
 Abstract

Understanding the architecture of a program requires
determining both the major components into which the
system is broken and the ways in which the components
interact to accomplish the program’s goals. Both static
and dynamic analyses of the software can aid in obtaining
this understanding. This paper describes an analysis
technique for gaining such understanding and a
visualization tool, called ISVis, that supports it. The
technique is applied to the problem of enhancing the
Mosaic web browser by both visualizing its architecture
and finding the components of the browser into which an
enhancement should be inserted.

Keywords: software architecture extraction, program
visualization, dynamic analysis, program understanding

1. Understanding Software Architectures

Software development typically means software
enhancement. And to successfully enhance software first
requires understanding it. There are many aspects of pro-
gram understanding, but one of the most essential is
understanding a program’s architecture—its major compo-
nents and their interactions. In particular, inserting an
enhancement at the optimal location in a complex program
can improve the long-term maintainability and reusability
of the program. This paper describes a technique for
understanding programs at the architectural level with
emphasis on finding locations in a program where making
enhancements is particularly appropriate.

A software architecture is a high-level program model
that describes a system’s major pieces (its components)
and how they interact (its connectors). Such models are
often graphically depicted with boxes denoting compo-
nents and arrows indicating connectors. Extracting an
architectural model from a program traditionally means
treating subprograms as components and subprogram
invocations as connectors. Extraction at this level is
straightforward but may generate too much detail. Among
the few successes that go further are Harris et al. [8] and
Fiutem et al. [5], both of whom rely on lexical cues to
detect specific system-library invocations. For example,

Harris et al. equates components with Unix processes and
specifically looks for instances of the term fork to identify
them.

Program analysis to support software understanding
takes one of two forms: static, where the program code
itself is analyzed, and dynamic, where the program is exe-
cuted to learn how it behaves. Although static analysis is
commonly practiced and entirely appropriate for determin-
ing structural properties such as architectural components,
dynamic analysis is a better match for determining behav-
ioral properties such as component interactions.

This paper describes a program understanding tech-
nique that combines static and dynamic analyses to extract
components and connectors. The process has been used
both to obtain an overall view of a system’s architecture
and to solve the specific problem of where in the system to
insert an enhancement. We call the latter problem archi-
tectural localization.

ISVis (Interaction Scenario Visualizer) is a tool that
supports the process. It includes several graphical views
with which an analyst can determine appropriate compo-
nents and connectors. For ISVis, a component consists of
any analyst-specified collection of underlying source code
constructs. Component specification is supported by tradi-
tional static analyses. Connectors consist of component
interactions as recognized from actual execution traces, a
form of dynamic analysis.

The paper also describes the application of ISVis to a
specific program, the Mosaic web browser, version 2.4.
The task we studied was the addition of user-configurable
viewers to Mosaic. Version 2.4 supported viewers for par-
ticular kinds of data, such as PostScript, but the user could
not dynamically add new ones. We wanted to know
enough about the architecture of Mosaic to determine
where in the source code to add the new capability.

2. Approach

This section describes the approach we have taken to
extracting software architectures. Two key aspects of the
approach are visualization and abstraction.

2.1 Visualization
The use of graphical techniques to depict information

on a computer display has proven to be useful for analyz-

Using Visualization for Architectural Localization and Extraction

Dean Jerding and Spencer Rugaber
College of Computing

Georgia Institute of Technology
{dfj,spencer}@cc.gatech.edu

ing various forms of information, including computer pro-
grams. Visual representations of the voluminous
information that can be derived from program executions
are a powerful means for that information to be processed
and analyzed. While off-line analysis of the data is useful
in its own right, we believe that visualizations supplement-
ing the human pattern-recognition and abstraction capabil-
ities better support such a complex process. Our approach
is to provide an analyst with a process and a tool within
which a program’s behavior can be visualized, filtered, and
abstracted and with which the analyst can build and save
views of the behavior appropriate for the particular pro-
gram understanding task.

2.2 Abstraction
Through the use of visualization prototypes built dur-

ing the course of this research [10], it has been observed
that program executions are made up of recurring patterns
of interaction, manifested as repeated sequences of pro-
gram events such as function calls, object creation, and
task initiation. Instances of these interaction patterns occur
at various levels of abstraction. Using them, the analyst
can help bridge the gulf of abstraction between low-level
execution events and high-level models of program behav-
ior. Humans typically solve complex problems by using
divide-and-conquer strategies, by detecting patterns, and
by finding analogies; interaction patterns can be used in all
three of these activities.

