
IQ-RUDP: Coordinating Application Adaptation with Network
Transport

Qi He, Karsten Schwan
qhe, schwan@cc.gatech.edu

Center for Experimental Research in Computer Systems
College of Computing, Georgia Institute of Technology

Atlanta, GA 30332

Abstract

Our research addresses the efficient transfer of large data
across wide-area networks, focusing on applications like
remote visualization and real-time collaboration. To attain
high performance in the real-time exchange of data across
collaborating machines and end users, we are developing
and evaluating methods and techniques for coordinating
application-level with network transport-level adaptations
of data communication. Specifically, complementing pre-
vious work on TCP-friendly communication and on adap-
tive transport protocols, our approach is to strongly co-
ordinate application-level with transport-level changes in
communication behavior, so as to best meet application
needs without violating fairness in network resource us-
age. The approach is evaluated with the IQ-ECho middle-
ware, which implements the distribution of scientific data
to remote collaborators. Using IQ-ECho, application-level
adaptations like selective data down-sampling are trig-
gered by transport-level information provided by the in-
strumented IQ-RUDP protocol underlying IQ-ECho’s com-
munications. The application- to network-layer exchange
of information necessary for such coordinated adapta-
tions is implemented with ECho attributes, which provide
a lightweight way for an application to provide quality of
service information and to describe its adaptation to the
transport layer, and for IQ-RUDP to share network sta-
tus information with an application. In addition to trigger-
ing application-level adaptations and reacting to certain
changes in network state, IQ-RUDP also re-adapts its own
communication behavior after an application adaptation
has been performed, in part to remain fair to other network
flows. Such transport-level reactions can be performed
at higher rates and with smaller overheads than possi-
ble at application level. The evaluation of IQ-RUDP and
of its coordination schemes demonstrates the superiority
of asynchronous, coordinated adaptations vs. adaptations
performed only at protocol- or application-level. Specif-
ically, coordination avoids conflicts due to mismatched

application- vs. transport-level adaptations, and it avoids
over-reaction due to changes performed simultaneously
at multiple levels. In addition, by permitting IQ-RUDP
to adjust its behavior independently, mismatches in the
application- vs. network-level granularities of adaptation
can be ameliorated. Finally, with IQ-RUDP’s coordina-
tion, application performance is improved by reducing the
impact of obsolete information used for application-level
adaptation.

Keywords: large-data transfer, wide-area networks,
real-time collaboration, reliable UDP, adaptive trans-
port, adaptive reliability, coordinated adaptation,network-
aware adaptation

1 Introduction

Distributed applications ‘stressing’ wide are networks in-
clude telepresence[16], remote collaboration and visual-
ization,remote instrument control[10], and monitoring and
surveillance[16]. Problems arise because large amounts of
data must be transferred with low latency across wide area
networks. These problems are due to multiple factors, in-
cluding the heterogeneity of underlying networks, the lack
of support for QoS at the network level, and TCP’s end-to-
end congestion control that results in bursty network traffic
coupled with the delivery of unstable QoS over time.

Researchers have devised multiple solutions to the
substantial delays incurred by the transfer of large data
across wide area networks. Recent work on TCP-friendly
communication[9] and on dynamic buffer right-sizing[4]
attempts to reduce bursty traffic behavior by controlling the
ways in which applications or protocols send data across
the network. Specifically, while the AIMD (Additive
Increase Multiplicative Decrease) algorithm used by the
dominating transport protocol TCP is shown to converge to



a fair state in terms of bandwidth usage, its adaptation be-
havior makes TCP traffic bursty in nature and delivers un-
stable QoS over time, which is particularly problematic for
large data transfer[4, 15] and for real-time applications[9].
TCP-friendly congestion control algorithms[9, 14] focus
on achieving a relatively stable sending rate that is adapted
to the network’s level of congestion. Improved bandwidth
can also be realized by concurrent use of multiple routes
or even sockets[15]. An alternative solution is to use
application-level information at the protocol level to alter
retransmission behavior, such as implementing partially re-
liable network transports that are sensitive to application
needs[6]. Finally, reacting to calls for new communication
protocols, multiple variants of TCP have been designed, in
part to maintain the end-to-end congestion control deemed
crucial for fairness in network use and to avoid congestion
collapse[9].

While building on previous work on communication
protocols, our work also leverages the substantial research
that has been conducted in the areas of adaptive systems
and applications in general[1]. Specifically, our approach
is to have the transport level initiate and coordinate changes
in communication behavior with the network and the appli-
cation. Suchcoordinated adaptations(1) permit changes in
communication behavior that are based on network mea-
surements naturally accessible at the transport level, and
(2) they also initiate responses to application-level changes,
such as increasing the (packet-based) window size after an
application adaptation that down-samples data, thereby re-
ducing the sizes of application-level messages. We specif-
ically investigate three cases where coordination is impor-
tant to overall performance:

1. to resolve conflicts between application- and
transport-level adaptations,

2. to consider and adjust the cumulative effects of
application- and transport-level adaptations, thereby
avoiding over-reaction to changes in the communica-
tion environment, and

3. to deal with the limited granularity of adaptation
available at application level[13], where a transport-
initiated adaptation may not be performed sufficiently
fast, whereas the transport can react at much higher
rates.

