
Abstract1

We present in this paper the lessons and insights
learned from of a domain-centered reengineering effort.
Using a method we developed in a previous work, we set
about to understand and transition a complete legacy sys-
tem from COBOL to an executable domain model. Our
work suggests that a domain-based approach is very
promising but a number of issues remain to be better
understood. Among these are questions about domain
completeness, scoping, interleaving and evolution; con-
cept matching at the granularity of both the programs’
architecture and the details of the source-code; thorough-
ness and representation of the legacy programs coverage,
as well as the problems inherent to the transition of a
multi-programs system. We discuss these issues in details
using examples. Implications on future work in the area
are suggested.

Keywords: Program reengineering, domain analysis,
domain interleaving, reverse engineering, program evolu-
tion, program understanding, software architecture,
object-oriented frameworks.

1. Introduction

1.1. The Problem

It has been argued that a fundamental problem in soft-
ware reengineering is to understand the purpose of a pro-
gram, i.e., what a program does. After all, the very raison
d’etre of a program is to model or approximate some
aspects of the real world via structural and computational
means. This is a hard task that require domain knowledge.

1. This work was performed while the author was at the
Georgia Institute of Technology in Atlanta, GA, USA.

Application domain modeling provides key concepts
to facilitate program context, or purpose, comprehension
[6] [12]. We have used this principle to introduce and
experiment with a domain-based reengineering technique
[7]. The use of this method has been rewarding. The
domain knowledge and its representation enabled an accu-
rate, efficient and rapid understanding and recording of a
program’s purpose. Yet, a number of issues became
apparent while we were performing this work.

The most fundamental issue one faces when using a
domain model to perform reengineering activities con-
cerns the nature of a domain: As a principle, the scope of a
domain model is arbitrary. More importantly, a domain
may be interleaved with other domains either within some
of its constituents or within a program. At the same time,
the model must also remain flexible enough to meet evolu-
tion requirements. These points are in fact symptoms of
the subjectivity principle [11] [20]. This principle holds
that for most types of modeling activities, no single model
can truly and adequately describe the objects and relation-
ships involved. These are bound to vary among different
applications. This principle has a direct consequence
when using a domain model to help reengineer systems:
In essence, there is simply no hope of capturing, and there-
fore using, the domain model across systems. We must
make do with a domain approximation. This entails a
strong need for adaptation ease: the model must be flexi-
ble.

Another problem arises from the difficulty of match-
ing domain concepts at the granularity of either the archi-
tecture or the details of the source code and recording the
results. This involves marking the legacy code with the
matching attributes of domain representation schemas
(templates). The difficulty in doing this stems from the
delocalization of the source-code corresponding to the
domain templates. On a larger problem scale, the source-
code in the programs of a system must be thoroughly

Lessons from a Domain-Based Reengineering Effort

Jean-Marc DeBaud
Fraunhofer Institute for Experimental Software Engineering

Sauerwiesen 6
D-67661 Kaiserslautern, Germany

debaud@iese.fhg.de

This paper is to appear a the Third Working Con-
ference on Reverse Engineering (WCRE-3) held
in conjunction with ICSM-96 in Monterey, Cal-
ifornia, November 1996. Copyrighted IEEE.

matched and transitioned for a reengineering effort to be
successful. This compounds the difficulty.

It also became apparent, as one would expect, that
reengineering a complete system gave rise to more prob-
lems than reengineering individual programs. We found
there a need to evolve the domain model according to
application specific criteria and to handle the flow of oper-
ations (we did not attempt to solve the later problem).

In contrast, how a program operationalizes its purpose
is more a syntactic matter; one that concerns structure and
control flow. In this realm, good progress has been made
by analyzing programs according to the lexical, syntactical
and semantic rules for legal source-code constructs. Tools
such as Reasoning systems’ Software Refinery [21] allevi-
ate most practical problems in discovering a program
structure and control flow.

1.2. Advantages of a Domain Based Approach

A domain is a problem area. Typically, many appli-
cations programs exist to solve the problem in a single
domain. Arango and Prieto-Diaz [1] give the following
prerequisites for the presence of a domain: the existence of
comprehensive relationships among objects in the domain,
a community interested in solutions to the problems in the
domain, a recognition that software solutions are appropri-
ate to the problems in the domain, and a store of knowl-
edge or collected wisdom to address the problems in the
domain.

According to Neighbors [18], domain analysis "is an
attempt to identify the objects, operators, and relationships
between what experts perceive to be important about the
domain." As such, it bears a close resemblance to tradi-
tional systems analysis, but at the level of a collection of
problems rather than a single one. Domain engineering/
modeling/analysis is an emerging research area in soft-
ware engineering. It is primarily concerned with under-
standing domains to support initial software development
and reuse, but its artifacts and approaches will prove use-
ful in support of reverse engineering as well.

