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G1. INTRODUCTION: REVERSE ENGINEERIN

This paper motivates and describes a research program in the area of reverse engineering being

w
conducted at the Georgia Institute of Technology. Reverse engineering is an emerging interest area

ithin the software engineering field. Software engineering itself is concerned with improving the pro-

c
ductivity of the software development process and the quality of the systems it produces. However, as
urrently practiced, the majority of the software development effort is spent on maintaining existing

o
m
systems rather than developing new ones. Estimates of the proportion of resources and time devoted t

aintenance range from 50% to 80%[6].

The greatest part of the software maintenance process is devoted to understanding the system
t

a
being maintained. Fjeldstad and Hamlen report that 47% and 62% of time spent on actual enhancemen
nd correction tasks, respectively, are devoted to comprehension activities. These involve reading the

documentation, scanning the source code, and understanding the changes to be made[12].

The implications are that if we want to improve software development, we should look at mainte-
-

i
nance, and if we want to improve maintenance, we should facilitate the process of comprehending exist
ng programs. Reverse engineering provides a direct attack on the program comprehension problem.

1.1. Definition

The process of understanding a program involves reverse engineering the source code. Chikofsky

s
and Cross[8] give the following definition. "Reverse enginering is the process of analyzing a subject
ystem to identify the system’s components and their interrelationships and create representations of the

u
system in another form or at a higher level of abstraction." The purpose of reverse engineering is to
nderstand a software system in order to facilitate enhancement, correction, documentation, redesign, or

1

reprogramming in a different programming language.

.2. Difficulties

Reverse engineering is difficult. It is difficult because it must bridge different worlds. Of partic-
ular importance are bridges over the following five gaps.

� The gap between a problem from some application domain and a solution in some program-

�

ming language.

The gap between the concrete world of physical machines and computer programs and the

�

abstract world of high level descriptions.

The gap between the desired coherent and highly structured description of the system and the
actual system whose structure may have disintegrated over time.
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n� The gap between the hierarchical world of programs and the associational nature of huma
cognition.

� The gap between the bottom-up analysis of the source code and the top-down synthesis of the

1

description of the application.

.2.1. The Application Domain and the Program Domain

.
T

Programs are models or representations of problem situations from some application domain
here may or may not be hints in the program about the particular problem. Hints can take the form of

o
mnemonic variable names and in-line comments. The hints are inherently informal and tend to be out-
f-date with respect to the program. Because of this, totally automatic reverse engineering tools are

-
s
restricted to working with the formal program text. It is the job of the reverse engineer, then, to recon
truct the mappings from the application domain to the program domain[7]. This of course requires

o
fi
knowledge, not only of programming, but also of the application domain. It is no surprise, therefore, t
nd that most automatic tools are restricted to analyzing the program text and do not address the appli-

1

cation domain. An exception to this is the DESIRE system being built at MCC[4].

.2.2. The Concrete and the Abstract

Computer programs are incredibly detailed. In essence they control the values of million of bits

d
of memory inside of the computer. One of the jobs of the reverse engineer is to decide, from all this
etail, which are the important concepts. This process is called abstraction; the reverse engineer must

create an abstract representation of the program from the mass of concrete details.

The abstraction process is not linear. That is, a given section of a program may be a part of
-

c
several abstractions. The abstractions are said to be interleaved or delocalized in the section[20]. Typi
ally there is no explicit indication in the source code of the interleaving.

y
t

Abstraction involves pattern recognition, and the larger the vocabulary of patterns, the more likel
hat an appropriate one can be recognized. Unfortunately, some of the abstractions reside in the appli-

1

cation domain where they are less accessible to the reverse engineer.

.2.3. Structure and Chaos: Finding a Plan Where None Exists

s
t

When a program is originally constructed, there is a coherent structuring of details. The proces
hat creates the structuring is called design. A large variety of design methods and representation tech-

f
niques have been developed to aid this process[3, 22]. Although programming languages have some
eatures intended to facilitate abstraction and structuring, the higher-level design representations may

i
have been lost or allowed to become out-of-date by the time reverse engineering is required. More
mportantly, through maintenance activities such as porting, bug fixing, and enhancement, the original

d
structure of the program may have deteriorated[2]. That is, it is the job of the reverse engineer to
etect the purpose and high level structure of a program when the original purpose of the program may

1

have changed and where, in fact, there may be no such single purpose left in the program.