Our approach is evaluated with the IQ-ECho mid-
dleware, which implements the real-time distribution of
scientific data to remote collaborators. Using IQ-ECho,

application-level adaptations like selective data down-
sampling are triggered by transport-level information that
is provided by the instrumented IQ-RUDP protocol that
underlies IQ-ECho’s communications. The IQ-RUDP ap-
proach of coordinated adaptation enhances a system’s abil-
ity to react to changes in the environment, by combining the
transport’s ability to react quickly, combining detailed in-
formation about network state with the application’s ability
to understand the complex relationships between its multi-
ple dimensions of quality of service, such as the delay in
information transfer weighed against the level of precision
of the information being transferred. Specifically, system
monitoring costs[11] are reduced by making available to
the application only the monitoring data needed to decide
upon how it should adapt. The costs of making adapta-
tion decisions are reduced by having both the transport and
application levels perform the adaptations for which they
are best suited, such as performing high rate or monitor-
ing data-intensive adaptations at the transport level while
performing adaptations that consider complex application
or system characteristics at the middleware or application
levels. The costs of carrying out adaptations (i.e., adap-
tation enactment) are reduced by ‘piggybacking’ adapta-
tions onto already existing transport- or application-level
actions, such as performing an adaptation upon message re-
transmission or adapting application behavior prior to send-
ing a message. Finally, the costs of coordination are small
since such actions are integrated into adaptation actions at
the protocol and application levels.

1.1 Related Work

Previous research on adaptive systems and applications has
typically used middleware- or system-based approaches to
supporting runtime adaptation[1], in part because multi-
ple resources (e.g., CPU cycles, network bandwidth) must
be allocated and controlled across multiple users and ma-
chines. In comparison, this paper focuses on the network
resource, since that is critical to the large-data real-time
collaborations targeted by our work. Moreover, since we
seek to perform adaptations with smaller overheads than
those experienced by general approaches to application
adaptation[13], we integrate adaptation support into the
ECho middleware already used for real-time scientific col-
laboration. While IQ-ECho is the vehicle used in this paper,
similar results would be attained if the methods described
here were integrated into grid-based software developed for
large file transfers or into other frameworks for remote vi-
sualization or telepresence.

2



There has been substantial previous research on trans-
port protocols that adapt to changes in network condition.
First, prior work adapts congestion windows or rates[9],
to provide certain transport choices to applications[14, 9],
to address specific application-level traffic characteristics,
or to support certain adaptation strategies. One example
is a TCP-friendly protocol that runs a rigorous conges-
tion control algorithm so as to tightly control the traffic
pattern it generates. Such tight control will make it un-
suitable for large-data applications that not only generate
data at their own rates and times, but that also desire cer-
tain limits on the end-to-end latencies experienced by end
users. Furthermore, the separation of transport and appli-
cation adaptation evident may be suitable for rate-adapted
multimedia applications, but is neither viable for the rich
set of application adaptations targeted by our research, nor
can it achieve both bandwidth fairness and desired appli-
cation performance. A second stream of previous research
translates application-level QoS requirements to concrete
resource demands, based on which transport adaptation is
performed, thereby making the transport the active con-
troller of adaptations. An issue with such work is the diffi-
culty of translating QoS expressions from quantities mean-
ingful to applications to those interpretable by the transport
layer[7], potentially leading to the use of partial or even in-
correct information during adaptation. A third approach to
transport adaptation is to simply provide applications with
all of the network information they need[11], thereby mak-
ing them the active controllers[8, 17]. Issues with this ap-
proach includes its assumption of correct application be-
havior and the need for applications to perform adaptations
at rates commensurate with the rates of change in network
state. Results in this paper demonstrate that large-data ap-
plications cannot be assumed to react at such rates.

In summary, previous work has established that (1) a
transport protocol that tries to be fair to other flows cannot
delegate all adaptation decisions to the application, while
(2) delegating all application adaptations to the transport
protocol can limit available adaptation choices and lead to
complicated QoS translation procedures. In response, IQ-
ECho and its underlying adaptive IQ-RUDP transport pro-
tocol cooperatively perform adaptations at both the trans-
port and application levels, using coordination schemes
suitable for the target applications.

2 IQ-RUDP: Coordinated, Adaptive
Reliable UDP

IQ-RUDP is an extension of Reliable UDP(RUDP)[2], the
latter being a connection-oriented, datagram-based trans-
port protocol that provides in-order reliable data delivery
and flow control. IQ-RUDP implements TCP-like conges-
tion control using an algorithm resembling Loss-Delay Ad-
justment (LDA)[14]. In addition, it has many of the adap-
tation support features seen in existing adaptive transport
protocols (see [5] for more detail).

2.1 Basic Elements of IQ-RUDP

IQ-RUDP has the following three mechanisms to support
application-level adaptation: (1) it exposes certain net-
work performance metrics[1], (2) it supports application-
registered callbacks, and (3) it implements application-
controlled adaptive reliability. Concerning (1), the appli-
cation can query for a group of network performance met-
rics maintained by IQ-RUDP anytime during a connec-
tion’s lifetime. This is useful for applications that require
tight control over their data transmissions, such as interac-
tive audio applications[1]. Concerning (2), an application
can register callbacks to be triggered under certain condi-
tions. Such callbacks can be used by self-clocked appli-
cations that are able to adjust their rates dynamically, such
as streaming layered audio/video applications[1]. Finally,
concerning (3), an application can adaptively change the
desired reliability of different sub flows and then delegate
to IQ-RUDP the realization of such changes.