In order for domain analysis to be useful for software
development, reuse, or reverse engineering, the results of
the analysis must be captured and expressed, preferably, in
a systematic fashion, hence the need for a representation
method [2]. Among the aspects that might be included in
such a representation are domain objects and their defini-
tions, including both real world objects and concepts;
solution strategies/plans/architectures; and a description of
the boundary and other limits to the domain. An unre-
solved issue, of importance both to software developers
and reverse engineers, is the exact form of the representa-

tion and the extent of its formality.

What role might a domain description play in reverse
engineering a program? In general, a domain description
can give the reverse engineer a set of expected constructs
to look for in the code. These might be computer repre-
sentations of real world objects or algorithms or overall
architectural schemes. Because a domain is broader than
any single problem in it, there may be expectations engen-
dered by the domain representation that are not found in a
specific program. Because a program is not always accu-
rate or up-to-date, there may be things missing or incor-
rectly expressed in the program, despite contraindications
in the domain representation. And, because a program is
often used for more than one purpose, it may include com-
ponents that do not appear at all in the domain representa-
tion.

Nevertheless, a domain representation can establish
expectations to be confirmed in a program. Furthermore,
the objects in the domain representation are related to each
other and organized in prototypical ways that may like-
wise be recognized in the program. Hence, a domain rep-
resentation can act as a schema for controlling the reverse
engineering process and a template for organizing its
results.

1.3. Research Context

The software system that we analyzed for this
research is the Installation Material Condition Status
reporting System (IMCSRS) [3]. This standard U.S.
Army management information system consists of approx-
imately 10,000 lines of COBOL code, broken into 15 pro-
grams. IMCSRS is responsible for using input
transactions to update a master file and then to produce a
variety of reports describing the status of Army materiel.

The domain that we have chosen to use is Report-
Writing. This is a mature, well-understood domain that
has been successfully modeled by database management
system vendors in the form of report-writing tools. By
report writing we mean that a program's responsibility is
to generate an output report whose contents represent and/
or summarize data taken from one or more input files.

1.4. Related Work

DRACO [18] is the seminal work on domain engi-
neering applied to the context of software engineering.
This work has been followed by a number of research
endeavors, among these are [14], [15], [16], [23], as well
as surveys of the field [1], [2].

Harris et al. [10] take an application domain indepen-
dent but architecture centric approach to program under-

standing. In effect, architectural plans are constructed to
statically match a program architecture and attempts to
classify the recovered artifact with a taxonomy of architec-
ture types. Ning et al. [19] also use a similar concept to
construct and classify generic design clichés from abstract
syntax trees (AST) that are then used as patterns to under-
stand programs. This work is also application domain
independent. Our work follows a somewhat similar idea
to Ning et al. but we are using a well defined domain
model to help guide the program understanding step.

Hildreth [12] proposes to use the existence of an ad-
hoc domain model, i.e., non-formal, to help recover pro-
gram requirements. In successfully recovering TCAS
requirements from specification, Hildreth exposed the
power of domain-centered reverse engineering for require-
ments recovery.

This paper is organized as follows. Section 2 presents
a quick overview of the domain-centered reengineering
method we have used in this work. Section 3 describe the
application of the method with a strong emphasis on the
program understanding side. Section 4 presents the analy-
sis and issues for future work. Section 5 concludes.

2. A Domain-Based Reengineering
Method

There are two phases in software artifact reengineer-

ing. In the first phase, the reengineering of a software arti-
fact entails the comprehension of what it does and how it
does it. This phase traditionally corresponds to reverse
engineering. In the second phase, the artifact is evolved
using both the information gained in the first phase and
new requirements. Because of the complexity of each of
the above phases, system reengineering is a difficult task.

The gist of our reengineering method consists of the
construction of an executable, domain-specific reuse infra-
structure and its use to drive, record and evolve software
artifacts. The main steps of the method are shown in Fig-
ure 1. First, an application domain must be chosen. Sec-
ond, a domain analysis is performed upon that realm and a
domain model is created as an aggregation of domain con-
cepts and relationships. Domain templates are created at
this stage for the purpose of program understanding and
are language dependent. Third, the domain model is
expressed in executable form. The particular technology
we use is object-oriented frameworks [13]. At that stage,
what is indeed a domain-specific reuse infrastructure is in
place. Fourth, the application domain model is used to
guide artifact comprehension, i.e., the reverse engineering.
By a process of instantiating the object-oriented frame-
work, the results of the artifact comprehension are
recorded. This process in fact amounts to specializing the
reuse infrastructure according to the recovered artifact
specifications. At the end of the artifact understanding
process, its functionality is replicated by the framework.

