
SysProf: Online Distributed Behavior Diagnosis through Fine-grain System Monitoring

Sandip Agarwala and Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

{sandip, schwan}@cc.gatech.edu

Abstract

Runtime monitoring is key to the effective management
of enterprise and high performance applications. To deal
with the complex behaviors of today’s multi-tier applications
running across shared platforms, such monitoring must meet
three criteria: (1) fine granularity, including being able to
track the resource usage of specific application behaviors
like individual client-server interactions, (2) real-time re-
sponse, referring to the monitoring system’s ability to both
capture and analyze currently needed monitoring informa-
tion with the delays required for online management, and
(3) enterprise-wide operation, which means that the moni-
toring information captured and analyzed must span across
the entire software stack and set of machines involved in re-
quest generation, request forwarding, service provision, and
return.

This paper presents the SysProf system-level monitoring
toolkit, which provides a flexible, low overhead framework
for enterprise-wide monitoring. The toolkit permits the cap-
ture of monitoring information at different levels of granular-
ity, ranging from tracking the system-level activities triggered
by a single system call, to capturing the client-server interac-
tions associated with certain request classes, to characteriz-
ing the server resources consumed by sets of clients or client
behaviors. The paper demonstrates the efficacy of SysProf
by using it to manage two different enterprise applications:
(1) detecting performance bottlenecks in a high performance
shared network file service, and (2) enforcing service level
agreements in a multi-tier auctioning web site.

1 Introduction
Distributed systems are becoming increasingly complex,

in part because of the prevalent use of web services, multi-
tier architectures, and grid computing [3, 13, 17], where dy-
namic sets of machines interact with each other via dynami-
cally selected application components. A key problem in this
domain is to understand the runtime performance behaviors

of these highly distributed, networked applications and sys-
tems, to better manage system assets or application response
and/or to reduce undesired effects like congestion.

Multiple technical issues make it difficult to manage enter-
prise applications. First, effective management often requires
detailed performance analysis, going beyond measurements
of simple metrics like average CPU load, network bandwidth,
number of tasks completed, etc. [6]. Yet there currently ex-
ist no standard tools for capturing such detailed information.
Second, while industry is developing standards for instru-
menting distributed applications and systems [5], the XML-
based representations used for the Common Base Event mon-
itoring standard and the application-level monitoring meth-
ods and interfaces provided by widely available tools like HP
Openview exhibit overheads that prevent their usage for cap-
turing and analyzing detailed system- or application-level in-
formation about the precise resource usage associated with
select application behaviors [24]. Third, the large diversity
of applications routinely used in the enterprise and grid do-
mains, ranging from simple ftp to complex distributed collab-
orations, makes it difficult to assume the existence of com-
mon, clean interfaces for performance evaluation. Finally,
source code is not likely readily available for all of the appli-
cations being evaluated and managed by an organization.

One approach to runtime management is to integrate
generic methods for analyzing program performance into
middleware, used in systems like Photon [27], Pinpoint [12],
and many others [28]. The idea is to automatically ob-
serve a program’s usage of middleware functions, including
the middleware-mediated interactions between different, dis-
tributed application components. Applications need not be
modified, and access to source code is not necessary. How-
ever, since actual resource usage is controlled by the operat-
ing system, it is not possible to accurately account for the per-
formance effects of certain application- or middleware-level
behaviors. The basic causes of these problems are system-
level asynchrony, i.e., the OS kernel’s internal use of concur-
rency to satisfy multiple application requests, and system-
level independence, i.e., the fact that OS kernels indepen-

1

dently manage and allocate system resources for the multiple
application-level processes being run. From the middleware
level, therefore, it is difficult to attribute the usage of certain
system resources to specific user-domain actions.

Prior research work has already recognized the impor-
tance of making operating systems more flexible and ac-
countable for their resource usage [7, 21]. The goal of our
research is to provide to applications accurate and timely in-
formation about their current resource usage. There are many
uses for such information. A system administrator may be
interested in the amount of time a client’s request spends in-
side the OS kernel, to detect why a web-server is respond-
ing too slowly. More generally, shared network services
in multi-tier architectures will concurrently execute requests
from different clients, and request processing is not limited
to just one machine. Finally, in addition to analyzing the per-
formance implications of the complex distributed behaviors
listed above, information about total resources used in pro-
cessing requests is very important for utility billing, auditing,
enforcing service level agreements (SLA), capacity planning
and other management tasks.