.2.4. The Formal/Cognitive Distinction

Computer programs are highly formal. They have strict rules that limit the expression of ideas
,

r
and that control how those ideas effect the computer when they run. The two types of rules are called
espectively, syntax and semantics. In the formal world, the meaning of a syntactically correct program

determines the output that is produced when a specific input is presented.

Human cognition, to the extent that it is understood, is not at all formal. Comprehension works

f
associatively. Raw data are perceived, patterns are detected, and higher level chunks are constructed
rom lower level concepts[19]. The process is controlled by expectations derived from the application

k
domain of the program and the large body of programming knowledge held by the reverse engineer:
nowledge of the programming language, typical programming practices, and the application domain.

s
f
A program is understood to the extent that the reverse engineer can build up correct high level chunk
rom the low level details available in the program.
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1.2.5. Top-Down and Bottom-Up

When a reverse engineer looks at a program, he or she is detecting patterns that indicate the

a
intent of some section of code. Low level patterns are part of higher level constructs intended to
ccomplish larger purposes. In this way, the process of analyzing a program proceeds bottom-up[21].

i
At the same time, the programmer has some idea of the overall purpose of the program and how

t might be accomplished. As the program is perused, the overall concept is refined into more lower
-

t
level details[7]. This synthesis process proceeds top-down. The difficulty is that both of these activi
ies need to proceed at the same time, in a synchronized fashion[17].

2. HOW ARE THESE DIFFICULTIES MANIFESTED?

These then are the difficulties that reverse engineers face: the distance between the application
-

c
domain and the programming language used; the need to construct an abstract description from a con
rete artifact; the loss of structure inherent in software under maintenance; the need to understand a

-
i
program using human cognition where only formal methods and tools exist; and the need to synchron
ze top-down and bottom-up activities.

The difficulties manifest themselves in three ways: lack of a systematic methodology, lack of an
-

f
appropriate representation for the information discovered during reverse engineering, and lack of power
ul tools to facilitate the reverse engineering process.

2.1. Methodology

A methodology is a comprehensive procedure with a specific production goal and a mechanism
-

i
for determining whether the goal has been reached. A methodology adds predictability and repeatabil
ty to an activity. This provides valuable information to management that can be used to adjust staffing

y
h
and schedules. Builtin feedback mechanisms can provide valuable quality checks. Once a methodolog
as been defined, tools can be built to support it. Furthermore, training materials, standards, and cour-

seware can be developed to support it.

Methodologies abound in the area of initial software development. Methodologies for reverse

b
engineering are in their infancy. Until systematic methodologies are developed and validated, the
enefits of management feedback, quality control, tool support, and training materials will be limited.

2.2. Representation

There is no agreed upon form for expressing the results of reverse engineering a software system.

d
Such a descriptive mechanism might take the form of a graphical representation, a formal notation, a
ata model, or an informal description. For a description of two approaches to the representation of

this information, see[5] and[9].

Without such a mechanism, understanding cannot be communicated among maintainers, manage-

2

ment cannot appreciate the extent and quality of the understanding, and tools cannot be integrated.

.3. Tools

Reverse engineering tools are currently limited in power. Among the features they provide are
the following.

� Restructurers detect poorly structured code fragments and replace them by equivalent structured

�

code.

Cross referencers list the places where each variable is defined and used.
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Static analyzers detect anomalous constructs such as uninitialized variables and dead code.

T

� Text editors and other simple tools support the browsing of source code.

ogether, these tools provide necessary but not sufficient functions for performing reverse
e

r
engineering. In order to provide a full suite of tools, an appropriate methodology and a comprehensiv
epresentation are required for the derived reverse engineering information.

3

3. METHODOLOGY

.1. Background: Bottom Up versus Top Down

There are two approaches to understanding a program: bottom-up, starting with the source code
g

t
and generating a description; and top-down, formulating hypotheses and confirming them by examinin
he program. An example of the former is the approach taken by Soloway and Ehrlich. They propose

e
o
a bottom-up model of analysis based on the recognition of plans in the source code[21]. The plans ar
rganized into subgoals and then goals. Experiments have been conducted that support this approach,

and Letovsky has built an analysis tool that implements part of the analysis process[14].

