
ILI: An Adaptive Infrastructure For Dynamic Interactive Distributed
Applications �

Vernard Martin Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332

e-mail:fvernard, schwang@cc.gatech.edu

Abstract

This research addresses the middleware necessary to re-
alize the construction of distributed laboratories in which
scientists can construct and use complex computations and
then analyze and share their results across geographically
separated collaborations. We present a model of such mid-
dleware for heterogeneous distributed computing platforms
and also show how middleware can dynamically adapt to
changes in behavior of instruments and end users.

1. Motivation

There is a new class of applications characterized by het-
erogeneous distributed environments in which high perfor-
mance applications interact with multiple users, visualiza-
tions, storage engines, and I/O engines. We term such an en-
vironment a distributed, computational laboratory. In such
a laboratory, scientists collaboratively employ large scale
computational instruments and also analyze and share re-
sults with geographically separated colleagues.

The components of a distributed laboratory have proper-
ties that differ in substantial ways from those of heteroge-
neous high performance computations and therefore, they
demand a new set of services. For instance, while commu-
nication infrastructures like MPI [5] support jointly com-
piled application components on heterogeneous systems us-
ing reserved computing and network resources, the dis-
tributed laboratory infrastructure should support frequent
dynamic client arrivals and departures, variable end user
needs, and separately developed components, where agree-
ment on such issues as precise data forms may be difficult
to achieve.

1This work was funded in part by NSF equipment grants CDA-
9501637 and CDA-9422033, DARPA grant ECS-9411846, Honeywell
grant B09333218 and DARPA grant DAAH04-96-1-0209.

To address the demands of applications executing in a
distributed laboratory, we have developed an infrastructure
– called ILI (Interactivity Layer Infrastructure) – that can
dynamically adapt to changes in the behavior of the com-
putational instruments and end users across a shared and
dynamically changing set of computational nodes and net-
works.

The remainder of this paper first describes a sample sce-
nario laboratory; followed by a presentation of a model of
the infrastructure and the basic architecture needed to sup-
port this functionality. The current ILI prototype's experi-
mental evaluation appear in Section 6. Related research and
conclusions are discussed last.

2. A Distributed Laboratory for Atmospheric
Modeling

A typical distributed laboratory is depicted in Figure 1.
In particular, consider a large scientific simulation running
on a set of computational resources, such as our global cli-
mate transport model (GCTM) [9]. This model along with
local climate, atmospheric or pollution models runs concur-
rently on a variety of parallel and distributed computing re-
sources. Model outputs are processed by a variety of in-
struments, including specialized visualization interfaces or
computational instruments performing calculations which
derive from and expand upon the basic model results. Sim-
ilarly, model inputs may be provided via other instruments
that either utilize live satellite feeds oraccess stored satellite
data on remote machines.

Consider the introduction of multiple observers into this
application scenario. The scientists' interests may vary
from wishing to see the ”big picture”, to investigating in
detail subsets of the simulation's output, to collaborating
with one another via the computational instruments these
models implement. To address such needs, the distributed
application has additional components that assemble the in-



�
�
�
�

��

��

�
�
�
�

��
��
��
��

��

Config.
Manager

�� ���
���
���
���

���
���
���
��� ����

����
��
��
��
��

���
���
���
���������

���
���
���
���

Spectral2Grid AnnotateData

Repository for
ObservationalData

Global Climate
Transport Model

Data
Manager

Constraint
Manager

Data

Analysis
Reduction/

Data

Analysis
Reduction/

Collaboration/
Steering
Support

Visualize Ozone 2D

Visualize Winds 2D

Visualize Winds 3D

lk
jl

kj
lk

jl
kj

lk
jl

kj

the bottom axis of this graph

Figure 1. Sample Application and ILI High
Level Architecture

formation needed to drive various interactive displays, by
gathering data from the distributed simulation and perform-
ing the analyses and reductions required for these displays.
Some of these components may themselves have substan-
tial computational or storage needs and require dedicated,
additional resources of their own. They may also require
access to additional information, as in the case of the at-
mospheric model's display with which end users compare
observational (satellite) data with model outputs in order
to assess model validity or fidelity. In summary, since end
users control the set of computational instruments, input
and output components will change dynamically, driven by
end users' needs or by the current needs of the running sim-
ulation.