The specific question asked in our work is whether it is
possible to dynamically gather detailed monitoring informa-
tion about shared network applications and then analyze their
behavior, without having complete knowledge about their de-
sign and structure and without studying their source code (if
available). That is, are there general ways to capture and
analyze application behavior without having to instrument
the application, instrument middleware, or make assump-
tions about application APIs? To answer these questions, we
have designed the SysProf system-level toolkit, which pro-
vides a flexible framework for measuring the resource con-
sumption behavior of various activities. An activity may be a
system call made by some user-level application, or it may
be a specific request-response interaction between a client
and a web service. An activity may also be some class of
application-level actions, such as the composite behavior of
requests residing in a high priority request queue in an ap-
plication server. In all such cases, SysProf provides sup-
port for carrying out enterprise-wide measurements – from
application to system levels and across multiple machines
– of the resources used by activities. SysProf’s interface
is such that activity monitoring may be customized, at run-
time, to current needs. Furthermore, with the monitoring
of runtime activities may be associated the analyses needed
to aggregate, filter, or correlate monitoring data, as per cur-
rent diagnostic needs. Analyses are carried out by pre-built
kernel-level functions that can be dynamically activated or
de-activated, and/or they can use custom functions specified
by the application or system administrator. Furthermore, af-
ter local, in-kernel analysis, monitoring data may then be ag-
gregated and sent to remote analyzers (or to any remote data
consumer) through kernel-level publish-subscribe channels.

These channels potentially connect all machines participat-
ing in the activities being carried out. In essence, therefore,
SysProf uses a system-level overlay to capture, analyze, and
correlate monitoring data. The overlay’s actions may be dy-
namically customized to meet the granularity and real-time
needs of the processes that require monitoring information.

SysProf does not require changes to user-level code, in-
cluding changes that would recompile it (e.g., with a debug
switch). By using system-level mechanisms for monitoring
user-level applications, SysProf can run without user involve-
ment and without source code knowledge. Another advan-
tage of SysProf is its ability to collect richer and more accu-
rate information than is possible at user level. This includes
tracking in detail the actions of specific dynamically selected
applications, application components, and properties of their
behaviors.

SysProf is derived from our earlier work on kernel-level
monitoring, termed DProc [1]. Compared to such work,
the new contributions described in this paper are the follow-
ing:

• SysProf provides a flexible framework for monitoring at
the granularity of individual activities, such as the system
calls issued by a specific client or a client’s interactions
with a certain remote application service.

• SysProf’s analysis actions associated with the runtime
capture of monitoring data are configurable dynamically,
thereby enabling tradeoffs between the granularity, over-
heads, and delays of runtime diagnoses.

• High performance and low perturbation for low granu-
larity monitoring are due to SysProf’s use of dynamic
code generation, binary encodings for monitoring data,
low overhead kernel-level publish-subscribe messaging,
and efficient event hashing.

• The utility of SysProf is demonstrated in two application
contexts:(i) in a shared NFS service where SysProf can
dynamically detect bottlenecks in proxies vs. servers,
and (ii) in a multi-tier auctioning web service called RU-
BiS [10], where SysProf-based runtime monitoring and
diagnosis are used to improve the scheduling of client re-
quests.

Micro-benchmarks and performance evaluations of
SysProf validate the importance of low granularity and
highly accurate monitoring. The overhead of SysProf is
within acceptable limits that makes it possible to be applied
to many online algorithms. In our evaluation, application
performance of an online E-Commerce website decreased
by less than 2% because of SysProf. But the throughput gain
(> 14%) that was achieved with SysProf far outweighed the
cost. SysProf was also able to determine the bottlenecks in a
virtual storage service by correctly identifying the sources of
latencies in the system.

2 SysProf: Design and Architecture
The SysProf toolkit keeps track of the different activities

in a distributed system and resources consumed by them. An
activity may involve just one machine, like a system call that
reads file data from a local disk, or it may span multiple ma-
chines, like a “HTTP” request in a multi-tier web service. In
either case, an activity is a SysProf-defined entity that is not
constrained to match a single application-, middleware-, or
system-level abstraction. This paper focuses on activities that
involve network interaction between multiple machines. Our
ongoing work is using the activity notion to better understand
end-to-end application properties in the light of concurrent
OS behavior on single machines.