Executable
Domain
Models
(OOFs)

Domain
Models

The World
(Application

Realms)

Domain Analysis

Domain Model Operationalization

System
Re-Engineered

Legacy System
Requirements

D
o
m

a
in

 E
n
g
in

e
e
ri
n
g

Legacy
Systems

Syntactic Analysis

Contextual
Analysis

Instantiated
Components

L
e
g
a
cy S

yste
m

s R
e
-E

n
g
in

e
e
rin

g

Figure 1: Using Domain Models for Software re-Engineering
Figure 1: Using Domain Model for Software Reengineering

Now, as the fifth and last step, the evolution of the artifact
can begin. This is done by augmenting and/or modifying
the previous set of instantiations.

While the process of domain analysis and framework
construction is difficult and time consuming, we found our
efforts rewarded in many respects. First, we experienced a
substantial improvement in the time it took us to compre-
hend existing programs. We estimate, conservatively, to
have speeded the understanding step by a factor of two.
Second, recording the artifact specifications generated
from the comprehension process was vastly simplified by
simply having to instantiate and parametrize the frame-
work. Third, artifact evolution was also greatly simplified
because that process meant evolving the artifact specifica-
tion as opposed to the source-code. Our experience shows
that complex artifact evolution became a matter of minutes
for someone familiar with the domain [7].

3. The Reengineering Experiment

To provide a context to the experiment, we first
describe in some details the domain model that we used in
our attempt to understand the system. Once this is done,
we describe the experiment and its results.

3.1. The Report-Writing Domain Model Repre-
sentation

Figure 2 presents a structural (surface) view of the
Report domain-specific software architecture (DSSA)
[24]. There are two main types of reports. A report is
either a Record_report or a Matrix_Report. It also con-
sists of other components such as ReportTitlePage whose
main purpose is for general presentation and of
Report_init, an initialization component. We concentrate
here on Record_report for the sake of simplicity.

A Record_report is constructed from the sequential
output of Pascal-like records or SQL-like rows taken from
a master file. The selection of the records can be con-
strained according to different criteria. A report can also
be partitioned and summaries can be accumulated over
these partitions or over the entire report. In addition, text
chunks can be added and parametrized to add diverse
information to enhance report readability. Examples of
such additions are report headers and footers. A group is a
conceptual segmentation of a report where the unit of
computation concerns one main input file over which a
pivot is defined. A pivot is an artifact that partitions a
sequence of records originating from an input file accord-
ing to constrains defined upon the values of a set of data
fields. Each group has a at least one pivot structure.

As we mentioned earlier, the principal benefit of a
domain model for reengineering is the set of expectations
it generates. These expectations can then be used to
design templates for matching the domain concepts to the
legacy system source-code. A partial catalogue of these
templates for the Report model is showed in Table 1
below.

Templates are read sequentially from top to bottom --
though extraneous code may appear in between the tem-
plate segments (sub-templates). They are algorithmic by
nature. To explain what a domain template is and how one
would use it, we take a closer look at the pivot template.
This template represents the main mechanism to get and
process the master file rows obtained from a repository. It
is an architectural template.

The first statement indicates that, as a pre-condition to
using the template, the master file should be sorted. In the
first step, the statements associated with opening the mas-
ter file must be found. So must the statements for reading
the master file and the test for the end of file. In the course

Report-Writing
DSSA

ReportHeader
Component

<Report_Type>
Component

ReportFooter
Component

ReportTrailerPage
Component

ReportTitlePage
Component

ReportTrailerPage
Component

Record_Report

Matrix_Report

Pivot Structure

Pivot Structure

Group 1
Type: Matrix

Group 2
Type: Matrix

Group 1
Type: Pivot

Group n
Type: Pivot

Figure 2: Structural View and Components of the Report DSSA.

:

Legend:
Is-a

Has-a

of the search, multiple candidate set of statements may be
found. The correct one may only be (and is often only)
certifiably found in conjunction with the identification of
others. For instance, it is often the case that multiple files
could serve as the master file. Yet it is only when a loop
structure enumerating the records of a particular file is
found that a high degree of confidence can be ascertained
that this file is the master file. A certitude is acquired only
when the file records are actually recurrently used for
report purposes (row output or summary calculation).

The process goes on in a similar fashion until the rest
of the template is found to match relevant source-code
statements.

The domain concepts can be found to overlap and
complement one another. This is the case in the Report
domain. For example, the concept of pivot uses both the
domain concepts of summary and of output_action in the
<process_row> and <process_summary> sub-template.
Hence, domain templates can overlap, and therefore, some
source-code can be a used to match multiple templates.

One benefit of using a domain model for reengineer-

ing is the leverage given by the existence of an architec-
tural view in the overall understanding of a program.
Once the main program structure has been identified, and
assuming it matches one formulated by the model, the
remaining work closely relates to one of filling the blanks.
The pivot template exemplify this observation.

To complete the process, the Report domain model is
transitioned to an executable form using the object-ori-
ented framework technique. This technique is highly suit-
able because of its customization properties and
advantages; and this is especially true when one uses path
expressions to document the framework dynamic struc-
tures [4], [5]. Domain templates serves as the translation
mechanism to the framework.