Another bottom-up approach is that taken by the Programmer’s Apprentice project. This work,
s

t
although primarily concerned with initial program construction, does feature an analyzer that attempt
o recognize plans and represent them in a plan calculus[16].

n
a

A completely different bottom-up approach is described by Basili and Mills. They describe a
nalysis procedure based on control flow analysis and formal documentation[1]. Hausler and his col-

leagues have described tools they are building to support this approach[13].

The top-down approach is championed by Ruven Brooks. In his approach, the program under-

E
stander attempts to recreate a series of mappings between the application domain and the program.

xploration is driven by expectations derived from the application description[7]. An expectation is
n

c
confirmed by locating a beacon in the code. This is a stereotypical programming construct, similar i
oncept to the plans mentioned above. There have been some human factors experiments that support

3

Brooks’ ideas.

.2. Synchronized Refinement

Kamper and Rugaber have developed an approach, called Synchronized Refinement, that coordi-
-

t
nates the bottom-up analysis of the source code with the top-down synthesis of the application descrip
ion[17]. It produces a description of the functioning of the system annotated by references to locations

c
in the program text that implement the various aspects of the application. The description is highly
ross referenced, indicating the fact that programs are built from component pieces that are interleaved

to accomplish the total purpose.

Synchronized Refinement has been used to help analyze an operational software system compris-
y

l
ing ten thousand lines of Cobol code. The application of Synchronized Refinement proved to be highl
abor intensive, reflecting the need for support tools. Moreover, the descriptions that were constructed

e
and the source code segments that were analyzed were managed using regular text files. This
mphasized the need for a comprehensive representation or data model based on which a data base can

m
be constructed to hold the information. Finally, it should be pointed out that all program analysis

ethods are just a part of the overall reverse engineering task that also requires consideration of file
structures, organization of runs, user interface, etc..
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4

4. REPRESENTATION

.1. Requirements for a Representation

A key ingredient for successful reverse engineering is a suitable representation for the understand-

u
ing obtained when analyzing source code. In order to design such a representation, it is important to
nderstand how it might be used. The following requirements hold for a representation suitable for

4

dealing with reverse engineering information.

.1.1. Requirements Related to the Information Content of the Representation

-
m

The representation must be able to contain a variety of types of information. These include infor
al rationale and annotations, program segments, pointers to other documentation, and application

f
d
descriptions. Most importantly, it must be able to represent the organization of the program in terms o
etected abstractions. In fact, the reverse engineer is constructing a complex information structure that

e
i
describes the organization of the program and the interrelationships of its pieces. There must be a plac
n the representation to hold observations made by the reverse engineer during this process.

4.1.2. Requirements Related to the Relationships Among the Data Being Represented

The representation is constructed incrementally by the reverse engineer. It must allow an obser-

o
vation concerning a section of code to be associated both with related sections of code and with the
verall functional description being constructed. This includes both hierarchical connections among

t
i
abstractions and heterarchical (cross reference) associations. Finally, the representation should suppor
nstances where a section of code contains several components interleaved together.

4.1.3. Requirements Related to How the Representation is Constructed

The representation needs to be easy to construct incrementally, both computationally and from a
e

u
user interface point of view. Additionally, it should be language independent in the sense that it can b
sed during the reverse engineering of programs written in a variety of languages and programming

4

paradigms.

.1.4. Requirements Related to How the Representation is Used

r
a

The representation must be formal enough to support automatic manipulation. For example, afte
program has been reverse engineered into the representation, it should be possible to apply tools to

h
t
adapt segments for reuse. This process is called transformational programming, and a variety of suc
ransformations exist[11, 15].

4.1.5. Requirements Related to How the Representation is Accessed and Viewed

a
m

The predominant use of the representation will be to explore program browsing. That is,
aintenance programmer desiring to fix a bug or make an enhancement needs to be able to peruse the

n
a
information structure either to answer specific questions (which functions call a given function), obtai
n architectural overview (in graphical form), or locate a specific section of the code (where are all of

t
t
the statements that could affect the final value of a given output variable). The representation must, a
he same time, be independent of any particular design method or notation and be capable of generating

4

information in any of a variety of formats.