2.3 Terminology
This section describes the conceptual basis of ISVis in

terms of a sequence of definitions. Definitions include a
description and a (possibly empty) set of attributes. In
addition, each defined term has name and description
attributes that provide, respectively, a unique identifiers
and arbitrary, analyst-supplied descriptive text for each
instance of the items being defined.

Architectural components denote specific source-code
constructs. To extract an architecture means detecting a
meaningful abstraction and the associated source code that
implements the abstraction. We call the source code units
actors. Actors can be simple (mapping directly to code) or
composite (made up of lower level actors). A component is
an abstraction and the corresponding actors that constitute
it.

Definition a simple actor is a syntactically identifi-
able program unit; for example, a function, an object,
or a data item. As the last possibility suggests, actors
can be passive as well as having computational capa-
bilities. An actor has a location (the position of the
actor’s definition in the source code) and a type (the
actor’s syntactic type).

Definition a composite actor is a set of actors each of
which is either simple or itself composite.

Definition an actor is either a simple or a composite
actor.

Definition a component is an actor and the corre-

sponding abstract role that it serves in the architec-
ture.

The job of the analyst is to locate and define components
in the source code by composing actors or previously rec-
ognized components and then determining the roles the
components fill.

Similarly, the analyst is responsible for detecting connec-
tors. In this case, the low level unit is an event that takes
place during program execution.

Definition an event is a discernible unit of program
execution. These can be generic, like the invocation of
a function or method, function return, object creation
or deletion, or data reference; or they can be specified
by the analyst, indicating specific execution events
that the analyst wishes to track. An event has a time
stamp (a record of when the event took place). Time
stamps provide a serial ordering to events. An event
also has a type (an analyst-specified identifier
enabling similar events to be associated).

Definition an event trace is a record of the events that
occur during an execution of a program.

Events take place in the context of one or more actors. For
example, an event might be the invocation of one subpro-
gram actor by another. The combination of an event with
its associated actors is called an interaction.

Definition an interaction is a relation between an
event and one or more actors.

Sequences of interactions then form interaction scenarios.
Interaction scenarios can be generated from executing an
instrumented program with particular input data, or might
be specified directly based on design models.

Definition an interaction scenario (or simply a sce-
nario) is a sequence of interactions. Note that the
sequence obeys the time ordering of its constituent
events, but that the events in the sequence are not nec-
essarily contiguous with respect to the underlying
event trace.

Definition a usage scenario is the execution of a sub-
ject program with a given set of input test data. A
usage scenario leads to the generation of multiple
interaction scenarios.

The connector abstraction process that the analyst uses
with ISVis is one of pattern detection. The analyst uses
ISVis’ visualization features to detect recurring interaction
scenarios. If a recurring sequence of interactions is mean-
ingful to the analyst, it can be characterized by an interac-
tion pattern, and the analyst can use ISVis to replace
instances of the pattern with a higher-level abstraction in
the displayed visualization.

Definition an interaction pattern is a description of
recurring scenarios. The pattern specifies an ordered
list of interactions, where one or more of the elements
of the list can be a wildcard denoting interpolated

events that do not conceptually contribute to matching
scenarios.

It is possible to classify instances of any of these defi-
nitions. In particular, actors and events have primitive type
information as part of their attributes. Components, inter-
actions, and scenarios are composed from actors and
events and, consequently, derive from them a unique type
signature. It is possible to think, therefore, of the class of
all actors of integer type. Another example is the class of
all scenarios involving two events, the first of type call and
the second of type return where the four associated actors
(caller, callee, returner, and returnee) have identical loca-
tions. We might call this latter class of scenarios recursive
invocations. Class definitions form a concept hierarchy
enabling an analyst to overlay abstractions on the underly-
ing events and actors.

2.4 Process Overview
The overall process of performing architectural local-

ization is depicted in Figure 1. It comprises a static analy-
sis of the subject system, instrumentation of that system to
track interesting events, execution of the instrumented sys-
tem in particular usage scenarios to generate event traces,
and visualization and abstraction of the event traces using
the ISVis tool. Design models can also be entered into
ISVis in the form of interaction diagrams to compare with
actual system behavior.

3. ISVis

The purpose of ISVis is to support the browsing and
analysis of event traces derived from program executions.
It is useful during software engineering tasks requiring a
behavioral understanding of programs, such as design
recovery, architecture localization, design or implementa-
tion validation, and reengineering. Features of ISVis
include the following.