A representative dynamic behavior is one in which an at-
mospheric researcher verifies the model's accuracy by val-
idating the transport portion of the model against a known
database of values. In order to accomplish this, the scientist
instruments the model so that it generates monitoring data
representing the current wind velocity and/or ozone mix-
ing ratio at each timestep of the simulation. The scientist
then sets up a chain of tasks to process the monitoring data
for eventual 2D and 3D visualizations of the results. The
chain of tasks is necessary, because the data generated by
the model is in spectral form and must be converted to grid
form for viewing by the VisualizeWinds2D instrument.

When using the VisualizeWinds2D for validation, a high
level of detail in the data is required, which prompts the sci-
entist to increase the rate of monitoring data so as to gain

an improved time resolution. If after a few minutes of ob-
servation, the scientist decides to view the data in 3D, the
VisualizeWinds3D instrument is started, thereby enabling
simultaneous 2D and 3D views.

The dynamic behaviors described above are addressed
by our ILI framework, which (1) supports dynamic compo-
nents attachment to distributed simulations, and (2) captures
the real-time nature of component interactions. More pre-
cisely, ILI supports task creation and deletion, changes in
information flow between tasks, and it offers QoS specifi-
cations for tasks and flows, and heuristics that attempt to
meet such QoS specifications.

3. ILI: An Interactivity Layer Infrastructure
Model

Model Components: ILI models its ' applications' as sets
of tasks, T1 to Tn, communicating viaevents. Each task
has a set of input events,I1 to In, required to perform its
work. When all necessary input events have been received,
its computation is triggered. Each task may access and alter
some internal state,S, while performing its computation.
Based on its trigger and its internal state, a task fires and
then generates some set of output events,O1 to On.

For the distributed laboratory scenario discussed previ-
ously, the global climate model written with a computing
infrastructure like MPI is treated as a set of tasks known to
ILI, as are all of the instruments used in conjunction with
this model are also represented as ILI tasks. The model
tasks have no input events, but produce output events in
spectral form describing wind field values and ozone mix-
ing ratios. In this case, there are up to 37 such tasks (one
per atmospheric level), each producing one output event per
simulation timestep. For simplicity, ILI considers them to
be a single model task. The Spectral2Grid task has one
input event, which is the same as the output event of the
model. It also has one output event, which is the ozone
mixing ratio and wind field data in grid form. The Anno-
tateData task has one input, which is the grid data from
the Spectral2Grid task, and it produces one output event,
a modified version of the grid form data for the ozone mix-
ing ratio and the wind fields. The VisualizeWinds task has
one input event, the annotated data from the AnnotateData
task, and it does not produce any output events.
Management of Infrastructure State: The flow of events
from task to task represents task linkages. Atask linkage
graph is a group ofnodesand associateddirected edges
where there exists one node per task currently executing.
Edges in the task linkage graph are directional. If at run-
time, a particular task,Ti, sends an event to another task,
Tj, then we say there is alink from Ti to Tj , and an edge
connects taskTi to taskTj . Multiple edges may exist be-
tween two tasks. The task linkage graph encapsulates the



actual run-time connectivity of tasks.

2 Winds

2D

VisAnnotate
Data

Spectral

Grid
GCTM

2

2

Annotate
Data

Spectral

Grid

Spectral

Grid

Vis

3D
Ozone

2D

Vis
Ozone

Winds
Vis

3D

GCTM

2
Spectral

Grid
GCTM

2D

Vis

Vis

Residual
 Circulation

Circulation

Circulation

3D

2
Spectral

Grid
GCTM

Winds

2D

Vis

Winds

3D

Vis

Residual
 Circulation

B.

D.C.

A.

Figure 2. Evolution of task linkage graph

Figure 2 shows the evolution of the task linkage graph
for the distributed laboratory GCTM verification process
described in Section 2. Circles represent tasks, rounded
boxes represent computational units. Dotted circles repre-
sent cloned tasks. A shows the initial TLG for the GCTM
validation scenario. B shows the TLG after the addition of
several visualization clients and a ' task clone' adaptation. C
shows the TLG after a ' task merge' adaptation and the ter-
mination of several visualization clients. Note that the task
linkage graph changes as the executing tasks change.

ILI adaptation heuristics focus on the chain-like struc-
tures linking data generation with consumers. Towards this
end, apathis defined as a sequence of tasks,T1 to Tn, such
that for each taskTi there exists at least one output port with
an event type that matches an input port for TaskTi+1. Note
that a set of tasks may have many potential paths that are not
actually realized during execution. For the distributed lab-
oratory scenario, one such path is GCTM) Spectral2Grid
) AnnotateData) VisualizeWinds.