IQ-RUDP is further distinguished from previous work
by two facts. First, it usesquality attributes, which are
lightweight middleware mechanisms for exchanging per-
formance information between the application and trans-
port layers. Second, its extensive adaptive reliability mech-
anisms permit both the sender and receiver to adaptively
control their desired reliability.

IQ-RUDP provides adaptive reliability at the transport
level, implemented within its window-based congestion
control algorithm. Compared to previous work[6, 8], it sup-
portsbothreceiver loss tolerance and sender packet priority
marking. In the remainder of this paper, the term RUDP
is used to denote the basic reliable and adaptive trans-
port functionality of IQ-RUDP, whereas the term IQ-RUDP
refers to the coordination schemes needed for RUDP’s in-
teraction with application-level adaptations.

3



2.2 Using Quality Attributes

IQ-ECho’s quality attributes[12] are the basic mechanism
used for IQ-RUDP’s application adaptation support. Each
attribute is in the form of a<name, value> tuple. The
registration, update and query of ECho attributes are imple-
mented via a distributed service. Quality attributes are the
means of exporting network performance metrics from IQ-
RUDP to the application, and they can be used to inform the
transport level about application level adaptations. Also,
the application registers for call-backs from IQ-RUDP us-
ing attributes and specifies its reliability requirement as at-
tributes. Attributes are usually carried either as parameters
to IQ-RUDP’s API for sending,CMwritev attr(), or as an
IQ-RUDP connection state variable shared by the applica-
tion. For the library-based implementation of IQ-RUDP
used in this paper, the costs of updating and querying at-
tributes are negligible even when done frequently. For our
future, kernel-level implementation of IQ-RUDP, the use
and implementation of quality attributes will leverage our
experience with Linux-based experiments that evaluate in
detail the costs of realizing quality attributes and call-backs
across the middleware-OS kernel interface[12].

2.3 Coordinating Application and Transport
Adaptation

The point of this paper is to go beyond the support for
transport-level adaptation provided by the basic elements
of IQ-RUDP. As a result, for the large-data applications
targeted by our work, IQ-RUDP uses quality attributes to
coordinatetransport- with application-level adaptations:

1. Both the transport and the application levels adapt
their own behaviors, rather than having either one of
them delegate control to the other.

2. IQ-RUDP coordinates the adaptations performed at
the transport and application layers.

The remainder of this section describes the motivation and
design of the coordination schemes used.

2.3.1 Motivation and Solution Approach

With the basic IQ-RUDP, as with other TCP-friendly trans-
port protocols that support application adaptation, transport
adaptation and application adaptation are only loosely cou-
pled. That is, while the application does base its adapta-
tions on information about network state received from the
transport layer, neither it nor the transport knows about the

actual adaptations they are each carrying out. This indepen-
dence gives each layer flexibility in adaptation, simplifies
the architecture, and reduces overheads. However, it also
leads to the following question:

Need for Coordination

Should the transport’s behavior be modified
when the application starts to adapt to a net-
work condition?

There are several scenarios in which such re-adaptation
based on the knowledge of the application’s adaptation may
be critical to an application’s end-to-end performance:

Case 1: Conflicting Interests The transport and the ap-
plication may have different reasons for adapting, such as
considering application performance versus being fair to
other network flows. In addition, many applications need
to adapt to multiple contexts or coordinate several streams,
both of which might conflict with transport adaptation. For
instance, an application may adapt to sustained conges-
tion by unmarking more packets but maintaining its frame
rate, with the hope of trading reliability for the timeliness
of important messages. This hope will not be realized if
the transport adapts its congestion window to the available
bandwidth.

Case 2: Over-reaction Since both the application and
the transport may adapt to a change in network condi-
tion, the aggregate effect of their adaptations might be too
strong. An example is a reduction of data resolution at
the application level coupled with an IQ-RUDP reduction
of its congestion window, both trying to match the avail-
able network bandwidth. The result is that the application
uses less bandwidth than its fair share and experiences both
worse quality video and longer delay/jitter. Over-reaction
can also lead to performance oscillation and longer con-
vergence time. In wide-area networks, and especially for
bulk-data transfers, these impacts are exacerbated since it
takes longer for the window size to match the connection’s
fair share of bandwidth.

IQ-RUDP has to be made aware ofhow application
adaptation affects its traffic pattern in order to appropriately
adjust its own behavior for the above two cases. The next
cases concern the issue ofwhenadaptations are performed.

Case 3: Limited Granularity Adaptation granularity
refers to how often adaptations can be performed[12], as

4



exemplified by a media application in which an adaptation
involves changes in pixel resolution or quantization levels:
the sender application cannot adapt until all packets be-
longing to the same frame or frame group have been sent.