• analysis of program event traces numbering over
1,000,000 events

• simultaneous analysis of multiple traces for the same
program

• views include actor and interaction lists and relation-
ships, scenarios, and source code (via XEmacs)

• use of Information Mural [9] visualization techniques to
portray global overviews of scenarios

• abstraction of actors through containment hierarchies
and analyst-defined components

• selective filtering of individual or multiple occurrences
of a particular interaction

• definition of higher-level scenarios comprising repeated
sub-scenarios

• identification of scenarios to be used as patterns for
locating the same or similar scenarios in other scenarios

• analyst-specified interaction patterns, including regular
expression wildcards for actors

• saving and restoring of analysis sessions

3.1 Architecture
Figure 2 shows an architectural diagram of ISVis,

including its components, connectors, and input–output
files. The Static Analyzer reads the Source Browser data-
base files produced by Solaris compilers and generates a
static information file. The Instrumentor takes the source
code, the static information file, and information supplied
by the analyst about what actors to instrument (specified in
the trace information file), and generates instrumented
source code. This source must be compiled externally to
the ISVis tool, and then, when the instrumented system is
executed using relevant test data, event traces are gener-
ated. The Trace Analyzer in ISVis uses the trace informa-
tion files and the Event Stream to read event traces and
convert them into scenarios, stored in the Program Model.
As scenarios are created, the actors involved are also

Figure 1: Process Overview

added to the Program Model. The user then interacts with
the Views of the Program Model to do the analysis. A Pro-
gram Model can be stored for later use in a session file.

3.2 Example Views
ISVis currently provides two views, the Main View

and the Scenario View. Figure 3 is a snapshot of the Main
View during the case study described in Section 4. The top
portion of the view lists the actors in the Program Model,
including user-defined components, files, classes, and
functions. The middle portion includes lists of the scenar-
ios and interactions in the Program Model, as well as an
area for displaying information about the item in primary
focus (selectable with the middle mouse button). The key
area allows users to assign colors to actors or interactions
that have been selected using the left mouse button. The
bottom portion of the view is a shell for textual informa-
tion input–output. Note that each of the scrollable lists of
actors and interactions uses an Information Mural [9] to
display a graphical overview of the selected and colored
items in the list.

The Main View includes a menu bar for entering com-
mands, including the ability to open a Scenario View for
each scenario in the model. Figure 4 shows a Scenario
View from the case study described in Section 4. The Sce-
nario View is in fact a Temporal Message Flow Diagram
(TMFD) [2], sometimes called an interaction diagram,

message sequence chart, or event-trace diagram. Actors in
the view are assigned columns, and interactions are drawn
as lines from source to destination actor in descending
time order. A global overview of the scenario appears on
the right of the view, and is used to navigate through the
interactions in the scenario. The overview is created using
an Information Mural, which provides effective global
overviews of scenarios containing hundreds of thousands
of interactions. The Mural uses techniques much like anti-
aliasing to preserve visual characteristics as if the analyst
could see the entire Scenario View from a distance. This
allows the analyst to observe various phases in the sce-
nario including repetitive visual patterns, indicating the
presence of interaction patterns in the subject program
execution being analyzed. As interactions are selected and
colored the Mural is colored as well, helping an analyst
locate where particular interactions occur in a program’s
execution.

The Scenario View provides several features to help
an analyst build abstract models of the subject system and
to localize behavior. An option menu allows the actors in
the scenario to be grouped by containing file, class, or
component actors. Another option allows the user to select
a class of interactions or just a single instance of an inter-
action. Once a sequence of interactions are selected, they
can be defined as a scenario (added to the Program Model)
and then all occurrences of that sequence of interactions in
the original scenario are replaced with a reference to the

Figure 2: ISVis Architecture

newly defined scenario. While a simple interaction is a
shown as a line connecting the source and destination
actors, a sub-scenario that occurs within the Scenario
View appears graphically as a rectangle containing all of
the actors involved in the scenario.

The Scenario View also includes features to find inter-
action patterns in a scenario, in a manner similar to regular
expression matching. For example, given an interaction
pattern, the user can choose to look for an exact match in
the scenario (actors and interactions match exactly), an
interleaved match (all interactions in the pattern occur
exactly, but others may be interleaved), a contained exact
match (actors in the scenario contain the actors in the pat-
tern, and the interactions occur in exact order), and a con-
tained interleaved match. Additionally, actors in an
interaction pattern may be specified with wildcards, mean-
ing they match any actor. The last of the pattern features

includes the ability to ask ISVis to look for repeated
sequences of interactions that occur in the scenario. This
helps an analyst locate sequences of interactions which
may have a higher-level meaning in the system, in addition
to the analyst simply noticing these patterns in the global
overview or as he or she browses through the scenario.