.2. Design Decisions

When a program is constructed, the original designer makes a series of decisions that break the
t

i
problem solution into pieces and then indicates how the pieces work together to solve the problem. I
s natural to base a methodology for reverse engineering on the recognition of design decision in code.

s
Furthermore, the representation for the information detected during reverse engineering is naturally
tructured to reflect the interrelationships of the code segments used to implement the detected deci-

sions.
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a
r

Synchronized Refinement is based on the detection of design decisions in code. Moreover,
epresentation is being designed to satisfy the requirements mentioned above that uses design decisions

as a structuring mechanism.

Design decisions and how they can be recognized are described in[18]. The description is sum-

t
marized here. Design decisions can be divided into several classes based on the type of abstraction
hey provide. Among the classes that are useful to detect during the reverse engineering process are the

following.

� Composition/decomposition - Programs are built up from parts, and problems are broken down

c
into smaller, more easily solvable sub-problems. This type of decision is manifested in the
ode by such constructs as modules and data structures.

e� Encapsulation/interleaving - Subcomponents interact with each other. If the interactions ar
limited and occur through explicit interfaces, the component is said to be encapsulated. If, usu-

t
ally for reasons of efficiency, two or more plans are realized in the same section of code or by
he same data structure, then the components corresponding to those plans are said to be inter-

�

leaved.

Generalization/specialization - Often one component is similar to another. It may then be pos-

c
sible to construct a higher level parameterized component capable of realizing both as special
ases. In object-oriented programming, the process is often reversed, with the more general

�

component constructed first, and the special cases added later.

Representation* - In translating from the problem domain to the solution domain, decisions are

e
made that result in a program component serving as a model for some application domain
ntity. If efficiency is a concern, high level programming constructs can be further represented

L
by other constructs closer to the machine, such as using an array to represent a stack.

anguages such as Ada are emerging that support explicit representation, but the reverse

�

engineering of programs from older languages requires the detection of these decisions.

Data/Procedure - Programs are sequences of computations organized by control structures.
r

t
Variables are ways of saving intermediate results for later use, either to avoid recomputation o
o simplify the expression of the computation. The introduction of a variable is an important

-
t
design decision that is, unfortunately, too easy to make without appropriate thought and annota
ion.

� Modality - In some situations, a designer has a choice of how to express the relationship
,

s
between input and output parameters. This is particularly true in logic programming languages
uch as Prolog. For example, imagine the relationship between two arrays, both of which con-

u
tain the same elements, one of which is ordered. If the ordered version is offered as input and
nordered versions are output on subsequent calls, then the program is a permutation generator.

t
In the situation where the unordered array is offered as input and the ordered version is output,
hen the program is a sorter. A single relationship, expressing a high level specification, can

-
t
lead to alternative functions depending on the modes (input/output designations) of the parame
ers. This decision is usually made at a very early stage of design, if it is made explicitly at

4

all.

.3. Data Modelling

The characterization of design decisions described above is suitable for guiding an experienced
d

t
programmer through the Synchronized Refinement process. However, it is not precise enough to buil
ools for automating the process. Moreover, as noted above, the detected decisions and annotated code

�

need to be stored in a data base suitably organized to support software maintenance.
�����������������

* This use of the term representation should not be confused with its use as a notation for capturing a high-level under-
standing of a program.
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In order to define such a data base, a data model is required. A data model describes the various

m
data items to be stored and the relationships among them. It is formal in the sense that the data items

ust all be representable using standard data types and structures and that all of the relationships must

5

be representable in terms of those provided by the underlying data base management system.

. TOOLS

Synchronized Refinement is a labor-intensive process for reverse engineering a program. Many
e

i
of its component activities are, however, automatable using well-understood techniques. However, th
nformation that the tools produce needs to be saved in a data base so that it can be later accessed by

5

software maintainers.

.1. Analysis Tools

Recognizing design decisions requires intensive, non-linear access to the source code. When a
e

c
decision is suspected, it often needs to be confirmed by examining related sections of code. Also, th
ode needs to be manipulated so that the details of the decision can be hidden and a summary displayed

in its place.