The mismatch in granularity of application- and
transport-level adaptations results in two issues, both of
which may be addressed by giving IQ-RUDP informa-
tion about when certain application-level adaptations have
taken place and under what assumptions they were per-
formed, using quality attributes as additional parameters to
IQ-RUDP calls.

Case 3-1: Asynchronous Adaptation.First, if an applica-
tion delays its execution of a triggered adaptation, then IQ-
RUDP should be made aware ofwhenthe adaptation is ac-
tually performed, so that it can perform its own adaptation
prior to that time and then re-adapt to the changed applica-
tion behavior afterward.

Case 3-2: Obsolete Information.Second, due to delayed
adaptation, an application may be using obsolete informa-
tion for adaptation, such as outdated network status infor-
mation. The solution is tocoordinateacross the transport
and application levels, by (1) permitting the application to
determine how to best adapt given its current knowledge of
network condition and of its own communication behavior,
and (2) permitting IQ-RUDP to re-adapt to adjust for dif-
ferences in application-level assumptions about current net-
work state vs. its own knowledge about such state. Qual-
ity attributes help with the implementation of this scheme,
as the application will not only adapt what data it sends,
but will also pass along with such data the assumptions it
made about network state for that adaptation. This kind
of coordination is particularly helpful to applications that
do not want to be frequently interrupted for adaptation and
thus only adapt on coarse-grained condition changes. With
those applications, since changes in network condition can
be rather significant without additional application adapta-
tions being triggered, the ability of IQ-RUDP to consider
the change in network over the pending period of an adap-
tation can improve the performance by a large extent.

Keys to the Solution If coordinated adaptation is de-
sired, how and when should it take place? A solution to
this problem has three components: (1) the entity to per-
form coordination, (2) the mechanism for coordination, and
(3) the manner in which coordination is carried out.

The keys to the solution, corresponding to each of
these components, are three observations. First, thetrans-
port should be the final point of regulation before data

is sent onto the network and is therefore, a natural place
for coordination. Second, the information necessary for
coordination is comprised ofwhen and howan applica-
tion adaptation is performed and thenetwork conditions
on which the adaptation is based. This implies that there
must be an information flow from the application to IQ-
RUDP regarding its adaptation. Third, IQ-RUDP can be
informed about application-level adaptations by mapping
them to changes of IQ-RUDP’s parameters, which permits
IQ-RUDP to perform re-adaptation byre-adjustingthose
parameters.

2.3.2 Coordination Mechanism

The key to coordination of application- with transport-level
adaptation is an application to transport flow of quality in-
formation. In order to be useful for IQ-RUDP’s coordi-
nation activities, this information has to address the im-
pact of the application adaptation on the traffic it passes
onto IQ-RUDP. This can be described in terms of mes-
sage frequency, size, and reliability requirements, which
correspond to application-level changes of frequency, reso-
lution, and reliability, respectively. With a frequency adap-
tation, the application sends the same amount of data as
before in each message but less frequently. With a reso-
lution adaptation, the application sends less data in each
message with the previous frequency. Frequency adapta-
tion and resolution adaptation have different implications
on the IQ-RUDP window algorithm, as discussed in Sec-
tion 3.4. A reliability adaptation does not lead to changes
in IQ-RUDP’s window algorithm, as shown in Section 3.3,
but coordination is sometimes necessary in order to achieve
the behavior intended by the application.

We use ECho attributes to communicate the three as-
pects of an application adaptation that are necessary for co-
ordination: the impact on application traffic, the timing,
and the network conditions based on which adaptations are
performed. Attributes ADAPTFREQ, ADAPTMARK
and ADAPT PKTSIZE describe the degrees of adaptations
of frequency, reliability, and resolution, respectively. The
ADAPT WHEN attribute indicates whether or when an
application will adapt. The ADAPTCOND attribute de-
scribes the network conditions on which an adaptation is
based, including the error ratio and the average data rate.

5



0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500

nu
m

be
r 

of
 m

em
be

rs

packet sequence

membership dynamics

Number of members

Figure 1: Membership Dynamics

3 Performance Evaluation

3.1 Setup

Experiments demonstrating the importance of coordinated
adaptation are performed with the EMULAB test-bed[3],
which is a network emulation environment that supports a
wide variety of network topologies and link characteristics.
All experiments are conducted on emulated 20Mb physical
links with a path RTT of 30ms, unless otherwise noted, and
a maximum RUDP segment size of 1400 bytes. The first
experiment is a baseline comparison of IQ-RUDP and TCP,
demonstrating IQ-RUDP’s fairness and adaptation support
feature. The remaining experiments each evaluate a differ-
ent coordination scheme, using some application-level and
some IQ-RUDP-level set of adaptations. To demonstrate
the importance of coordination across these two levels,
adaptations performed independently at each level without
coordination (RUDP) are compared with adaptation per-
formed in a coordinated fashion (IQ-RUDP).