Note that ISVis’ two Views have a Subject-View rela-
tionship with the Program Model such that any selection
or modification done in one view is immediately reflected
in the other. Also, it is possible to save the current Program
Model and event traces that have been read in for later
analysis.

4. Architectural Localization Case Study

Our case study arose as part of a larger effort to sup-
port the evolution of legacy systems (the MORALE

Figure 3: ISVis Main View

project) [1]. Given an existing system and a new set of
requirements, the MORALE process identifies what the
current version of the system can do and what needs to
change in order to support the new requirements. It then
suggests how the system should be changed to accomplish
its new mission.

Part of the MORALE process ascertains the current
architecture of the subject system as it relates to particular
changes in requirements. This is an architectural localiza-
tion task. Without a correct architectural model of the cur-
rent system, the reengineering process cannot proceed
with any accuracy. The ISVis tool helps the analyst con-
struct an accurate model of the system’s behavior and vali-
date hypothesized models of the system.

4.1 Adding configurable viewers to Mosaic
The subject system for this case study is the NCSA

Mosaic web browser, version 2.4 [15]. This version uses
MIME [16] types to denote internal and external viewers
for different types of web pages. The enhancement task is
the extension of version 2.4 to support user-configurable
external viewers, whereby Mosaic provides users interac-
tive control over which viewers are used for specific types
of web pages. The first steps in the reengineering process
are understanding which parts of the system implement

relevant functionality and which components must be
changed or added to support the new requirements.

4.2 Process description
Initially, we had no understanding of the Mosaic

implementation, and it was too large (100,00 lines of code)
for a comprehensive study. We wanted to find out how
Mosaic dealt with viewer invocation and where in the code
this was done. We hoped that a simple generalization to
this part of the code, we could avoid a complete source
code analysis. Hence, we wanted to perform an architec-
tural localization.

Architectural Localization: The process for using ISVis
in an architectural localization task can be summarized by
the following steps.

1. Compile the subject system using a Solaris compiler
to produce static information. The Solaris compiler
generates a Source Browser database that contains
static information such as the program’s symbol table,
line-by-line scope, and call graph.

2. Use ISVis to read the static information and generate
instrumented source code. ISVis uses PERL scripts to
translate the native Solaris source browser database
files into an ASCII static information file consumable
by ISVis. It then provides an interface to instrument

Figure 4: ISVis Scenario View

the files, classes, and functions in the subject system.
Another script places tracing objects in the code based
on an event trace information file.

3. Compile the instrumented system. The Solaris C++
compiler is used because its tracing library provides
objects to track function invocations.

4. Generate event traces by exercising the subject system
in relevant usage scenarios. This is an important step
in the analysis process, during which the analyst must
determine which usage scenarios exercise behavior in
the subject program related to the functionality that
needs to be understood. This means uncovering those
aspects of Mosaic that provide functionality related to
how Mosaic determines which viewer to use for par-
ticular types of web pages and how Mosaic imple-
ments other user-controllable configurations. The
following were the specific usage scenarios: following
a hypertext link to an HTML file, following a link to
and displaying a PostScript file, and popping up inter-
nal Mosaic windows with customizable settings. The
event traces we generated consisted of almost 600,000
events.

5. Read the event traces into ISVis. ISVis reads event
trace files and creates an internal model of the execu-
tion, including the actors and interactions involved in
the scenarios.

6. Create working scenarios and build up architectural
models.

7. View the resulting design-level components and sce-
narios, store analysis results, and iterate steps 5-7 as
necessary. ISVis aids program understanding through
an iterative process often requiring several analysis
sessions. In this case study there were five separate
analysis sessions, each building on the previous, over
as many working days. The total time spent on the
analysis was nine hours.

Architectural Localization Tactics: During the use of
ISVis for this and other architectural localization tasks, we
have identified a number of tactics useful for solving this
class of problems. Some of these tactics are appropriate
for solving other program understanding problems as well.

