,000 lines of configuration scripts, and multi-gigabyte input datasets. The models
directory contains 22 different components (single-domain models), including atmosphere, land,
sea-ice, ocean and a coupler that defines boundary layer interactions between the components,
all written primarily in Fortran 90.

The advantage of a coupled model framework like CESM is that it allows the simulation software
to be divided into components that can be modified or replaced individually. Taking into account
only supported component sets and grids, there are 1,132 different total configurations possible,
and this does not include modification of configuration files, which have a large range of possible
values, placing the possible number of different configurations in the hundreds of thousands. As
CESM continues to grow, it is increasingly important to not only understand how a configuration is
created, but also what are the relationships and constraints introduced by its feature.	

Understanding	 Coupling	 Complexity	 with	 Feature	 Analysis	
To better understand the nature of coupling in climate models, we have applied a software
engineering technique called feature analysis. Feature analysis was developed to support
software product-line engineering, in which a set of related software products is characterized in
terms of their mandatory and optional features [3]. One product of feature analysis is a set of
feature diagrams.

We applied feature analysis to determine the software engineering aspects of six technologies
that have been developed to support coupling of climate models. Overall, the feature model we
produced comprises eleven diagrams and 200 total features [4]. It paints a picture of a design
space rich in ways to elaborate on the basic theme of coupling. Before giving an example of a
resulting feature diagram, we first describe the technologies that we studied, which range from
traditional support libraries, through comprehensive frameworks to an automated coupler
generator.

Typed Data Transfer (TDT) [5] is a lightweight communication layer that abstracts several
communication mechanisms into a single application programming interface (API). XML
configuration files describe the mechanisms and the data types to be transferred. Calls to simple
read and write routines are inserted where data is required or produced, respectively. Changing
the underlying mechanism requires no changes to the code itself, only to the configuration file.

3	
	

Model Coupling Toolkit (MCT) is a toolbox for building couplers, including a module for
describing domain decomposition, a random-access storage type for field data, communication
schedulers for parallel repartitioning of distributed arrays, grid-to-grid interpolation routines, a
physical-space representation for storing grid point details, a utility for spatial integration,
accumulators for temporal summation and averaging, and a merge facility for combining multiple
data sources [6].

The Earth System Modeling Framework (ESMF) is a coupling framework that supports
constructing coupled models from components [7]. ESMF provides a set of technical services
(infrastructure) and abstract component interfaces (superstructure). A large number of technical
services are provided by ESMF including domain decomposition, repartitioning, interpolation,
scatter/gather of field data, intermodel time coordination, support for different calendars, tools for
configuration management, and the ability to output field-level metadata.

The Flexible Modeling System (FMS) [8] is another component-based coupling framework
offering both an infrastructure layer of common technical services and an superstructure layer for
defining top level structures in the coupled model. The technical services provided by FMS
include I/O, exception handling, and functions for interpolation and repartitioning of field data in
parallel. Whereas ESMF defines generic component interfaces, FMS provides domain-specific
scientific interfaces for a pre-determined set of components (atmosphere, ocean, ocean
surface/sea ice, and land surface models). The scientific interfaces are defined both in terms of a
set of control subroutines and specific data structures for holding fields exchanged between
models.

OASIS/PSMILe is a complete implementation of a transformation and interpolation engine and
associated driver [9]. The Driver–Transformer (coupler) and constituent models remain as
separate executables during a model run. Communication with the coupler is accomplished by
inserting API calls and linking the PSMILe library to each constituent model. The configuration of
the coupled application is described in XML files including, for each constituent model, a
description of the source and target of input or output fields, the exchange frequency, and the
transformations that should be applied.

The Bespoke Framework Generator (BFG) [10] is designed to enable flexibility in configuring
and deploying instances of coupled models. It is a framework generator because it produces
customized packaging and control code based on user-supplied metadata [11]. The framework
code generated by BFG2 invokes component models and enables them to communicate. A
design constraint for BFG2 is the desire to leave component models completely unchanged
thereby precluding re-architecting of model code to match predefined interfaces, inserting calls to
specialized functions for sending or receiving data, or even adding annotations at potential
communication points in model code. The user provides configuration metadata to the BFG2
code generator using XML files. Unlike the other coupling technologies analyzed except TDT,
BFG2 does not have knowledge of the numerical properties of the constituent models other than
the number and size of array dimensions and does not support utility functions such as
repartitioning or interpolation natively.