3.2. The Experiment

The experiment was performed upon the IMCSRS
system which we described succinctly in section 1.3. Each
of the 15 programs that compose it were examined and
their source-code matched against the domain templates.

The results are presented in table 2. As expected, the

Domain Concept Description High Level Template

Pivot The role of the pivot is to control the
segmentation of the flow of records
according to potentially multiple keys
and to constraints on their values.

Pre-condition: Stream of records in master file is sorted
<open_masterfile>
<read_masterfile>
<EOF_?>

yes <at_least_one_row_processed_?>
yes <process_summaries> <end>

<set_end_presentation>
no <end>

no <new_pivot_?>
no <process_row>

<process_summaries>
<goto_read_masterfile>

yes <first_time_?>
yes <set_summaries_default>

<set_begin_presentation>
<goto_read_masterfile>

no <set_presentation>
<process_summary>
<set_summaries_default>
<goto_read_masterfile>

Summary The role of a summary is to accumu-
late data information over a number
of records.

Pre-condition: None
<variable_is_declared>
<variable_is_set_to_default>
<variable_is_set_a_record_related_value> ;even indirectly
<variable_is_send_to_output_stream>

Output_action The role of Output_action is to sig-
nify to an artifact that a variable (or a
set of these) is ready for the output
stream. That concept also covers the
buffer variables used for that effect.

Pre-condition: Master file is open and read at least once.
<variable_set_definition>
<variable_set_affectation>
<output_action of variable set>

Table 1: Sample Domain Templates for a Record Report.

system was not only about elements of the Report domain.
Hence, the system’s source-code could not be entirely
matched to Report templates. Nonetheless, we found the
coverage rather significant because the domain model did
not cover the specifics of the system’s task (which was
again to update and report about equipment readiness sta-
tus). Using a weighted average, the sum of, the number of
source-code lines * the percentage recovered; and divided
by the total number of lines in the system, we arrived at
the figure of 71.5 percent of the system recovered by using
the Report domain model (we stress again that this is an
approximation). This shows that a high percentage of the
system’s code was spent for the report’s logic and not for
equipment readiness status. We believe that an equipment
readiness domain model would have enabled us to match
most of the remaining system source-code with corre-
sponding domain concepts.

For each program, the percentage of recovered
source-code is an approximation that was computed as fol-
lows. The code was scanned, in the context of this experi-
ment, by a domain expert. First, we sought to match an
architecture template to the source-code. Then, using a

tentative architecture match, the adjacent or related
domain concepts were used for relevant source-code
matching. When the source-code matched a domain tem-
plate, one was attributed to the corresponding set of
instructions. At the end, we had a set of domain concept
matches and the source-code lines that embodied these
were added together. By dividing this total by the total
number of lines in the program, a good approximation of
the percentage recovered was obtained. Of course, one
source-code intruction used by different domain concepts
would be counted only once. This situation occurs when
source-code intructions interleave concepts.

In terms of time, reminding us that this effort was
hand driven, we estimate that it took us about one hour for
every 150 lines of source-code. This is an average. As we
progressed, the common style used throughout the system
as well as the experience we acquired one program after
another made us more efficient in performing the program
understanding.

Program Name LOC Number
Approximation
of % Recovered

General Comments

s.p01agu 1177 72% Purpose: Creates and/or updates the UIC master file.
Reeng.: Three ‘reports’, reporting used to create/check/validate the data.

s.p02agu 1153 79% P.: Replaces or updates the ECC/LIN master.
Re.: Same as above. Complex summary/update operations

s.p03agu 494 71% P.: Modify principal master file to accommodate P and Q cards.
Re.: Complex logic of row modifications.

s.p05agu 1000 86% P.: Creates the 2406 valid transaction master level file.
Re.: Complex logic and details.

s.p06agu 751 0% P.: Matches the edited 2406 file to the control file.
Re.: No real reporting here.

s.p07agu 1009 46% P.: Produces a 2406 report by UIC and master files for other reports.
Re.: Some reporting.

s.p09agu 226 24% P.: Create and filter master files for further processing.
Re.: One summary report produced.

s.p10agu 639 92% P.: Proccesses IA and IB master files.
Re.: Straight reporting. Little difficulty.

s.p11agu 258 84% P.: Create a master file.
Re.: Complex and obscure logic but fine if one focusses on reporting.

s.p12agu 616 87% P.: Produce end of status report.
Re.: Straight reporting.

s.p13agu 618 91% P.: Compute operational equipment readiness.
Re.: Straight reporting.

s.p14agu 609 88% P.: Equipment availability density report.
Re.: Straight reporting.

s.p15agu 437 87% P.: Consolidated equipment avail. density report (mul. locations).
Re.: Straight reporting.

s.p16agu 271 84% P.: Equipment readiness summary.
Re.: Straight reporting.

s.p20agu 502 89% P.: Produces skeletal ‘O’ and ‘P’ card reports.
Re.: Straight report, complex interdependent summaries.