1. Abstract the view of scenarios by using the natural
actor containment hierarchy. One of the most useful
features of ISVis is the ability to project the interac-
tions across the containment hierarchy of actors,
including files, classes, and user-defined components.
The scenarios from Mosaic include interactions
between thousands of function actors, making view-
ing and understanding a scenario difficult at best. The
first step in viewing the traces of Mosaic was to group
actors by file. Next, files in particular subdirectories,
such as the Xmx widget library, were further grouped
into a single component because the analyst was not
interested in the internal interactions between actors
in those files, only in the interface between that com-
ponent and the rest of the system.

2. Eliminate interactions unrelated to the functionality
we are trying to localize. This capability allows an
analyst to quickly locate, select, and removed unre-
lated interactions from scenarios. For example, we
noticed and removed low-level string manipulation
and graphics library calls completely unrelated to the

task at hand. In the process of doing this, we also
found other “utility” operations such as list manipula-
tion, and grouped those actors together into a “Util-
ity” component.

3. Use the global overview and browse the scenario to
identify interaction patterns. The global scenario
overview indicates phases in the scenario and also
highlights areas of recurring sequences of interaction.
It is thus possible to visually locate candidate interac-
tion patterns by using the global overview to navigate
to regions in the scenario where similar sequences of
interaction occur. In the mural at the right side of Fig-
ure 4, you can see four different phases in the first
two-thirds of the scenario, one for each HTML docu-
ment visited. Repetitive patterns occur as each docu-
ment is processed. Differences arise from the number
of images in each document, another pattern that we
found. Early on the analyst also discovered interaction
patterns for the processing of a mouse click on an
anchor, of which there are six in the scenario—three
in the first two-thirds of the scenario for HTML links
and three at the end for the PostScript documents dis-
played.

4. Understand interaction pattern behavior and replace
the low-level interactions with a reference to the
recovered scenario. Once a sequence of interactions
has been identified as a candidate interaction pattern,
the analyst should attempt to understand what that
sequence of interactions does. If the interaction pat-
tern represents an important, recurring task in the pro-
gram, identify those interactions as a new scenario,
add a scenario description to the model, and replace
all instances of that set of interactions with a reference
to the newly defined and understood scenario. This is
how low-level events are abstracted up into design
level behavior. Using this tactic, the analyst was able
to reduce the number of interactions in the longest
Mosaic event trace (450,000 events) by a factor of ten.

5. Use pattern matching to locate similar scenarios. In
addition to visually locating an interaction pattern,
ISVis provides simple pattern matching functionality
to help an analyst find recurring sequences of interac-
tions. ISVis can look for arbitrary sequences of inter-
actions or for sequences that begin with a call
interaction and end with the corresponding return
interaction.

6. Investigate the behavior of actors by viewing their
source code. Sometimes the analyst finds that differ-
ent but closely related scenarios occur at various
points in the execution of a program. ISVis allows the
analyst to open views of the source code to actually
look into a function and understand why particular
interactions occur at some points but not others. Dur-
ing the latter part of this case study, the analyst began
to open XEmacs views of the source code for various
actors. When the analyst located the interaction
“HTSaveAndExecute” in those interactions occurring
after the handling of a PostScript link, it was con-
firmed by viewing the source code that this function
was in fact where the external viewer for the link was
determined.

7. Build components out of actors that provide related,
cohesive functionality. Based on the understanding of

the system gained through browsing scenarios, identi-
fying recurring interaction patterns, and viewing
source code, an analyst can begin to group related
actors into components. This furthers the abstraction
of the low-level behavior up to the architectural level.
The analyst used information gained by browsing the
Mosaic scenarios, static information about actors such
as the name of the file in which they are defined and
their names in the program, as well as comments in
the source code itself to help group related actors into
components. For this case study the following compo-
nents were identified: AccessManager, Annotations,
Cache, GlobalHistory, GUI, Hotlist, Image, Mosaic
(main control code), PresentationManager, Protocol-
Manager, Stream, Utility, WindowHistory, Xmx, and
HtmlWidget. It should be noted that while sometimes
all actors in a particular file seemed to fit nicely into a
component, often actors in the same source code file
were assigned to different components.

4.3 Results
 During this case study, ISVis assisted with the under-

standing of a legacy system’s behavior in particular usage
scenarios. Over a period of nine hours, an analyst unfamil-
iar with the system being examined and somewhat familiar
with the domain was able to construct an architecture of
15 components grouping source code entities by the role
they play in the particular usage scenarios. Almost fifty
interaction patterns were identified and understood during
the session. These scenarios included the method by which
presentation formats were read via MIME type specifica-
tion and the method in which Mosaic receives a mouse
click, finds the anchor, parses the URL and selects an
external viewer if needed to display the contents of a URL.
Additionally, architectural aspects of Mosaic such as the
global or window history that can be viewed in pop-up
windows by the user were understood to all combine the
user-interface code with the underlying data code. The
group of actors categorized as the PresentationManager
component is where the functionality to configure the
external viewers must be added.