Many of the decisions are detected by recognizing syntactic patterns of program constructs and

s
variable usage. Their recognition involves much of the same processing as occurs during the early
tages of compiling a program. In fact, the artifacts of parsing a program, the abstract syntax tree and

-
g
the symbol table, can serve as a source of data from which to build an initial representation of the pro
ram.

5.2. Browsers/Hypertext

If a program is suitably analyzed and stored in a structured fashion, browsing activities are facili-

s
tated. In particular, the abstract syntax tree can serve to guide those perusals that are aimed at under-
tanding the hierarchical nature of the program code. Likewise, the symbol table information can serve

to support the cross reference-like queries.

The technology being described bears a striking resemblance to that of hypertext systems[10].
-

z
There, high bandwidth displays and direct manipulation interfaces are used to explore non-linear organi
ations of text. In this case, the text is source code and the non-linear relationships are provided by the

5

parser.

.3. Object Server

The information structure being assembled from detected design decisions needs to be saved in a

i
repository for use by software maintainers. Although some of its organization is supportable by exist-
ng data base systems, these are not entirely adequate. In the same sense that CASE tools are turning

r
to object oriented data bases and object servers in order to support forward engineering activities,
everse engineering needs to be supported by non-traditional methods.

5.4. Task Oriented Tools/Debugging

Once a comprehensive information structure is populated with information about a program, tools

s
specific to a particular software maintenance task can be applied. The data model and the information
tructure are the prerequisites for an integrated collection of tools.

a
t

As an example consider the following debugging tools. The software maintainer begins with
rouble report that indicates that a program is producing unexpected output on a given run. The main-

tainer desires to quickly localize the problem to a small segment of the code. He uses a tool that
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-
s
indicates for a given set of correct and incorrect output values, which statements are potentially respon
ible for the problem. The tool examines the dependency relationships among the program statements

e
w
and the execution history of the program to determine the appropriate statements. The tool has a mod

here only relevant statements are displayed in a given situation. In this way the maintainer can con-

t
centrate on the appropriate code sections. The tool makes it determination from the information con-
ained in the data base.

6

6. CONCLUSIONS

.1. Five Gaps

The Introduction to this paper describes the reasons why reverse engineering is difficult. The
-

d
remainder of the paper presents an integrated approach to solving these problem based upon a metho
ology called Synchronized Refinement. This approach is based upon the detection of design decisions

b
in the source code and the organization of the information into an information structure suitable for
rowsing by software maintainers. This approach addresses the five gaps discussed in Section 2 in the

following ways.

� Application domain/program domain - Synchronized Refinement involves the parallel explora-
.

T
tion of the source code and construction of a functional description of the application domain

he process itself constructs the bridge between them.

s� Concrete/abstract - Synchronized Refinement constructs an information structure that organize
the low level details into more abstract constructs. The process continues until a concise high

�

level description of the program’s main purpose is expressed.

Coherency/disintegration - It is only by looking at the overall structure of a program that
-

t
organizational difficulties can be appreciated. Synchronized Refinement constructs a represen
ation of the actual structure of the program and allows the reverse engineer to annotate the

l
e
representation with questions and suggestions about improvements. Moreover, the data mode
nables the construction of transformation tools useful for improving the structural aspects of

�

the program.

Hierarchical/associational - The data model supports a variety of relationships including both
-

s
hierarchical (program nesting) and cross reference information. Moreover, the model is exten
ible to new relationships deemed appropriate by the reverse engineer.

.

6

� Bottom-up/top-down - Synchronized Refinement coordinates both of these activities

.2. Productivity and Quality

The Introduction also discusses how reverse engineering relates to other activities in the software

e
engineering field. Software development productivity and quality are improved if programs can be
nhanced instead of being rebuilt. They are also improved if major pieces of existing systems can be

g
p
reused with reduced effort. These activities require that software engineers know in detail what existin
rograms do.

The purpose of this research program is to support the comprehension process. The support
n

i
comes in the form of a methodology called Synchronized Refinement. The methodology produces a
nformation structure suitable for use by software maintainers in understanding programs and adapting

-
f
them for alternative uses. Moreover, it enables tools, such as debuggers and program transformers, use
ul in maintaining and improving software quality.
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