For each case of coordination, experiments are per-
formed for both the following two settings: 1) the applica-
tion traffic pattern changes, 2) the available network band-
width changes. In both settings, the condition that triggers
the adaptation is network congestion level, or loss ratio as
seen by the end system. In the first case, fluctuating appli-
cation traffic pattern is implemented by having the appli-
cation source send frames of different size at certain fixed
frame rate. The changing pattern of frame size follows the
MBone trace in Figure 1, which in one way emulates a
content delivery server that uses multiple unicast streams
to multicast. The frame size is the group size multiplied
by 3000 bytes. In the second case, a variable bit rate UDP
source is used as cross traffic while the application sends

out fixed size data packets as fast as allowed by RUDP. The
UDP source also has a fixed frame rate (500 frames/sec)
and the frame size fluctuation follows the same MBone
trace. The frame size is the group size multiplied by 2000.
To congest the 20M link, we use theiperf 1 tool to generate
UDP cross traffic at a fixed rate that differs across experi-
ments, as noted.

3.2 IQ-RUDP Performance

We compare the performance of IQ-RUDP and RUDP in
the following subsections. To make such comparisons
meaningful in a global context, i.e., relative to other adap-
tive transport protocols, we will first compare the perfor-
mance of IQ-RUDP and TCP, thereby demonstrating the
effectiveness of application adaptation support in RUDP.
To this end, we use the dynamically changing applica-
tion setup described above coupled with 18M UDP cross-
traffic. We run the application described above with differ-
ent transport/adaptation schemes and measure the duration,
throughput, packet inter-arrival and the jitter (deviation) of
packet inter-arrival for each case. The application adapta-
tion in the last two experiments is by changing resolution
(frame size), the exact algorithm is the same as in section
3.4 and is to be described there. It is sufficient for now to
keep in mind that the application reduces its frame size by a
degree proportional to the loss ratio and increase the frame
size at fixed rate when the loss is below a certain threshold.

In the experiment with application adaptation only,
as shown in the third row in Table 3.2, we instrumented
IQ-RUDP to disable its adaptive congestion window algo-
rithm, but still provide performance metrics to the applica-
tion, based on which the application can perform its own
adaptations. IQ-RUDP with application adaptation repre-
sents the case where IQ-RUDP’s congestion control is en-
abled as well as the application’s adaptation. Results of
1 and 2 show that TCP and IQ-RUDP get approximately
the same throughput, suggesting that their throughput is
approximately the same given certain network condition.
However, IQ-RUDP achieves better delay and jitter, due to
its smoother changes of congestion window. With appli-
cation adaptation (3 and 4), the application finishes faster
and has a smaller average delay/jitter of packet interarrival.
However, application adaptation only (3) has about 8%
lower throughput than IQ-RUDP, while application adap-
tation with IQ-RUDP congestion control (4) reduces the
difference to about 2%. The improvement of (4) over (3)

1visit http://dast.nlanr.net/Projects/Iperf/.

6



Transport Tested Time Throughput Inter-arrival Jitter
TCP(1) 313 94.2K 0.239 0.110

IQ-RUDP(2) 298 98.2K 0.201 0.098
App adaptation only(3) 158 90K 0.114 0.008

IQ-RUDP w/ app adaptation(4) 144 95.6K 0.113 0.058

Table 1: Basic performance comparison

derives from the fact that given the application’s adapta-
tion granularity (the thresholds it acts on), there can be
a significant mismatch between its rate and the available
bandwidth, while IQ-RUDP can catch very fine-grained
changes in loss ratio and adapt instantly. The fact that (4)
does not achieve the same throughput as IQ-RUDP alone is
explained by the over-reaction phenomenon, discussed in
more detail in Section 3.4.

To test the fairness of TCP and IQ-RUDP, we change
the cross-traffic to a TCP cross-traffic and run the same ap-
plication (without adaptation). Results in Table 2 show that
the throughput of TCP and IQ-RUDP are close, with TCP
achieving somewhat higher throughput than IQ-RUDP. We
observe that although the average rate of increase is the
same for both protocols, TCP adapts at a finer granularity
and might take over more bandwidth than the competing
IQ-RUDP flow initially. This might make the IQ-RUDP
flow converge to a throughput lower than its fair share, but
we do not expect this to be the case when there is a suffi-
cient degree of multiplexing on the path.

3.3 Conflicting Interests

This experiment demonstrates how coordination can help
resolve conflicts between application- and transport-level
adaptations. Consider, for instance, a remote visualization
of large data in which some of the data being sent is out-
side the area on which the end user is currently focusing.
The application, then, can use this information to transmit
data on which an end user is not currently focusing unre-
liably, thereby gaining communication bandwidth for es-
sential data transfers. To realize this, the application reg-
isters a pair of call-backs to be triggered when the RUDP
error ratio exceeds 30% (upper threshold) or drops below
5% (lower threshold). When the upper threshold call-back
is triggered with ‘error ratio’eratio, all application data-
grams sent afterward will be either marked or unmarked
using the following algorithm: (1) there is a tagged packet
every five packets; this represents control information that
has to be sent to ensure correct data display; (2) for all other

packets, there is a probability ofmax(40, (5/4)*eratio)2 of
being unmarked and therefore, not requiring delivery; this
represents raw data of which some fraction may be lost.