Table 2: Recovered Report Concepts from the IMCSRS System

4. Analysis and Recommendations.

The positive aspects of using a domain model for soft-
ware reengineering have been discussed at some length in
[7] and to some extend above. We choose here to concen-
trate on some of the difficulties that must be addressed to
make using domain knowledge more effective within a
reverse-engineering context. We believe there is a signifi-
cant potential to a domain-based approach and that the
approach should be pursued further. In summary, the
experiment presented in section 3 encountered hurdles that
can be grouped in four principal categories: domain sub-
jectivity, domain concepts delocalization, insuring the
completeness of program understanding coverage and
what we would refer broadly to as the ‘system complex-
ity’.

4.1. Domain Subjectivity

As we mentioned in the introduction, domain models

are only properly scoped, well defined or flexible up to a
certain point. It is all rather subjective. The Report model
is no exception to this rule as this reengineering effort has
demonstrated. Subjectivity entails a need for adaptation
capabilities in the process and the structure used to define,
design and implement a domain. In addition, the notion of
domain itself is imprecise.

A body of well encapsulated understanding is proba-
bly what leads one to think about it as a domain. But that,
again, is subjective. The Report domain in fact is an
aggregation of a multitude of sub-domains. The domain
encompasses the page definition and management sub-
domain, the data repository definition and operation sub-
domain, the summary sub-domain and the presentation
sub-domain; only to name a few. For each sub-domain the
subjectivity question applies and so on. This web of sub-
domains, creates interleaving because of the ‘contractual’
specifications one may push on another.

The domain subjectivity problem is re-enforced by

 0438 0040-READ.
 0439 READ IE09AGU
 0440 AT END
 0441 GO TO 0130-END.
 0442 MOVE P-ECCLIN TO WS-ECCLIN.
 0443 MOVE P-STN-DIV-CD TO WS-STN-CODE.
 0444 MOVE P-OR TO WS-OR-STD.
 0445 PERFORM 0200-CK-CLASS THRU 0200-EXIT.
 0446 PERFORM 0030-HEADING-ROUTINE.
 0447 GO TO 0060-COMPARE.
 0448 0050-READ-1.
 0449 READ IE09AGU
 0450 AT END
 0451 GO TO 0130-END.
 0452 0060-COMPARE.
 0453 IF P-STN-DIV-CD NOT = WS-STN-CODE
 0454 PERFORM 0080-1-TOTAL-UP THRU 0085-EXIT
 0455 PERFORM 0090-2-TOTALS
 0456 MOVE P-STN-DIV-CD TO WS-STN-CODE
 0457 PERFORM 0100-3-TOTALS
 0458 PERFORM 0120-PAGE-END
 0459 MOVE 0 TO WS-PAGE-CTR
 0460 MOVE P-OR TO WS-OR-STD
 0461 MOVE P-OR TO WS-OR-STD
 0462 MOVE P-ECCLIN TO WS-ECCLIN.
 0474 IF P-ECCLIN NOT = WS-ECCLIN
 0475 PERFORM 0080-1-TOTAL-UP THRU 0085-EXIT
 0476 MOVE P-OR TO WS-OR-STD
 0477 MOVE P-ECCLIN TO WS-ECCLIN.
 0478 0070-PROCESS.
 0479 MOVE SPACES TO WS-DETAIL-LINE.
 0480 IF WS-LINE-CTR GREATER THAN 47
 0481 PERFORM 0120-PAGE-END
 0482 MOVE P-ECCLIN TO WS-ECCLIN-PR.
 0483 IF WS-MODEL-SW = 0
 0484 MOVE P-ECCLIN TO WS-ECCLIN-PR
 0485 MOVE P-NOMEN TO WS-NOMEN-PR
 0486 MOVE 1 TO WS-MODEL-SW.
 0487 MOVE P-MOD TO WS-MODEL-PR
 0488 MOVE P-ORG-NM TO WS-ORGAN-PR
 (...) (...)
 0505 PERFORM 0140-CALL-REPORT THRU 0145-EXIT.
 0506 ADD 2 TO WS-LINE-CTR.
 0507 ADD P-AUTH TO WS-AUTH-TTL-1.
 0508 ADD P-OH TO WS-OH-TTL-1
 0509 ADD P-POSS-DAYS TO WS-POSS-DY-1.
 0510 ADD P-AVAL-DAYS TO WS-AVAL-DY-1.
 0511 GO TO 0050-READ-1.