Driver

Network Layer

Transport Layer

Socket Layer

Kernel

User

L S

L T

L N

L D

Packet Out
(Response to Client)

Network
Packet In

(Request from Client)

Appl 1 Appl n LU

LK

L

xAppl

Figure 1: An Activity example: Different L’s show the time spent
(latency) at each of the marked steps

Figure 1 presents a sample activity. A request packet from
a client arrives in a system and after being processed by dif-
ferent network protocol layers, it is delivered to the user-level
server , Applx. The server performs some computation on the
request and calculates a response, which is then sent back to
the client, after again traversing the network stack. At each
processing step, some resources (e.g. CPU cycles, memory,
etc.) are used, and the request may be queued a number of
times before a response is finally sent out. In order to de-
bug the performance of this application and detect potential
bottlenecks, the developer or the system administrator may
need to know the time spent and resources consumed at each
of these steps. In addition, the developer may need to un-
derstand queuing and concurrency behaviors. SysProf can
provide details about the time spent in different steps of the
network protocol processing, time spent by application at the
user-level and at the kernel-level while the request is being
processed, time spent by the application waiting for I/O dur-
ing request processing, etc. SysProf monitoring requires no
modification to the Applx while providing detailed insights
into the execution of the client’s request. (1) Monitoring in-
formation can be used to identify bottleneck resources, by
identifying where most of the time is spent (i.e., at the kernel-
level or at the user-level). (2) It can identify the reason a

request spends some unusual amount of time in the kernel
buffer, perhaps because there are too many outstanding re-
quests Applx must process or perhaps because of some bug
in the Applx itself. (3) It can identify what Applx was do-
ing when the request was waiting in the kernel buffer? Was
it executing or was it blocked for some reasons (e.g. I/O)?
Answers to such questions are important steps toward identi-
fying performance problems in networked IT infrastructures.

The depiction of the communication activity shown in Fig-
ure 1 is oversimplified. Actual web service requests, for ex-
ample, may be processed locally by the server by fetching
data from local disks, or they may query database servers on
remote machines before responses are generated. Such re-
quests may be processed asynchronously by processes differ-
ent from the ones who originally received them (e.g., prox-
ies), and control transfers may be accomplished by shared
memory, message queues, or with other IPC mechanisms.
Other issues like concurrency (to handle requests from dif-
ferent clients) and interleaving (handling different requests
from same client) further complicate request analysis. Fig-
ure 2 depicts an overview of the SysProf architecture. It has
five main components, which are described in detail below:
Kprof is the SysProf monitoring interface. It operates at
kernel level and provides a generic API for the collection
of various events from different kernel components. To
track activities, a set of key points in the kernel are instru-
mented statically (like in Linux Trace Toolkit [30]). Kprof
receives information from these points as efficient binary
events. Events are delivered by invoking a function provided
by Kprof’s API. These events can be grouped into four ma-
jor types: Scheduling events (context switches, process cre-
ation/deletion, etc.), System Call events, Network events, and
File System events (open, close, read, write, etc). Events
can be selectively switched on and off depending on the re-
quirement set by the SysProf controller or the local perfor-
mance analyzer (LPA). Events can also be pruned on the
basis of process IDs, group IDs, or other such predicates.
Each LPA specifies the set of events in which it is inter-
ested by registering a callback function with Kprof. These
callbacks are invoked by Kprof when their events are gen-
erated. When none of the analyzer(s) subscribes to events,
all of them are turned off, resulting in almost negligible per-
turbation for Kprof-instrumented operating system kernels.
Kprof builds on our earlier dProc kernel-level monitor, and
its functionality is similar to the static kernel instrumentation
offered by LTT [30]. Further, using Kprof does not prevent
us from using other available instrumentation techniques like
Dprobes [22], Dtrace [9], Kerninst [26], etc. Our goal is not
to innovate in kernel-level monitoring, but instead, to have
sufficient facilities for extracting relevant monitoring infor-
mation from OS kernel, without major kernel modifications
and with acceptable perturbation [19].
The Local Performance Analyzer filters, aggregates, and