4.4 Strengths and weaknesses
ISVis provided the analyst a means for building an

abstract model of Mosaic's behavior as it executes particu-
lar usage scenarios. Its visualizations of the voluminous
event trace information provided a framework within
which the analyst can use human cognitive skills to make
many of the abstraction decisions. An analyst can take
advantage of application-domain and programming
knowledge, as well as the source code itself, to make infer-
ences that a completely automated tool could not perform
well. By supporting the abstraction process via interaction
patterns, ISVis performs the more compute-intensive pro-
cesses such as replacing identified patterns and lets the
analyst make the identification of which patterns are
semantically important, a task-dependent decision.

Because ISVis is such a powerful tool, we often find
ourselves coming up with new features that might be use-
ful. One of the obvious ones is to take advantage of off-
line pattern-matching computation to more effectively

suggest patterns the analyst. Another feature is the ability
to export the components identified for use by other tools,
or to import an initial component description of the sys-
tem.

An important prerequisite for the value of the ISVis
analyses is the choice of usage scenarios with which to
exercise the subject system. The particular event traces
that are examined directly affect the efficiency with which
an analyst can localize behavior. Another shortcoming is
the complexity of the user interface. While we have made
every effort to make ISVis user-friendly, there is a marked
trade-off between the powerful features available to the
analyst and the ease with which these features can be
learned. A usability study and future public release will
shed some light in this area.

There are other program understanding approaches
that accomplish some of the goals of the case study, even
as simple as examining a static call graph or "grep’ing"
source code for particular identifiers. For example, when
the analyst began using XEmacs to view source code
while constructing component mappings, he or she could
have taken advantage of other tools which display calling
relationships graphically. Ultimately, it will be a combina-
tion of tools and techniques that help an analyst under-
standing programs. The ISVis approach is another useful
technique specifically aimed at understanding the behavior
of a program, its actors and interactions and scenarios that
purely static understanding techniques cannot hope to pro-
vide.

5. Implications

The success of ISVis on this case study raises several
issues related to its future development and applicability.
Among these are its scalability, its extensibility, and its
interoperability with other tools.

5.1 Scalability
Architectural extraction and localization are interest-

ing problems only if the system being analyzed is suffi-
ciently large that an architectural overview is required to
convey understanding. Consequently, it is important for
extraction and localization technology to scale up to large
systems.

Scaling has several implications to ISVis. On the pos-
itive side, the abstraction methods provided by ISVis allow
it to deal with arbitrarily complex systems. On the nega-
tive side, however, limited machine resources can intrude
on its success. For example, many visualizations often
have a problem scaling to display large amounts of data.
ISVis’ Information Mural has proven effective at condens-
ing large amounts of data and enabling efficient access by
the analyst.

Dealing with large amounts of event trace data is also
a resource problem. In principle, a small program can gen-
erate an infinite amount of trace data. Hence, it is impor-
tant for the analyst to determine the degree of resolution in
the event trace necessary to capture essential connectors
without overwhelming storage and computational
resources.

5.2 Extensibility
ISVis has been designed to be extensible in two ways.

First, the underlying classes of actors with which it can
deal is not dependent on a particular programming lan-
guage. In fact, if appropriate static analysis tools are avail-
able, ISVis can use any primitive set of actors. For
example, ISVis was originally designed to analyze pro-
gram written in the C++ language. However, Mosaic is
written in C. In this case, using ISVis was simply a matter
of ignoring class actors, which, in any event, generate no
instances when C programs are analyzed. Moreover, the
generality also works in the other direction. New actors,
such as modules or subsystems, can be added without
effecting the underlying ISVis process.

The second form of extensibility has to do with event
traces. The only classes of events used in the Mosaic case
study were function calls and returns. But, as far as ISVis
is concerned, events have types, and the exact nature of the
type is unimportant to the pattern matching ISVis pro-
vides. For example, ISVis would be quite able to use task
invocation or synchronization as event types.