Figure 3: Code Fragments from s.p14agu with Annotated Matched Domain Concepts

 0328 01 WS-DETAIL-LINE.
 0329 03 WS-ECCLIN-PR PIC X(8).
 0330 03 FILLER PIC X.
 0331 03 WS-NOMEN-PR PIC X(10).
 0332 03 FILLER PIC XX.
 0333 03 WS-MODEL-PR PIC X(10).
 0334 03 FILLER PIC XX.
 0335 03 WS-ORGAN-PR PIC X(20).
 0336 03 FILLER PIC X(8).
 0337 03 WS-AUTH-PR PIC ZZ9.
 0338 03 FILLER PIC X(5).
 0339 03 WS-OH-PR PIC ZZ9.
 0340 03 FILLER PIC X(7).
 0341 03 WS-POSS-DY-PR PIC ZZZZ9.
 0342 03 FILLER PIC X(7).
 0343 03 WS-AVAL-DY-PR PIC ZZZZ9.
 0344 03 FILLER PIC X(6).
 0345 03 WS-PCNT-OR-PR PIC ZZ9.9.
 0346 03 FILLER PIC X(8).
 0347 03 WS-BEL-STD-PR PIC X.
 0348 03 FILLER PIC X(8).
 0349 03 WS-OR-STD-PR PIC ZZ9.

Output_action Template
- The code box in the top right corner corresponds to a par-
tial <variable_set_definition> template fragment.
- These lines of code assign file variables to the set of vari-
ables defined above. These are printed in the line 0505
PERFORM call.

Pivot Template
- <set_begin_presentation> sub-template.
- <read_masterfile>. Delocalized.
- <EOF_?> yes branch. Delocalized.
- <set_summary_default> of the yes option in the
<first_time_?> sub-template.
- Corresponds to the <process_row> sub-template and is
intermixed with the <process_summaries>.
...and so on.

domain interleaving. It is well know that designs and con-
cepts can be interleaved [22]. As we saw in the previous
paragraph, that is also the case for domains. Interleaving
compounds the subjectivity problem because it reduces the
clarity and localization of the definition and specification
of a domain.

As an example of the fluidity of one’s perspective or
situation, consider the following. We were able to use the
reporting domain model to understand and represent
s.p05agu though this program only dealt with creating,
from input files, a new master file used in subsequent
reports. What needed to be changed from a common
report standpoint was simply the definition of the output
stream (to a file). In fact, we formed the conjecture that
reporting could be quite similar to filtering and we found
out this is the case. In a nutshell, the pivot structure corre-
sponds to a filter, the selection constraints map to those of
the filter and the selected fields and summaries correspond
to the morphing criteria used to define the filter output.
Hence, some domains share deep similarities whereas they
may be quite dissimilar at first glance. Only a thourough
understanding or modeling activity could reveal such sim-
ilarities.

As a result of our experience, we would approach the
subjectivity problem, for the purpose of constructing a
domain model, with the following observations:

• Pragmatism when designing a domain model must be
the rule. When a set of features appear complete, one
must move on. Overdesigning does not gain one any-
thing since there is no such thing as ‘the correct’
model.

• One must be ready to change one’s mind about the
nature of the domain as we had to do for Report.
There are substantial benefits in viewing domains
from different angles, not least one where a domain
could be used to understand previously thought to be
orthogonal programs.

• Thinking about a domain in terms of sub-domains and
modeling it that way greatly helped increase the flexi-
bility properties of the domain: clean concept inter-
faces meant easier customization.

• Using a notation which clearly showed the dependen-
cies as well as the pre and post conditions among
domain concepts helped tremendously in extending/
modifying the domain model.

• In the engineering of a domain, one should think hard
about what is static and what can be potentially cus-
tomizable, i.e., what are the situations where it is
likely that one will encounter cases that could not be
elicited/enumerated at the time of the analysis. Then

one must plan in consequence and leave the model or
the domain concept open. In the Report model, an
example of such a situation is found with summaries.
It is unlikely that one can enumerate every possible
summaries, hence handling capabilities for a user
defined summary must be provided. What is impor-
tant is for the logic to treat the summaries correctly to
be in place.

4.2. Delocalization of Domain Concepts

By far the hardest part in our method is to match the
relevant domain concepts to the source-code. Figure 3
presents code fragments from one of the system’s pro-
grams and their partial assignment to domain concepts.

Delocalization occurred in many instances in this
example. One type of delocalization, or replication delo-
calization, is represented by the <read_masterfile> sub-
template. Here, there are two statements reading this par-
ticular file (lines 0439 & 0449). The first only reads the
file once and at the beginning of the run, where the second
actually embodies the top of the row process loop. Repli-
cation delocalization is also found to occur with the
<EOF_?> sub-template (lines 0440-0441 & 0450-0451).

Another type of delocalization, or recursive delocal-
ization, occurs when there is one or more indirect compu-
tations between an original piece information and the end
results. Summaries can belong to this category as they
may be defined using multiple computation steps.

During this reengineering effort, we found ourselves
in dire need for a tool to help us recording our concept
recovery results, if not to automatize it. After the first few
programs, the task became rather tedious to perform. As a
preliminary statement, such a tool should:

• Implement a marking and display method to help with
both types of delocalization. This could be done by
using point and click gestures associated with tem-
plate instantiation. The logic of which and their par-
ticular coverage completeness could then be checked
in an automatic fashion.