In the lower threshold call-back, the unmarking prob-
ability is reduced by 20%. In this experiment, the receiver
loss tolerance is set to 40%, and a 10Mbiperfcross traffic is
used. It should be noted that we choose relatively large and
coarse-grained loss ratios as adaptation thresholds for the
following two reasons: (1) given that we use a controlled
test environment where the only competing flow is an ag-
gressive UDP flow, we might not see the statistical nature
of losses resulting from multiplexing in an actual packet-
switched network, so that an RUDP flow might suffer a
high loss ratio within a measuring period; (2) the applica-
tion being tested displays constant and very fast changes in
rate, as can be seen from the trace in Figure 1, and those
changes can result in non-negligible losses in consecutive
measuring periods, for which a low adaptation threshold
will result in overly frequent application adaptations.

With IQ-RUDP, after an application indicates, through
a call-back return value, that it adapts by unmarking some
packets, RUDP starts to discard unmarked datagrams be-
fore sending them onto the network. Without IQ-RUDP,
RUDP continues to sendall application packets at a rate
allowed by its congestion window. This means that the ap-
plication still incurs large delay/jitter for tagged packets,
although more untagged packets will be delivered. Notice
that this is usually what a TCP-like adaptive transport pro-
tocol without coordination will do, even if it does support
variable reliability.

Here, the interesting metrics are: (1) time to finish (du-
ration), (2) average inter-arrival of tagged messages (de-
lay), (3) deviation of the inter-arrival of tagged messages
(jitter), and (4) the percent messages delivered. The results
in Table 4 show that IQ-RUDP reduces the application run
time and improves the delay/jitter of tagged packets sub-
stantially (about 25%), while the percent of packets un-
delivered is still within the loss tolerance, although higher
than that of RUDP. The average delay/jitter across all pack-

2Untagged packets are unmarked with a probability higher thaneratio
so that the overall ratio of unmarked packets is approximatelyeratio.

7



Transport Tested Time Throughput Inter-arrival Jitter
TCP 51 118K 0.022 0.0001

IQ-RUDP 60 99K 0.024 0.0001

Table 2: Fairness test

Duration(sec) Mesgs Recvd(%) Tagged Delay(msec) Tagged Jitter Delay(msec) Jitter
IQ-RUDP 60.0 72 58.4 6.6 56.4 6.6

RUDP 80.9 91 66.8 9.1 62.2 7.9

Table 3: Coordination against conflict–changing application

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600 1800

Ji
tte

r

App Datagram #

Jitter Evolution

IQ-RUDP

Figure 2: Delay jitter–IQ-RUDP

ets is not improved a lot, because with both schemes, the
sending window is adapted to the congestion level of the
network. But the delay/jitter of tagged packets is improved
for tagged packets because many untagged packets in be-
tween are not sent onto the network. Also note that the av-
erage delay over all packets is smaller than that of tagged
packets because tagged packets are spaced out.

Figures 2 and 3 present the different jitters experienced
by the receiver application with the two schemes. The
sharp increase around the 500th packets reflects the point
when the cross traffic starts to have adverse impact on the
application. IQ-RUDP results in jitter that is more stable
and lower on the average. However, we notice that even
with IQ-RUDP, the jitter fluctuates over a congestion win-
dow worth of packets. Due to the window-based nature of
the IQ-RUDP, a congestion window worth of packets are
sent back-to-back under normal operation. They will expe-
rience different queuing delays at the bottleneck.

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600 1800

Ji
tte

r

App Datagram #

Jitter Evolution

ARUDP

Figure 3: Delay jitter–RUDP

3.4 Over-reaction

coordinating IQ-RUDP improves throughput, latency, de-
lay/jitter. Also, experiments under different levels of net-
work congestion suggest that the improvement over unco-
ordinating RUDP is pronounced under severe congestions.
The following test evaluates the importance of coordina-
tion to prevent over-reaction: the application registers call-
backs for a pair of error ratio thresholds (upper 15%, lower
1%). The application adaptation instantly reduces packet
size by a percentage equal to the error ratio when the upper
threshold is exceeded, and increases packet size by 10%
when the lower threshold is hit. This experiment emulates
an application that tries to achieve shorter duration and de-
lay/jitter, as in Section 3.3, not by permitting packet loss,
but instead, by sacrificing data resolution through down-
sampling.

With IQ-RUDP, after an application indicates an adap-
tation that reduces frame size byratechg, RUDP increases
window size (in units of RUDP packets) to1=(1�ratechg)

of the current value if the current application frame is
smaller than the maximum RUDP segment size. The ef-
fect is that the actual bit rate is adapted to the connection’s

8



Duration(sec) Mesgs Recvd(%) Tagged Delay(msec) Tagged Jitter Delay(msec) Jitter
IQ-RUDP 23.9 63 30.2 3.1 29.6 3.1

RUDP 32.5 87.4 38.1 4.3 29.4 3.8

Table 4: Coordination against conflict–changing network

0

20

40

60

80

100

throughput latency delay jitter

Im
pr

ov
em

en
t o

f P
er

fo
rm

an
ce

 w
ith

 IQ
-R

U
D

P
(%

)

Metrics

Coordination against Overreaction

12M iperf traffic
16M iperf traffic
18M iperf traffic

Figure 4: Performance improvement–over-reaction

fair share of bandwidth. With RUDP, the reductions of the
application’s frame size and RUDP’s congestion window
jointly contribute to a bit rate that is lower than the avail-
able bandwidth.