App 1 App 2 App m

System Calls

Scheduler/
Network

Other kernel
Components

Drivers

Local Perf.
Analyzer

 Custom Perf.
Analyzer 1

 Custom Perf.
Analyzer n

/proc

 Subscribers
Other

SysProf

Kernel

User

KProf

To
 N

et
w

or
k

Kernel
Instrumentation

To User−Level

SysProf
Dissemi−
nation
Daemon

Global Perf.
Analyzer

SysProf Controller

Buffers
Per−CPU

Figure 2: SysProf Software Architecture

correlates raw monitoring data, and then uses it to generate
different performance metrics from the events generated by
Kprof. There can be more than one LPA in SysProf, each po-
tentially performing different analyses. During initialization,
each LPA registers a callback with Kprof, and it specifies a
list of events that need to be delivered to it. These callbacks
are in the “fast path” of the kernel code and may also be in-
voked from interrupt contexts. Therefore, it is necessary that
they never block and are computationally small. For lack of
space, we next describe only one LPA in detail, the one that
diagnoses a request-response interaction between a remote
client and a user-level application server.

Messages and Interactions: The first diagnosis step is to iden-
tify a certain request-response pair. Because of interleaving
and concurrency (as discussed in Section 2), it is non-trivial
to extract such a pair without any application-specific knowl-
edge. Recently, some offline black-box approaches have been
proposed to infer causal path patterns [2], but online black-
box techniques pose challenges like overhead and timeliness.
In order to enable online analysis, SysProf defines the no-
tions of messages and interactions. Let nodeA (identified
by {nodeA IP, nodeA port} pair) and nodeB (identified by
{nodeB IP, nodeB port} pair) be the nodes communicating
with each other. A series of packets from nodeA to nodeB

without any intervening packets in the opposite direction con-
stitute one message. An interaction consists of a message
pair in the opposite direction. The intuition behind this ap-
proach is that requests and responses will be composed of
multiple packets. Multiple requests may interleave, in which
case domain-specific knowledge and/or ARM support [5]
would be necessary.

LPA subscribes to multiple Kprof events to keep track of
interactions and the different performance metrics associated
with them. Specifically, LPA maintains a window containing
the past several interactions and the metric values computed
for them. Window size can be changed dynamically, and win-
dow contents are evicted to the dissemination daemon after
some time. That is, each LPA maintains two per-CPU buffers
to store captured data, and when one of them has been filled,
the dissemination daemon is notified, and the LPA switches
to the next buffer. Each such buffer switch requires interrupts
to be disabled locally to avoid data corruption.

Information collected from these events includes the time
at which some interaction started, the number of pack-
ets/bytes exchanged, the amount of time spent by the inter-
action in user and kernel modes, the interaction id, the name
and the function of the user-level application server that re-
ceives packets from the interaction, and others. It is also pos-
sible to capture information about context switch details, the
number of disk I/O operations performed by the application,
and the length of time the application is blocked (e.g., for
I/O) during an interaction. Such information capture can be
configured and turned on and off dynamically, depending on
current analysis requirements.

Custom Local Performance Analyzer (CPA): In addition
to the statically defined LPAs, custom analyzers can be dy-
namically created and downloaded into the kernel. CPAs
function just like normal LPAs, including registering of call-
backs with Kprof and indicating the set of events they wish
to receive. CPAs are specified in the form of E-Code [14] (a
language subset of C), compiled through run-time code gen-
eration. CPAs provide great flexibility in terms of specifying

application-specific analyses.
The SysProf dissemination daemon distributes the informa-
tion generated by LPAs to the remote nodes that need it and
also makes it available to the user-level through the standard
“/proc” virtual filesystem interface (i.e., as with Dproc [1]).
On receiving a “buffer full” notification from a LPA, the dae-
mon wakes up and copies the LPA’s data into its own buffer.
If the data is not picked up in a timely fashion, it may be
overwritten. The size of the buffer, therefore, must be chosen
carefully. Remote nodes subscribe to the information gener-
ated by LPAs, and it is the daemon’s job to aggregate data
collected from different LPA buffers in order to send it to
interested parties. For high performance and low overheads
in event acquisition and dissemination, the daemon uses dy-
namic data filters, PBIO-based binary encodings, and kernel-
level publish-subscribe channels.
The Global Performance Analyzer aggregates and corre-
lates the data it receives from different SysProf daemons.
Specifically, it correlates the source and destination IP ad-
dresses, port information, and NTP timestamps in the logs
from different nodes. After aggregating the resource usage of
each individual interaction, GPA computes the overall perfor-
mance of the associated request-response pair. Other nodes
in the system can query the GPA to determine information
about a particular interaction or about the system as a whole.
The GPA periodically dumps its information onto local disk,
which can be used later for purposes of auditing, workload
prediction, and system modeling.
The SysProf controller regulates the granularity and the
amounts of information monitored and analyzed by SysProf.
It can instruct the LPAs to collect statistics for some client
class rather than for individual interactions. It can change the
sizes of internal LPA buffers. It provides a management in-
terface for SysProf and makes it easy for the user to select its
functionalities.