• Help adapt the template notation to account for possi-
ble or likely delocalization events. How could they be
anticipated?

• Help the storage and documentation of encountered
template exemplars so as to help decision making in
future cases using a reference mechanism (for the
matching process).

• More generally, the template notation should provide
support for matching advice, partial instantiation cri-
teria and, if possible, some form of formal reasoning.
The need to show partial ´reference´ cases to help the

match is strong as we saw earlier. Not every template
elements has to be matched fully to make sense in the
domain, yet a minimal instantiation set should be
definable. Formal reasoning used to check logical
properties of the domain remains an important goal, if
only an elusive one.

4.3. Completeness of Program Understanding
Coverage

The previous sub-section provides a sense of com-
plexity of matching domain concepts to source-code. In
understanding and representing a program, the next arising
question is how complete or thorough is the coverage?
The simplest but so far most representative measure is to
count the total number of lines assigned to domain con-
cepts in a program -- with the following caveat: It is
important to have matched the main architecture of the
program to one concept. Otherwise this measure is a little
weak.

Once the main architectural template(s) is/are
matched to parts of a program source-code, then the rest of
the program can be matched and attributed to domain con-
cepts with relative ease. But there again, problems can
arise during the consolidation/integration phase of the
domain concepts together. For instance, domain concepts
could be insufficient to represent a program’s behavior or
they could be only partially completed. In the first case,
the domain may need to be extended and hence the rele-
vant template(s) modified. In the second, a decision must
be made whether or not the partial match is enough.

We would complement the tool specifications pre-
sented in the previous sub-section with the following
broad goal: A graphical and global trace of the program
understanding coverage would be very helpful. More par-
ticularly, the tool should:

• Provide the capability to follow the integration of one
domain concept with another and ultimately show
whether the coverage is complete or not with synoptic
views of the state of the matter.

• Help manage the domain model extensibility process.
As newly observed domain exemplars are encoun-
tered, they should be integrated in the tool and reused
later on -- though particular care should be exercised
in checking the logic of the domain when exemplars
integration take place.

4.4. System Complexity

The Report domain could not cope entirely with the
complexity of the IMCSRS system. As mentioned before,
the reasons for this was that the system had other goals

than simply generating reports. Yet, we found interesting
to try to anticipate the types of changes to the model or to
the reengineering mechanism that could tackle such a
development within some level of generality.

We first noticed that the Report model is an horizon-
tal domain, i.e., one that provides technology services1.
This is in opposition to the vertical domains, i.e., those
which utilize horizontal domains to model real life phe-
nomena, or more generally, application domains. Hence,
the likelihood that every aspect of the IMCSRS system
could be found to fall within the Report model was slim at
best. This point was reaffirmed by this effort.

Yet, there are valuable lessons that can be drawn from
the types of interaction we noticed between Report Writ-
ing and Equipment Readiness Status (the vertical domain
in the case of this study) -- though they have little lien with
the specific nature of the later. These lessons are:

• Horizontal domains appear to be well encapsulated by
nature (as service providers) and hence can be dealt
with more easily, perhaps through an interface like
mechanism. This property has been observed again in
another study of domains we have performed [8].
Hence, they may lend themselves to be viewed and
integrated as layers within other vertical models.

• The points of interaction among the different domains
can usually be conceptually well separated (this may
be a consequence of the point above). This is proba-
bly in part because domain designers also tend to
decompose their tasks among domain features to help
manage complexity. But when designed that way,
domain model can be evolved and adapted with better
ease.

5. Conclusions and Future Work

We have presented in this paper some of the lessons
learned during a domain-based reengineering effort. The
approach was very successful. Yet, a number of domain
related issues must be resolved to scale the approach
upward. We presented these issues and discussed poten-
tial solutions.

We feel the most important issues to approach first
are, one, to get a better handle on the subjectivity problem,
and second, to design tools to support the reengineering
activities along the lines of what was presented in §4.

We are now moving towards the modeling of other

1. Other such services comprise domains such as dis-
tributed processing support, networking, or database
among others.

domains. As mentioned earlier, the Report domain is an
instance of horizontal domains. We are currently looking
at modeling vertical domains. The end goal is to see how
these different ‘types’ of domain models interact and how
we can reengineer applications combining these two types
as well as gaining experience in multi-domain reengineer-
ing.

Acknowledgement

The author gratefully acknowledge the original sup-
port of the Army Research Laboratory through contract
DAKF 11-91-D-0004-0019 and thanks Dr. Spencer Rug-
aber for stimulating conversations and advices on this
topic.

References

[1] Arango, Guillermo and Prieto-Diaz, Ruben. Domain
Analysis Concepts and Research Directions, in
Domain Analysis and Software Systems Modeling, ed.
Ruben Prieto-Diaz and Guillermo Arango, IEEE Com-
puter Society Press, 1991.