Notice that for a frequency adaptation, IQ-RUDP does
not have to increase the window size since the reduction of
application frame frequency has the same effect.

Results in Tables 5 and 6 and the graphical depiction
of the results in 6 in Figure 4 show that performance is
improved by a large extent with IQ-RUDP. The improve-
ment with different rates ofiperf background traffic (the
VBR UDP cross traffic remains the same across these ex-
periments) in the changing network experiment suggests
that coordination is more helpful when the congestion gets
more severe. We see an increase in throughput ranging
from 6% to 25% and a reduction of jitter ranging from 20%
to 76%, for increasing levels of network congestion.

3.5 Limited Granularity

This set of experiments evaluates the extent to which appli-
cation performance can be improved via coordination that
addresses the limited granularity of application adaptation.
Here, the application registers the same pair of call-backs
as in Section 3.4, but it can only start to adapt at the next
application frame with a sequence number divisible by 20,
thereby emulating application-level packets of large size.
We perform three experiments, each to test a different adap-

tation support scheme. Assuming an error ratioeratio, the
upper threshold adaptation and coordination in the three ex-
periments differ in the following way:
(1) RUDP: RUDP starts adaptation on its own after the call-
back returnsvoid; the application later reduces its frame
size byratechg, which equalseratio in these experiments;
(2) IQ-RUDP without ADAPTCOND: the call-back re-
turns an attribute to indicate that the adaptation will be de-
layed. RUDP, in turn, adapts on its own until the applica-
tion starts to reduce frame size byratechg the same way as
in (1). This change is indicated by an attribute parameter in
the application’s next call toCMwritev attr(), when it im-
mediately increases its window size to1=(1� ratechg) of
the current value;
(3) IQ-RUDP with ADAPTCOND: the IQ-RUDP coordi-
nation in (2) is enhanced in the following ways: (a) An
additional attribute ADAPTCOND is used in the attribute
list parameter toCMwritev attr() to describe the error ratio
eratio when the application adaptation is triggered. (b) As-
suming that network congestion has changed toerationew

during the delay of the application adaptation, after re-
ceiving the information of the delayed adaptation, RUDP
changes its window to

(1� erationew)=(1� eratio)

1=(1� ratechg)
(1)

whereeratio is provided by the application. This change
accounts for the network change during the application’s
delay of adaptation. Notice that this modification to (2)
usually only changes the behavior of the changing network
test, since for the changing application test,eratio usually
does not change a lot. Hence, we test scheme (3) only for
the changing network scenario.

Similar processing is performed when a lower thresh-
old call-back is triggered, except that the application in-
creases frame size by 10% in each call. Compared to
RUDP, which adapts based on its measurement only, we
expect to see better performance in IQ-RUDP with its im-
mediate change of the sending window, especially when
the round-trip time is relatively large (see Section 2.3.1).
Furthermore, by considering the changes of network con-
ditions for a delayed adaptation, we expect better perfor-
mance of IQ-RUDP with ADAPTCOND than without.

9



Throughput(KB/sec) Duration(sec) Delay(msec) Jitter
IQ-RUDP 380 39 10.4 0.78

RUDP 367 42 15.2 0.83

Table 5: Coordination against overreaction–changing app

iperf traffic Transport Tested Throughput(KB/sec) Duration(sec) Delay(msec) Jitter
12Mbps IQ-RUDP 506 9.5 3.8 0.20

RUDP 478 10.9 4.6 0.25
16Mbps IQ-RUDP 131 26.1 10.2 6.4

RUDP 109 31.0 12.4 10.3
18Mbps IQ-RUDP 99 51 14 19

RUDP 79 85 22 80

Table 6: Coordination against overreaction–changing network

Thus, we expect to see increased performance in the order
of methods (1), (2), and (3) above. To understand the im-
pact of RTT on the possible performance differences, we
deliberately use different physical path conditions for the
changing application and changing network tests. In the
first case, we use the same network setup as that used in the
previous experiments. In the latter case, we use a path with
125ms one-way delay. For this much larger RTT and hence
much lower achievable throughput, we change the applica-
tion such that it has a fixed frame rate instead of sending at
its fastest possible rate. Further, the application adapts in
order to achieve better throughput while meeting the dead-
lines of each packet and of the whole task. A 14Mbpsiperf
cross traffic is used in the latter experiment.

Results in Tables 7 and 8 show that IQ-RUDP outper-
forms RUDP in both cases. The performance differences
between them, though, are less noticeable in Table 7 than
in Table 8, due to the much larger RTT in the latter exper-
iment (see section 2.3.1). It should also be noted that the
metrics that are most improved by IQ-RUDP differ in the
two experiments. Improved in the changing application test
is delay/jitter, while it is throughput in the other test, which
is just as expected from the goals of application adaptation
mentioned previously.