3. Experimental Evaluation
SysProf has been implemented in Linux (kernel version

2.4.19) as a set of loadable modules and a kernel patch
that defines the instrumentation required to generate events.
The current implementation only supports Intel x86 plat-
forms, but the general technique is applicable to other ar-
chitectures. The next few subsections describe the results
of micro-benchmarks that assess the accuracy and overheads
of SysProf. We then present our experiences with SysProf
in detecting bottlenecks in a shared NFS application and in
making scheduling decisions in an online auctioning web-site
called RUBiS [10].

3.1 Microbenchmarks

As discussed in the previous sections, SysProf has a neg-
ligible effect on the performance of services it monitors. Be-
cause of its configurable interface, the overhead of SysProf
can be varied ranging from less than 1% of the system re-

source to more than 10%. We measured the overhead in its
default configuration by running it with linpack benchmark
on a setup of two nodes (2.8GHz uni-processor, 512KB cache
and 4GB RAM) connected to each other by a 1Gbps ether-
net. Linpack measures the computation power of a machine
in MFLOPS. There was no change in the mflops measured by
linpack due to SysProf. One of the reasons is that SysProf
generates more activities when there are network interac-
tions, so linpack was probably not a very good benchmark.
In another microbenchmark experiment, we employed Iperf
to test the overhead of SysProf. Bandwidth was measured
between two nodes, first with SysProf disabled and later en-
abling it. The measured bandwidth in the later case (∼810
Mbps) was almost 13% less than that of the former (∼930
Mbps). This reduction in bandwidth was due to overhead in-
curred by examining packets at such high speed and not due
to SysProf network usage. In a 100Mbps LAN, this overhead
came down to 3%.

3.2 Shared NFS Proxy

Figure 3: Virtual Storage Service
Virtual storage architecture has been quite popular in the

enterprise storage domain to provide fast, efficient and fault
tolerant service to the consumers [4]. Figure 3 shows a very
simplified version of a virtual storage service. The back-end
storage servers are hidden from the client’s view by a user-
level proxy that interposes every request from the client to the
server. The real scenario is of course very complex and may
consist of multiple level of hierarchy, each providing some
kind of service and with multiple front-end proxies. A typ-
ical problem in these environments is to detect failures and
performance bottlenecks. One of the ways to detect this is
by tracking the execution of the requests through different
components and measuring the latencies and resources con-
sumed. However, this is a difficult problem because there
may be a large number of nodes involved through which the
requests pass and get processed.

In this section, we illustrate how SysProf can be used
to detect performance bottleneck in a virtual storage ser-
vice like the one shown in Figure 3. We ran a filesystem
benchmark called Iozone(http://www.iozone.org/)
as client’s workload. Iozone benchmark can test the perfor-

mance of the number of I/O operations. We configured Io-
zone to generate write/re-write tests and varied the number
of threads it forks to see the effect on resource usage. The
number of threads created in each runs were same for both
the clients.

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

Ti
m

e
(M

ic
ro

se
co

nd
s)

No. of threads / client

user-level
kernel-level

Figure 4: Avg time spent by client-proxy interactions at the proxy

Figure 4 shows the average amount of time an interaction
between client and proxy spend at the proxy node, both at
the user-level and at the kernel-level. The amount of time a
request spent at the user-level is almost constant for different
number of client threads but the kernel time goes up because
of increase in the request traffic. This is because the proxy
does very little processing of requests and its job is to just
forward the request to the back-end NFS servers. Therefore,
it spends a constant amount of time on every request it pro-
cesses. But as the traffic is increased, kernel buffers get filled
up and the requests get queued at the kernel-level waiting for
their turn to get processed by the user-level proxy.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2 4 6 8 10 12 14 16