An	 Example	 Feature	
Figure 1 is one of these diagrams produced by our feature analysis, describing a feature called
Driving. In the figure, nodes, corresponding to features, are connected with directed edges, and
edges have decorations that define the semantic relationship between parent and child nodes.

4	
	

Some features are mandatory (denoted by an edge ending with a filled circle), and others are
optional (denoted by an edge ending with an open circle). If the edges connecting a set of feature
nodes to their parent are connected with an arc, then those features are alternatives, requiring
exactly one to be selected. If the arc is filled in, one or more may be chosen. Finally, features can
be connected (non-hierarchically) by a labeled dashed lines, indicating an interfeature constraint.

The Driving feature has to do with how the coupled models are coordinated and how they are
stepped forward in time. In the figure, the Startup Extent subfeature shows that in some cases the
user is responsible for starting not only the driver but also the constituent models while, in others,
the driver takes on the responsibility of starting the constituent models. Note that there is a
requires constraint between the Startup Extent/Just Driver and Location of Driving Code/Driver
subfeatures because the driving code must appear in a separate Driver if the Just Driver
subfeature is selected.

	

Figure 1 Driving Feature

Our feature analysis provides a scaffold against which the complexity of coupled climate models
can be understood. Importantly, it indicates how the multifarious responsibilities of such models
can be architecturally realized in a variety of ways, for example with either centralized (OASIS) or
architecturally distributed couplers (ESMF), with model code invoking support technology (TDT,
MCT, OASIS) or being invoked by it (ESMF, FMS, BFG), and with the technology providing
explicit intermodel time coordination mechanisms (OASIS, ESMF, FMS, BFG) or leaving this task

5	
	

to the user (TDT, MCT). This understanding can be in exploited in a variety of ways, two of which
we illustrate in the next section.

Applications	 of	 Feature	 Analysis	
The feature analyses we performed taught us a great deal about configuration of climate models
and variations in the design of couplers. We now illustrate how this knowledge might be used by
discussing two prototype applications: a coupler generator and an automated configurator of
coupled climate models on the cloud.

Automatic	 Generation	 of	 Couplers	
One way to deal with complex software is to automatically generate part of it from a high-level,
declarative description. Generation not only reduces the amount of source code that has to be
written, but also more closely expresses user-selectable variation in terms understandable by the
user. Feature analysis supports this approach by enabling users to express their choice of
features in the form of a product configuration that is, in turn, used to automatically generate the
desired product. We have made use of our analysis of coupling technologies to build a prototype
ESMF coupler generator, called Cupid. Figure 2 portrays its conceptual architecture.

Figure 2 Cupid Architecture

Cupid includes a set of Java classes called the ESMF Conceptual Model (ECM) that represent
ESMF API elements. Instances of the ECM represent particular coupling configurations, selected
from the many options determined by our feature analysis, which serve as input to the coupler
and driver code generators. The generators do not output source code directly; rather, they

6	
	

produce an intermediate form called the Java Fortran Object Model (JFOM). JFOM instances are
then translated into textual Fortran source code using a string template library.

The code generated by Cupid successfully reproduces the coupler and driver code in two system
tests that ship with the latest distribution of ESMF. The code can be compiled with the system
tests and works the same as when using the original, hand-written couplers and drivers. The
Cupid proof of concept shows the feasibility of generating coupling code that targets one specific
coupling technology—ESMF. Currently, the generated couplers deal with a small number of
coupling fields and the coupled models are stubs, not implementing any real science. The system
must be expanded to target the more complex models in operation today.

Configuration	 of	 CESM	 for	 the	 Cloud	

We have made use of our feature analysis in a second way—for configuring and executing
machine images for coupled model runs on a cloud-computing platform. Cloud computing
provides an alternative to the currently dominant practice of running climate simulations on
dedicated super computers. Running simulation experiments on the cloud increases accessibility
and flexibility with only acceptable reductions in performance [12].