In the experiment with a changing network, the per-
formances of the three schemes in the changing net-
work scenario are exactly as expected. IQ-RUDP with
ADAPT COND is able to obtain a throughput improve-
ment over RUDP of about 18%, comparable to that
achieved in Section 3.4, virtually eliminating the effect of
the limited application adaptation granularity. While im-
provements in delay and duration are less obvious since this
application is rate-based, jitter is improved significantly
(about 38% less). However, without ADAPTCOND, the

IQ-RUDP improvement over RUDP is much less signifi-
cant in these experiments than in those in Section 3.4. This
is contrary to our expectation since a longer RTT is used
in these experiments. An explanation of this fact is the use
of obsolete network information, which is exactly what is
addressed by scheme (3).

4 Concluding Remarks

This paper presents results that demonstrate the importance
of coordinating transport- with application-level runtime
configuration for large-data grid applications. Using the
IQ-ECho middleware to implement data streams for re-
mote visualizations across wide area networks, we eval-
uate adaptive behavior in which application-level adapta-
tions that downsample data or that mark it for potential
loss interact with transport-level adaptations that change
the rates at which data is sent. Substantial performance
improvements are attained by coordinating the adaptations
performed at both levels via an active transport layer. Ac-
tivity and adaptation at the transport layer are implemented
by the IQ-RUDP protocol specialized for large-data trans-
fers across wide area networks. Coordination across the
transport and application layers is implemented using qual-
ity attributes, which are lightweight name-value pairs cou-
pled that carry information across the application-system
boundary and also provide the asynchronous notification
support needed to enable adaptations to proceed at their at
each level at their own speeds.

Our future work concerns both specific extensions to
the results presented here and the application of IQ-ECho
and IQ-RUDP to the large-scale real-time collaborations
now being initiated in the U.S. One specific example under
study is the Supernova Initiative in which a large number of

10



Transport Results
Under Test Duration(sec) Throughput(KB/sec) Delay(msec) Jitter

IQ-RUDP w/o ADAPT COND 140 97 0.097 0.047
RUDP 144 95.6 0.113 0.058

Table 7: Limited application adaptation granularity–changing app

Transport Results
Under Test Duration(sec) Throughput(KB/sec) Delay(msec) Jitter

IQ-RUDP w/ ADAPT COND 22.1 37.8 6.5 0.8
IQ-RUDP w/o ADAPT COND 22.7 33.8 6.7 1.1

RUDP 23.2 32.0 6.8 1.3

Table 8: Limited application adaptation granularity–changing network

DOE and university researchers are collaborating to model
and evaluate the physical and nuclear processes ongoing
in supernovae. Other examples studied concern Grid-FTP,
for which we are currently developing the IQ-FTP imple-
mentation for selectively lossy file transfers: end users can
dynamically select (with user-provided functions) the most
critical file contents to be transferred to their local sites.

References

[1] D. Andersen, D. Bansal, D. Curtis, S. Seshan, and
H. Balakrishnan. System Support for Bandwidth
Management and Context Adaptation in Internet Ap-
plications. InSOSP, Oct 2000.

[2] T. Bova and T. Krivoruchka. Reliable UDP
Protocol(draft-ietf-sigtran-reliable-udp-00.txt), 2000.

[3] J. Lepreau et. al at the Utah University. The Utah
Network Testbed. http://www.emulab.net/.

[4] M. Fisk and W. Feng. Dynamic Right-Sizing in TCP.
In ICCCN, 2001.

[5] Q. He and K. Schwan. Adaptive Reliable UDP.
March 2002.

[6] R. Kravets, K. Calvert, P. Krishnan, and K. Schwan.
Adaptive Variation of Reliability. InHPN. IEEE, Apr
1997.

[7] R. Kravets, K. Calvert, and K. Schwan. Payoff Adap-
tation of Communication for Distributed Interactive
Applications. Journal of High Speed Networks, Jul
1998.

[8] J. Li, D. Dwyer, and V. Bharghavan. A Transport Pro-
tocol for Heterogeneous Packet Flows. InINFOCOM,
Mar 1999.

[9] J. Mahdavi and S. Floyd. TCP-friendly unicast rate-
based flow control, Jan 1997.

[10] NASA. Using XML and Java for telescope and in-
strumentation control. InSPIE Advanced Telescope
and Instrumentation Control Software, 2000.

[11] Net100. http://www.net100.org/. The Net100 Project-
Development of Network-Aware Operating Systems,
2001.

[12] C. Poellabauer, K. Schwan, and R. West. Lightweight
Kernel/User Communication for Real-Time and Mul-
timedia Applications. InNOSSDAV, Jun 2001.

[13] D.I. Rosu and K. Schwan. FARACost: An Adaptation
Cost Model Aware of Pending Constraints. InIEEE
RTSS, Dec 1999.

[14] D. Sisalem and H. Schulzrinne. The loss-delay based
adjustment algorithm: A TCP-friendly adaptation
scheme. InNOSSDAV, Jul 1998.

[15] H. Sivakumar. PSockets: The Case for Application-
level Network Striping for Data Intensive Applica-
tions using High Speed Wide Area Networks. InSu-
perComputing, 2000.

[16] M. Trivedi, B. Hall, G. Kogut, and S. Roche. Web-
based Teleautonomy and Telepresence. InSPIE Op-
tical Science and Technology Conference, 2000.

[17] G. Wong, M. Hiltunen, and R. Schlichting. A con-
figurable and extensible transport protocol. InIEEE
Infocom, Apr 2001.

11