Ti
m

e
(M

ic
ro

se
co

nd
s)

No. of threads / client

NFSD

Figure 5: Avg time spent by the interactions at back-end server

We did a similar measurement with SysProf at one of the
back-end NFS servers. Since the NFS server ran as kernel
daemon, no time was spent by the request at the user level.
Figure 5 shows the average time spent by different interac-
tions in the kernel of the back-end server. This time is more
than an order magnitude than the time spent in the proxy.
This shows that the the back-end server is the major contrib-
utor to the delay seen in processing the client request. The

network round-trip delay is insignificant (< .3ms) as com-
pared to the time spent in the back-end.

From the above study, we showed how SysProf can be
used to identify the bottleneck resources. It not only tells the
delay incurred in request processing on a particular node but
also gives fine details like whether the amount of time was
spent in user-level or kernel-level, the number of outstanding
interactions and so on.

3.3 Multi-tier Web Service

In this section, we study a dynamic window-constrained
scheduling algorithm for a multi-tier web application called
RUBiS, and show how it can provide better QoS using the
information provided by SysProf. RUBiS implements core
functionalities of an auction site like selling, browsing and
bidding. RUBiS is available in three different flavors: PHP,
Java HTTP Servlets and EJB. We use the Servlets version.

In this evaluation study, we apply a black-box schedul-
ing algorithm called DWCS to RUBiS and demonstrate that a
resource-aware DWCS can provide better QoS guarantees as
compared to the ordinary DWCS. Although DWCS has tradi-
tionally been used in streaming multimedia applications that
can often tolerate infrequent losses or misses of data gener-
ation or transmission and in linux process scheduling [29],
it is equally applicable in enterprise domain where different
workloads need to be multiplexed in a shared utility infras-
tructure (like a multi-tier web service). These workloads
are often associated with some performance goals (like the
minimum throughput or the maximum response time) and
may have certain real-time requirements which are usually
expressed in the form of Service Level Agreements (SLAs).
For example, a bidding request in an online auction site like
RUBiS has real-time deadlines, while a comment posted by a
user has a less stringent deadlines.

We apply DWCS to schedule two different request classes
in RUBiS with SysProf disabled. These requests were gen-
erated using httperf [23] on a separate client machine. 60
client sessions were created and half of them generated high
priority bidding requests and the other half generated low
priority comment requests. The bidding request is cpu in-
tensive and consumes lot of cpu at the servlet server which
processes it. The comment request on the other hand gen-
erates significant network traffic. Each request class has
a Poisson arrival distribution with mean rate equal to 150
requests/sec. The scheduler ran on the same node as the
client and the request dispatching was facilitated by prefixing
the request’s URL path with the appropriate servlet server’s
name. Apache server was configured to multiplex the re-
quests to the different backend server depending on these
prefixes. Figure 6 shows the result of applying DWCS to
the two request classes. The average throughput achieved
for bidding requests and comment requests were 145 and
134 responses/sec. respectively. Halfway through the ex-

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (R

es
po

ns
e/

se
c.

)

Time (sec)

bidding
comment

Figure 6: Throughput with DWCS

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (R

es
po

ns
e/

se
c.

)

Time (sec)

bidding
comment

Figure 7: Throughput with RA-DWCS

periment, we introduce perturbation in one of the servlet
servers by running four linpack(http://www.netlib.
org/linpack/) processes. The average throughput of the
two classes fell to 118 and 115 responses/sec. respectively.

Figure 7 shows the results of resource-aware DWCS (RA-
DWCS) that use SysProf information to guide its scheduling
and dispatching decisions. The degradation in throughput
is far less as compared to our earlier experiment. It should
also be noted that the higher priority bidding request has
very insignificant drop in performance and this was basically
because of the fact that these requests were routed by RA-
DWCS to the server that was lightly loaded.

4 Related work
Performance monitoring of distributed systems is a fre-

quent topic of investigation. The systems most similar to ours
in terms of monitoring are Dproc [1], ganglia [20], MAG-
NeT [16] and some others. The differences between those
systems and SysProf is that we can monitor and track re-
source usage both at multiple granularities and across mul-
tiple machines, and then analyze the resulting information in
a hierarchical manner. The outcome is a low overhead moni-
toring solution.