A computational unitis an entity capable of executing
tasks, such as a single workstation or a cluster of processors
acting as one unit. The mapping of tasks to computational
units is based on the concept of aworkgroup, where each
task is a member of at most one workgroup and each work-
group is a set of tasks that form a path. For this paper's sam-
ple distributed labs scenario, we define three workgroups:
Workgroup 1 consist of the model, Workgroup 2 consists of
the Spectral2Grid and the AnnotateData tasks, and Work-
group 3 consists of the Visualize Winds tasks.

Workgroups are mapped to computational units such that
QoS specifications are met. Task to workgroup assignments
may be constructed dynamically or re-assigned as task link-
age graphs change. Specifically, awork group mappingis
defined as a set of pairs (workgroups, computation units).
This mapping determines the tasks that are currently as-
signed to execute on computational units. It also constitutes
a partial schedule in that a task may not execute on a compu-

tation unit unless itsworkgroupis currently mapped to that
unit. Currently, a new work group mapping is calculated
only when new computational units are added or removed
from the available resources.

Finally, anattribute is a (name,data) tuple. Attributes
may be attached totasks, workgroups, the task linkage
graph, etc. Severaldefault attributesare used for the cur-
rent QoS specifications implemented by ILI; some of which
are shown in Table 1. Events are represented byeand tasks
by t.

Mint;e, Maxt;e QoS rate for event on a task
Ratet;e Current rate for this event with this task
Historyt;e;n Last n rates for this event with this task
Optionst The adaptations available for the task
Vt;e violation for this task for this event
�t task attribute update period
�t violation checks period
Lcu Load on a computational unit

Table 1. Default attributes used in ILI QoS

Default attributes are used to define theconstraint viola-
tion value, V, which is the the magnitude of the difference
between the current rate and the actual QoS min or max
attribute.VTi

is computed as the sum of theconstraint vio-
lation valuesfor each input and output event of taskTi. It
is possible for a violation in one task to cause a violation in
a downstream task. Propagated violations, calledexternal
violations, are maintained separately from a task'sinternal
violations. The total violation value of a node is the sum
of its internal and external violations. External violations
occur when a minimum input rate is not met.

The nodes of thetask linkage graphare annotated with
these violation values as weights, thereby forming acon-
straint violation graph. V for eachnode represents its total
contribution to the violations in the entire system; it is re-
computed every� intervals.

The minimum and maximum event rates for the input
and output events of each are used to determine whether or
not a particular path is viable in the infrastructure. Viability
permits the pruning of possible paths prior to the use of the
ILI application.
Configuration Specification: The initial configuration
of the infrastructure is represented as a graph. The
user specifies the initial task set, which is then trans-
lated to ILI nodes. The user also specifies task input
and output events and their types. A task's event data
is used to construct the connections in the task link-
age graph. An initial mapping to computation is spec-
ified, as well. For the GCTM verification pipeline de-
scribed earlier, the specification of the initial pipeline would
be initial-config (”Transport,Spectral2Grid,Residual-



Circ,AnnotateData,Viz”,”1,2,3,3,4”), which describes a
one-to-one mapping of workgroups to tasks. Tasks mapped
to the same number reside in the same workgroup, whereas
tasks with different numbers must reside in different work-
groups.

Input and output events are specified foreach task. For
example, the calldefine-task (self,NULL,”spectral-data”)
anddefine-task (”Spectral2Grid”,”spectral-data”,”grid-
data”) , when executed by the GCTM, defines and registers
itself and one other task with the ILI. This allows one task
to initiate a series of other tasks for which it will generate
or receive data.

4. The ILI Architecture

The ILI infrastructure provides a set of services: data
management, constraint management, and configuration
management.
Data Management: ILI provides a means of classifying
task data and routing it to other tasks that are interested in
receiving this data [3]. Additionally, it provides a name do-
main for data components and tasks, maintains knowledge
about and manages communication links between tasks, and
it maintains a body of knowledge about all connections
from tasks to the infrastructure as well as all connections
internal to the components of the infrastructure.

Data Management functionality is encapsulated in an ILI
entity called the Data Manager. The Data Manager enables
tasks running on heterogeneous machines to understand and
convert each others' data formats. In addition, the Data
Manager is responsible for forwarding any events produced
by tasks to those tasks that are interested in receiving them.