5.3 Interoperability
ISVis is designed to interoperate with other tools. Two

specific examples can be given. The first has to do with the
problem of detecting connectors. A useful connector is
one that characterizes common component interactions.
But the abundance of event data from log files makes
determining commonality difficult. Internally, ISVis sup-
ports several straightforward heuristics to detect patterns.
However, other tools are available that may do a more
sophisticated job at this task. In particular, we are looking
at the Balboa tool [3]. Balboa is capable of applying sev-
eral machine-learning techniques to the problem of
describing complex event traces. Balboa produces as out-
put a finite state machine that is capable of generating the
event sequence. To the extent that the machine and its cor-
responding regular language are much smaller than the
event trace, they provide a candidate abstraction for the
ISVis analyst to use. We intend to hook Balboa to the
ISVis pattern matcher and see how this enhancement
extends the power of ISVis analyses.

The second form of interaction we intend to investi-
gate is with an architectural analysis tool called SAAM-
Tool. SAAM [11] is an architectural analysis method that
uses usage scenarios to guide analysts in making decisions
about the desirability of a proposed enhancement to a soft-
ware system. SAAMTool supports this process by, among
other things, providing a graphical display tool for archi-
tectures. SAAMTool itself does not generate architectural
models, so it is natural to use ISVis for that purpose. We
are currently looking at ACME [7] as an interoperability
mechanism for the architectural models that need to be
communicated between ISVis and SAAMTool.

6. Related Work

Several different areas overlap with our work, includ-
ing software visualization, program understanding, and

reverse engineering. Some of the more recent efforts in
these areas are mentioned here and related to our work.

As mentioned previously, Citrin et al. have attempted
to formalize the notations used to describe communication
between entities in systems, using the notion of a temporal
message-flow diagram (TMFD) [2]. They have built tools
to display and edit TMFDs, to generate TMFDs from
event traces, and to simulate the operation of a system
using TMFDs. Their work is much more general than
ours, handling systems in which messages can be sent and
received in an interleaved, non-deterministic sequence.
However, they have not done any work to identify patterns
in the event traces.

Sefika, Sane, and Campbell have done work in archi-
tectural visualization of systems with goals similar to ours
[17]. Their views seek to portray the operation of a system
from various architectural levels, and they have developed
an unobtrusive instrumentation system to efficiently gather
event trace data. However, some of their views are tightly
coupled to the domain of the subject system rather than
generic to software architectures—possibly because their
subject program is an operating system.

The notion of a design pattern as a solution to a prob-
lem in a particular context provides a literary form through
which software design experience can be documented to
be reused by others [4][6]. Similarly, our interaction pat-
terns are so named because they too are repeatable entities
and because they create visual patterns on the screen. The
two types of patterns reinforce each other because interac-
tion patterns result from instances of design patterns and
can be seen as low-level evidence for their existence.

Murphy, et al. have developed an approach that allows
software engineers to specify a high-level model of a sys-
tem and how the source code maps into that model [14].
Then a reflexion model is computed, which uses call graph
and data referencing information to determine where the
model agrees and disagrees with the actual implementa-
tion. A box-and-arrow diagram is used to depict the speci-
fied models and their differences. Their approach has
helped with design reengineering and conformance tasks.
This work is directed more toward static, architectural
models, while our work is focused on sequential, behav-
ioral models.

The Program Explorer is a C++ program understand-
ing tool that is focused on class and object centered views
[12]. The authors have developed a system for tracking
function invocation, object instantiation, and attribute
access. The views show class and instance relationships
(usually focused on a particular instance or class), and
short method-invocation histories. The system is designed
to execute the program for a while, stop execution, and
then focus on particular classes or objects. It is not
intended as a global understanding tool, so the users must
know what (or where in the execution) they are interested
in before they start. Examples of using the system to
uncover design patterns in real-world sized systems are
given.

The OO!CARE tool is the C++ version of the CARE
environment for C program understanding [13]. The idea
of the OO!CARE system is to extract and visualize depen-

dencies between classes, objects, and methods in the pro-
gram, as well as the control and data flow. The system
includes a code analyzer, a dependencies database, and a
display manager. The hierarchically designed views
present class inheritance, control-flow dependencies, and
file dependencies. A column oriented view called a collon-
ade presents data-flow dependencies. The dependencies
are extracted statically, so in the case of a virtual function
call in C++ a dummy member function is created to repre-
sent all the possible run-time bindings. While the views
provide zooming and panning capabilities, plus hierarchi-
cal decomposition, the examples given do not demonstrate
that they scale to handle large programs.