The notion of request-based analysis is not a new one. It
has been used in a number of research projects. Magpie [8]
derives the causal paths and resource consumption from ap-
plication, middleware, and system traces. Pinpoint [12] in-
struments J2EE middleware to propagate a unique id with
each request, and then uses the generated traces to localize
faults. In comparison, SysProf does not modify user-level
code or instrument data packets. By doing so, we lose some
causality information, but the resulting, low overheads allow
us to perform online information analysis. Aguilera et al. [2]
treat each system as a black box and infer the causal pat-
tern from the passive message traces. However, this approach
cannot attribute resource usage correctly because of the ab-
sence of internal system information.

Causeway [11] and SDI (Stateful Distributed Interposi-
tion) [25] provide operating system constructs that the appli-
cation can use to track its activities in a multi-tiered system.

The advantage is that it is possible to do very deterministic
analysis with this approach. SysProf, on the other hand, tries
to infer the application behaviour automatically and gener-
ates information at different level of granularity.

Many kernel instrumentation techniques have been pro-
posed in the literature. Though the focus of our work is not
in designing new instrumentation methods, they are still cru-
cial to the basic performance of SysProf. SysProf uses LTT-
like [30] methods of generating events. Finally, there are
other tools like Dprobes [22], Dtrace [9], and Kerninst [26]
that allow dynamic instrumentation of kernel code. Dynamic
instrumentation may be desirable in cases where the system
has to be debugged, but can’t be shut down to apply static
instrumentation patches.

Tipme [15] monitors and diagnoses unusually long la-
tencies in an interactive environment on a single machine.
ETE [18] requires application level instrumentation to gener-
ate end-to-end response times. In comparison, SysProf does
not require changes to user-level code, and it can measure la-
tencies and resource consumption on multiple machines. It
analyzes performance data in a hierarchical fashion and pro-
vides a customizable interface that can be tuned at run-time.

5 Conclusions and Future Work
We presented a toolkit called SysProf that can monitor

and analyze different activities in a distributed system at a
different level of granularity. The kernel is instrumented
to generate performance events that are processed, first by
the local analyzers (in their per-CPU buffers) and then by
the global analyzers. The toolkit is configurable and per-
mit run-time extensions to add new analysis. The use of
performance gears like the selective monitoring, hierarchi-
cal analysis, per-CPU buffers, kernel-level messaging and
others keep the overhead low. However, certain activities
(like the interleaved request) cannot be monitored efficiently
without domain-specific knowledge. The toolkit was demon-
strated to be useful in detecting performance bottleneck in a
shared NFS service and in providing real-time guarantees in
an enterprise-based web service.

Management of complex applications and IT infrastruc-

tures is becoming a key issue in the enterprise domain. Be-
ing able to automate the system and reduce human interven-
tion can increase efficiency, reduce errors and significantly
cut down IT costs. The next generation enterprise applica-
tions will be evaluated more on the basis of the ability to
achieve QoS goals, Service Level Agreements and business
revenue generated than on overall raw performance. This re-
quires the system to be able to constantly monitor and an-
alyze the services that are offered to the clients and give
feedback to them, thereby forming a closed-loop system that
can constantly adapt and tune itself to the changing work-
load, resources and business demand. The cumulative bene-
fits in terms of decreased management complexity and higher
quality of service easily offsets the cost due to monitoring
overhead and with the recent trends in the hardware towards
multi-core platform, it won’t be unusual to have a core dedi-
cated to the analysis of the services that run on that platform.

In the future, we want to continue with our research in for-
mulating new algorithms to analyze distributed application
behaviour. Our experience in designing SysProf has been
valuable in identifying the challenges in this domain. We
want to use this experience in building tools that can auto-
matically discover and diagnose the problems in enterprise
applications and make them more autonomic and manage-
able.

References
[1] S. Agarwala et al. Resource-Aware Stream Management with

the Customizable dproc Distributed Monitoring Mechanisms.
In HPDC, pages 250 – 259, June 2003.

[2] M. K. Aguilera et al. Performance debugging for distributed
systems of black boxes. In SOSP, October 2003.

[3] G. Alonso et al. Web Services Concepts, Architectures and
Applications. Springer Verlag, 2004.