[2] Arango, Guillermo. Domain Analysis Methods. In
Software Reusability. (Eds.) W. Schaeffer, R. Prieto-
Diaz, and M. Matsumoto. Ellis Horwood, New York,
1993, pp. 17-49.

[3] Automated Data Systems Manual, Installation Material
Condition Status Reporting System (IMCSRS), Func-
tional User's Manual, Commander FORSCOM,
AFLG-RO, Ft. McPherson, Georgia, April 1, 1984.

[4] Campbell R. H. The Specification of process synchro-
nization by Path-Expressions. In Lecture Notes in
Computer Science, pages 89-102, 1974.

[5] Campbell R. H. and Islam, N. A Technique for Docu-
menting the Framework of an Object-Oriented System.
Technical report UIUCDCS-1582-93, University of
Illinois at Urbana-Champain.

[6] DeBaud, Jean-Marc, Moopen, Bijith, and Rugaber,
Spencer. Domain Analysis and Reverse Engineering,
Proceedings of the International Conference on Soft-
ware Maintenance, Victoria, British Columbia, Sep-
tember 1994, pp. 326-335.

[7] DeBaud, Jean-Marc and Rugaber, Spencer. A Soft-
ware Reengineering Method using Domain Models.
Proceedings of the International Conference of Soft-
ware Maintenance, Nice, France, October 1995, pp
204-213.

[8] Debaud, Jean-Marc and LeBlanc, Richard. Problem-
Oriented Domain Analysis. Technical Report, Georgia
Institute of Technology.

[9] Garlan, D., Allen R. and Ockerbloom, J. Architecture
Mismatch or Why it’s hard to build systems out of
existing parts. In 17th International Conference on
Software Engineering. Seattle, Washington. April
1995. IEEE Computer Society Press, Los Alamitos,
Calif., pp. 179-185.

[10] Harris, D.R., Reubenstein, H.B. and Yeh, A.S. Reverse
Engineering to the Architectural Level. Proceedings of
the 17th International Conference on Software Engi-
neering, Seattle, Washington. April 1995. IEEE Com-
puter Society Press, Los Alamitos, Calif., pp. 186-195.

[11] Harrison, W. and Ossher, H. Subject-Oriented Pro-
gramming (A Critique of Pure Objects). OOPSLA
1993.

[12] Hildreth, Holly. Reverse Engineering Requirements
for Process-Control Software, Proceedings of the Con-
ference on Software Maintenance, pp. 316-325, Victo-
ria, British Columbia, September 1994.

[13] Johnson, Ralph E. and Foote, Brian. Designing Reus-
able Classes. Journal of Object-Oriented Program-
ming, June/July 1988, Volume 1, Number 2, pp 22-35.

[14] Kang, K., Cohen, S., Hess, J., and Peterson, S. Feature-
Oriented Domain Analysis (FODA). Feasibility Study.
Technical Report CMU/SEI-90-TR-21, Software Engi-
neering Institute, Pittsburgh, PA 15213, Nov. 1990

[15] Lubars, M. Domain analysis and domain engineering
in IDeA. In Domain Analysis and Software System
Modeling. IEEE Computer Society Press, Los Alami-
tos, Calif. 1991. pp 163-178.

[16] Mettala, E. and Graham, M. The domain-specific soft-
ware architecture program. TR CMU/SEI-92-SR-9,
Carnegie-Mellon Software Engineering Institute, June
1992.

[17] Neighbors, James. "Software Construction from Com-
ponents", PhD thesis, TR-160, ICS Department, Uni-
versity of California at Irvine, 1980.

[18] Neighbors, James. DRACO: A Method for Engineer-
ing Reusable Software Systems. 1989 ACM, Inc. Add-
ison-Wesley Publishing Co., Reading MA.

[19] Ning, J.Q., Engberts, A. and Kozaczynski W., Auto-
mated Support for Legacy Code understanding. Com-
munication of the ACM, May 1994, Vol. 37, No. 5, pp.
50-57

[20] Osser, H. et al. Subject-Oriented Composition Rules.
OOPSLA 1995.

[21] Reasoning Systems, Inc., Palo Alto, CA. REFINE
User's Guide, 1990. For REFINE (TM) version 3.0

[22] Rugaber, S., Strirewalt, K. and Wills, Linda. Detecting
Interleaving. Proceedings of the International Confer-
ence of Software Maintenance, Nice, France, October
1995, pp 265-274.

[23] Simos, M. The growing of an Organon: A hybrid
knowledge-based technology and methodology for
software reuse. In Domain Analysis and Software Sys-
tem Modeling. IEEE Computer Society Press, Los
Alamitos, Calif. 1991. pp 204-221.

[24] Tracz, W. Domain-specific software architecture
(DSSA) frequently asked questions (FAQ). ACM Soft-
ware Engineering Notes, 19(2), 1994.