7. Conclusion

ISVis is a method and tool for analyzing software for
purposes of modeling its architecture. It combines static
and dynamic analyses to determine the software's compo-
nents and connectors. The ISVis tool supports this process
with graphical views capable of displaying large amounts
of interaction data and for making abstractions over them.
We have applied the tool to a real-world problem, extend-
ing the Mosaic web browser, and it provided significant
support for the task. We are continuing to apply ISVis in
other case studies to help evaluate its usefulness. These
include an examination of the view redraw mechanisms
used in typical GUI applications and also a case study
involving the ISVis tool examining itself. The experience
reinforces our belief that architectural understanding
requires both static and dynamic information to be truly
valuable.

Acknowledgments

Effort sponsored by the Defense Advanced Research
Projects Agency, and Rome Laboratory, Air Force Mate-
riel Command, USAF, under agreement number F30602-
96-2-0229. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory, or the U.S. Govern-
ment.

References

[1] Gregory Abowd, Ashok Goel, Dean F. Jerding, Michael
McCracken, Melody Moore, J. William Murdock, Colin
Potts, Spencer Rugaber, and Linda Wills. “MORALE/Mis-
sion Oriented Architectural Legacy Evolution.” To appear in
the Proceedings of the International Conference on Soft-
ware Maintenance’97, Bari, Italy, September 29-October 3,
1997.

[2] Wayne Citrin, Alistair Cockburn, Jurg von Kanel, and Rainer
Hauser. “Using Formalized Temporal Message-Flow Dia-
grams.” Software—Practice and Experience, 25(12): 1367-
1401, December 1995.

[3] Jonathan E. Cook and Alexander L. Wolf. “Automating Pro-
cess Discovery through Event-Data Analysis.” Proceedings
of the 17th International Conference on Software Engineer-
ing, Seattle, Washington, April 1995.

[4] James O. Coplien and Douglas C. Schmidt. Pattern Lan-
guages of Program Design. Addison-Wesley, 1995.

[5] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo. “A Cliche-
Based Environment to Support Architectural Reverse Engi-
neering.” International Conference on Software Engineer-
ing, Monterey, California, November 4-8, 1996, 319-328.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Abstraction and Reuse of Object-
Oriented Software. Addison-Wesley, 1995.

[7] D. Garlan, B. Monroe, and D. Wile. “ACME: An interchange
language for software architecture, 2nd edition.” Technical
report, Carnegie Mellon University, 1997.

[8] David R. Harris, Alex S. Yeh, and Howard B. Reubenstein.
“Extracting Architectural Features from Source Code.”
Automated Software Engineering, 3(1/2):109-138, June
1996.

[9] Dean F. Jerding and John T. Stasko. “The Information Mural:
A Technique for Displaying and Navigating Large Informa-
tion Spaces.” Proceedings of the IEEE Visualization `95
Symposium on Information Visualization, Atlanta, Georgia,
October 1995, pp. 43-50.

[10] Dean F. Jerding, John T. Stasko, and Thomas Ball. “Visualiz-
ing Interactions in Program Executions.” To appear in the
Proceedings of the International Conference on Software
Engineering, 1997.

[11] R. Kazman, L. Bass, G. Abowd, and S. M. Webb. “SAAM:
A Method for Analyzing the Properties of Software Archi-
tectures.” Proceedings of the International Conference on
Software Engineering 16, Sorrento, Italy, May 1994, 81-
90.

[12] Danny B. Lange and Yuichi Nakamura. “Interactive Visual-
ization of Design Patterns Can Help in Framework Under-
standing.” Proceedings of ACM OOPSLA '95, 1995, pp.
342-357.

[13] P. K. Linos and V. Courois. “A Tool for Understanding
Object-Oriented Program Dependencies.” Proceedings of
the Workshop on Program Comprehension, 1994, pp. 20-
27.

[14] G. C. Murphy, D. Notkin, and K. Sullivan. “Software Reflex-
ion Models: Bridging the Gap Between Source and High-
Level Models.” Proceedings of the Foundations of Soft-
ware Engineering, 1995.

[15] National Center for Supercomputing Applications. “NCSA
Mosaic Home Page.” http://www.ncsa.uiuc.edu/SDG/Soft-
ware/Mosaic/NCSAMosaicHome.html.

[16] Marshall T. Rose. The Internet Message: closing the book
with electronic mail. Prentice-Hall, ISBN 0-13-092941-7.

[17] Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell.
“Architecture-Oriented Visualization.” Proceedings of
ACM OOPSLA ‘96, 1996, pp. 389-405.