In order to take advantage of the cloud, two sources of complexity must be overcome: configuring
the simulation and managing execution. As the description of CESM given above indicates, a
scientist has to choose from the many component models and grids in such a way that no
scientific or technical constraints are violated. Managing execution is also complex, requiring
selection of suitably powerful machine resources, creation of machine images for them,
populating the images with the required software, building any artifacts that are not already part of
the images, deploying the resulting images, downloading the necessary input data, and, finally,
initiating model execution.

We have built a prototype tool called the CESM Cloud Configurator (C3) whose goal is to simplify
CESM configuration and execution management by providing an abstracted interface oriented
towards scientists instead of software engineers. We translated our feature model into an OWL1
ontology (a standard knowledge representation language) using Protégé2, an ontology-editing
tool. Using an OWL ontology provides a framework for automated reasoning tools to infer
relationships between features, such as when a configuration is invalid or when two feature
choices are mutually exclusive. From this, the user can choose a subset of options and the rest
will be inferred from the ontology. The Protégé also supports logical subsumption, that is, it knows
when one set of configuration choices is a superset of another. This feature avoids duplicate
effort, such as when an existing saved machine image can be adapted more easily than a new
machine image can be generated. The resulting choices are saved into an XML file.
	
The current version of C3 is able to instantiate a skeleton machine image containing CESM. C3
reads in the saved XML specification file, configures a cloud instance, and starts the simulation. A
management window is also provided, permitting the user to interact with the instance remotely.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 http://www.w3.org/TR/owl2-overview/

2	 http://protege.stanford.edu/overview/

7	
	

Looking	 Ahead:	 Systematic	 Variation	 in	 Climate	 Models	
Our two example applications illustrate how a systematic understanding of the design space of
couplers can be used to advantage. However, the space of possible coupled climate models is
large and assembling one that is both scientifically meaningful and efficient, is difficult. To support
the process of assembling individual components into fully coupled climate models, a variety of
issues remain to be addressed.

Improvements should be made in how software variability is implemented in climate models. We
have already seen how state-of-the-art climate models require scientific, numerical, and
architectural variability. However, for reasons of expediency and the need to retain backward
compatibility with legacy codes, these variation points are often implemented in an ad hoc
manner, resulting in highly complex code with many interdependencies. This further hinders the
ability of model developers to fully understand an entire climate model codebase—which,
according to Randall, is an arguably impossible task for a single individual [13]. Further, code
complexity can be a significant barrier to verification and validation of climate models. Ultimately,
we seek more intentional climate models—that is, software that is a more direct encoding of what
model developers intend [14]. A potential solution is to improve the modularity of existing codes
by organizing it around features. Organizing a program into well-designed modules can promote
intentionality when the modules have a clear correspondence with domain-level concepts.
	
Although modularity in software systems is linked to a number of advantages, there are
performance costs involved with modular designs due to potential efficiency loses at module
interfaces. The antagonistic relationship between modularity and performance has been
recognized as a general principle in many kinds of engineering systems. For example, the
findings of Holtta et al. suggest that integrated, tightly coupled architectures are more likely to
favor increased technical performance than loosely coupled, modular architectures [15]. On the
other hand, modular architectures offer better support for other qualities, such as flexibility,
interoperability, robustness, and the ability to distribute work among members of a software team.
Striking a balance between modularity and performance in climate models requires careful
consideration of the tradeoffs involved.

	
Coupled climate models are complex, but that complexity can be controlled if a systematic
characterization of their variability, such as that provided by a feature model, is available.
Moreover, such a characterization can be leveraged in a variety of ways such as in support of
automatic generation of couplers and configuration of execution images. Most importantly,
managed control of this complexity is essential to support future scientific advances, in which
more models are added and model interdependencies increase.

Acknowledgements
This work is supported by grants from the National Science Foundation: the Earth System
Curator project (#0513635) project and a NSF Graduate Research Fellowship (#0513762).
Special thanks to those who provided personal correspondence regarding coupling technologies
including Sophie Valcke, V. Balaji, Tony Craig, Mariana Vertenstein, Rob Jacob, Jay Larson,
Cecelia DeLuca, Bob Oehmke, Ryan O'Kuinghttons, Rupert Ford, Graham Riley, and Rene
Redler.

8	
	

References	
[1] M. Vertenstein, T. Craig, A. Middleton, D. Feddema, and C. Fischer. CCSM 4.0 User's
Guide. 2010, http://www.cesm.ucar.edu/models/ccsm4.0/ccsm_doc/book1.html.