[4] D. C. Anderson et al. Interposed request routing for scalable
network storage. ACM TOCS, 20(1):25–48, February 2002.

[5] Systems Management: Application Response Measurement
(ARM). Open-Group Technical Standard, Catalog No. C807,
ISBN 1-85912-211-6, July 1998.

[6] An architectural blueprint for autonomic computing, April
2003. http://www-03.ibm.com/autonomic/
blueprint.shtml.

[7] G. Banga et al. Resource Containers: A New Facility for
Resource Management in Server Systems. In OSDI, pages
45–58, February 1999.

[8] P. T. Barham et al. Using Magpie for Request Extraction and
Workload Modelling. In OSDI, 2004.

[9] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
Instrumentation of Production Systems. In USENIX Annual
Technical Conf., pages 15–28, June 2004.

[10] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance
and Scalability of EJB Applications. In OOPSLA, Nov 2002.

[11] A. Chanda et al. Causeway: Support for Controlling and An-
alyzing the Execution of Web-Accessible Applications. In
Middleware, November 2005.

[12] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic internet
services. In DSN, pages 595 – 604, June 2002.

[13] W. W. Eckerson. Three Tier Client/Server Architecture:
Achieving Scalability, Performance, and Efficiency in Client
Server Applications. Open Information Systems 10, 1, 3(20),
January 1995.

[14] G. Eisenhauer. Dynamic Code Generation with the E-Code
Language. Technical Report GIT-CC-02-42, Georgia Institute
of Technology, College of Computing, July 2002.

[15] Y. Endo and M. I. Seltzer. Improving interactive performance
using TIPME. In SIGMETRICS, June 2000.

[16] W. Feng, M. Broxton, A. Engelhart, and G. Hurwitz. MAG-
NeT: A Tool for Debugging, Analysis and Reflection in Com-
puting Systems. In CCGrid, pages 310–317, May 2003.

[17] I. Foster and C. Kesselman, editors. The grid: blueprint for a
new computing infrastructure. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1998.

[18] J. L. Hellerstein et al. ETE: A Customizable Approach to
Measuring End-to-End Response Times and Their Compo-
nents in Distributed Systems. In ICDCS, June 1999.

[19] A. D. Malony, D. A. Reed, and H. A. G. Wijshoff. Perfor-
mance Measurement Intrusion and Perturbation AnalysiPer-
formance Measurement Intrusion and Perturbation Analy-
sis. IEEE Transactions on Parallel and Distributed Systems,
3(4):433–450, July 1992.

[20] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia
distributed monitoring system: Design, implementation, and
experience. Parallel Computing, 30(7):817–840, July 2004.

[21] J. C. Mogul. Operating Systems Should Support Business
Change. In HotOS X, July 2005.

[22] R. J. Moore. A Universal Dynamic Trace for Linux and Other
Operating Systems. In USENIX Annual Technical: Freenix
Track, pages 297–308, June 2001.

[23] D. Mosberger and T. Jin. httperf: A Tool for Measuring
Web Server Performance. Performance Evaluation Review,
26(3):31–37, December 1998.

[24] HP OpenView Transaction Analyzer performance and scal-
ability Guide. http://www.managementsoftware.
hp.com/products/tran/.

[25] J. Reumann and K. G. Shin. Stateful distributed interposition.
ACM TOCS, 22(1):1–48, February 2004.

[26] A. Tamches and B. P. Miller. Fine-grained dynamic instru-
mentation of commodity operating system kernels. In OSDI,
pages 117–130, February 1999.

[27] J. Vetter. Dynamic statistical profiling of communication ac-
tivity in distributed applications. In SIGMETRICS, pages 240
– 250, June 2002.

[28] IT responsiveness & efficiency with IBM WebSphere Ex-
tended Deployment, 2004. ftp://ftp.software.ibm.
com/software/webserver/appserv/library/
WS_XD_G22%4-9126-00_WP_Final.pdf.

[29] R. West, I. Ganev, and K. Schwan. Window-Constrained Pro-
cess Scheduling for Linux Systems. In 3rd Real-Time Linux
Workshop, November 2001.

[30] K. Yaghmour and M. Dagenais. Measuring and Characteriz-
ing System Behavior Using Kernel-Level Event Logging. In
USENIX Annual Technical Conference, June 2000.