[2] S. M. Easterbrook and T. Johns. "Engineering the Software for Understanding Climate
Change". IEEE Computing in Science and Engineering, 11(6):65-74, 2009.

[3] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools, and
Applications: Addison-Wesley, 2000.

[4] R. Dunlap, S. Rugaber, and L. Mark. "A Feature Model of Coupling Technologies for
Earth System Models." Georgia Institute of Technology, GT-10-18, 2010.

[5] C. Linstead. Typed Data Transfer (TDT) User's Guide. Potsdam Institute for Climate
Impact Research, 2004, p. 21.

[6] J. Larson, R. Jacob, and E. Ong, "The Model Coupling Toolkit: A New Fortran 90 Toolkit
for Building Multiphysics Parallel Coupled Models," International Journal for High Performance
Computing Applications. 19:277-292, 2005.

[7] V. Balaji, B. Boville, S. Cheung, N. Collins, T. Craig, C. Cruz, A. d. Silva, C. DeLuca, R. d.
Fainchtein, B. Eaton, B. Hallberg, T. Henderson, C. Hill, M. Iredell, R. Jacob, P. Jones, E. Kluzek,
B. Kauffman, J. Larson, P. Li, F. Liu, J. Michalakes, S. Murphy, D. Neckels, R. O. Kuinghttons, B.
Oehmke, C. Panaccione, J. Rosinski, W. Sawyer, E. Schwab, S. Smithline, W. Spector, D. Stark,
M. Suarez, S. Swift, G. Theurich, A. Trayanov, S. Vasquez, J. Wolfe, W. Yang, M. Young, and L.
Zaslavsky. "ESMF User Guide Version 3.1." 2009.

[8] V. Balaji. "Flexible Modeling System." The FMS Manual: A Developer's Guide to the
GFDL Flexible Modeling System. Princeton, NJ, 2002.

[9] R. Redler, S. Valcke, and H. Ritzdorf. "OASIS4—A Coupling Software for Next
Generation Earth System Modeling." Geoscientific Model Development, 3:87-104, 2010.

[10] C. W. Armstrong, R. W. Ford, and G. D. Riley. "Coupling Integrated Earth System Model
Components with BFG2." Concurrency and Computation: Practice and Experience, 21:767-791,
2009.

[11] B. Clifford, I. Foster, J.-S. Voeckler, M. Wilde, and Y. Zhao. "Tracking Provenance in a
Virtual Data Grid." Concurrency and Computation: Practice and Experience, 20:565-575, 2008.

[12] C. Evangelinos and C. N. Hill. "Cloud Computing for Parallel Scientific HPC Applications:
Feasibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon's EC2." Cloud
Computing and Its Applications, 2008.

[13] D. Randall. "The Evolution of Complexity in General Circulation Models." The
Development of Atmospheric General Circulation Models. L. Donner, et al., eds., Cambridge
University Press, 2011, p. 272.

9	
	

[14] C. Simonyi, M. Christerson, and S. Clifford. "Intentional Software." Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA '06). Portland, Oregon, 2006.

[15] K. Holtta, E. S. Suh, and O. de Weck. "Trade-off Between Modularity and Performance
for Engineered Systems and Products." International Conference on Engineering Design,
Melbourne, 2005.
	
	
	
	
	
	
	

10	
	

Sidebar	 -‐	 Acronym	 List	
API - Application Programming Interface
AR5 - Fifth Assessment Report from the Intergovernmental Panel on Climate Change
BFG - Bespoke Framework Generator
CESM - Community Earth System Model
CAM - Community Atmosphere Model
C3 - CESM Cloud Configurator
ECM - ESMF Conceptual Model
ESMF - Earth System Modeling Framework
FMS - Flexible Modeling System
IPCC - Intergovernmental Panel on Climate Change
JFOM - Java Fortran Object Model
MCT - Model Coupling Toolkit
MPI - Message Passing Interface
NCAR - National Center for Atmospheric Research
OASIS/PSMILe - Ocean Atmosphere Sea Ice Soil Coupler with PRISM System
Model Interface Library
OWL - Web Ontology Language
TDT - Typed Data Transfer
XML - Extensible Marking Language