The Data Manager is a logical entity and does not have
to be physically implemented as a single task. It may be a
coordinating group of entities, or its functionality may be
integrated into the tasks themselves.

For the GCTM verification scenario, the Data Manager
stores the names of the individual task components that are
passed to it via the API. For example,define-self (”Trans-
port”) executed by a task informs the Data Manager that
the task used the name ' Transport' .

After a task registers itself, it may define additional tasks,
each time specifying task name, its input events and its out-
put events. Event names are registered dynamically.
Constraint Management: ILI maintains knowledge repre-
senting certain requirements of (1) the tasks in the infras-
tructure and (2) the data that is sent and received by infras-
tructure tasks. ILI also stores restrictions on both the con-
nections to the infrastructure and the data that is sent to it.
These restrictions are calledconstraintsand are based on
user-defined characteristics associated with data or connec-
tions. This aggregate functionality is encapsulated in an en-
tity called the Constraint Manager. Constraints are inferred

from the attributes associated with data or connections. Fur-
thermore, the Constraint Manager maintains a history of ILI
configurations as they occur in order to identify potential
repetition in sequences of configurations. Simple pattern
matching determines such repetitions resulting in modifica-
tions to the Configuration Manager.

In the GCTM verification scenario, we express the
constraints as minimum and maximum rates for the
input events consumed by and the output events pro-
duced by each task. For example,define-constraint
(”Spectral2Grid”,”grid-data”,10,20) and define-
constraint (”Spectral2Grid”,”spectral-data”,-1,-1)
define a constraint for the input and output of the Spec-
tral2Grid instrument, respectively.
Configuration Management: The infrastructure maintains
knowledge about the mapping of tasks to workgroups to
computational units. It also provides methods for modify-
ing that mapping. This functionality is encapsulated in an
entity called the Configuration Manager. The Configuration
Manager handles task creation and deletion, as well.

For the GCTM verification scenario, the Configuration
Manager is responsible for instantiating the necessary tasks
when adefine-task call is made. In addition, it receives
information from the Constraint Manager informing it of a
necessary reconfiguration should be done, the actions nec-
essary for enacting it, and the desired new configuration.
Implementation Substrate: The implementation of ILI
employs a substrate that provides basic event transport and
management tools including: (1) routing of events from
generating to receiving tasks, (2) conversion of data across
heterogeneous platforms, and (3) dynamic connectivity be-
tween transient applications.

The substrate consists of: (1) event types cataloged and
translated with PBIO [2], which supports event format and
translation across heterogeneous machines with improved
performance compared to SDDF [1], (2) events transported
using the DataExchange communication infrastructure de-
tailed in [3], (3) information flow, task execution rate, and
task execution timings monitored using an on-line moni-
toring facility (examples of such are W3 [7], Chaos-MON,
and Falcon [4]) and (4) an on-line steering facility [4],[13]
allowing ILI to affect the operation of its tasks.

5. Heuristics

ILI's on-line adaptation heuristics are applied cyclically
in three different steps: (1) Detect State Phase which deter-
mines if all tasks are currently meeting their QoS constraints
and if not, where the violations are, (2) Predict Next State
Phase which determines what reconfiguration should take
place to eliminate violations, and how to change the system
to a state with fewer or no violations, and (3) Shift State



Phase which performs the actual reconfiguration of the sys-
tem from one state to another.
Detection of Current State: In the constraint violation
graph, the sum of the weights of the nodes along anypath
from taskTi to taskTj represents the total extent of the
violation of QoS constraints on that path. In addition, the
node with the largest magnitude along that path exhibits the
largest violation. By sorting by magnitude, it is possible to
identify the node with the largest violation as theoffending
node. If there are multiple such nodes, the one with the least
number of total incoming and outgoing edges in the corre-
sponding task graph is selected, in order to minimize the
extent of modification to the linkage graph, if possible.

Annotate
Data Winds

2D

Vis
2

Spectral

Grid

Winds

2D

VisAnnotate
Data Winds

2D

Vis
2

Spectral

Grid

GCTM

GCTM

GCTM 2
Spectral

Grid

8/0

Annotate
Data

8/0

Winds

2D

Vis

0/8-1/-1 25/50

B. Actual event rates measures by ILI

A. Initial input/output event rate constraints

-1/-1 -1/-1

2

2

Annotate
Data

Spectral

Grid

Spectral

Grid

GCTM

D. New configuration with event rates

37 37 17 17 17 17

-1/-120/40

C. Constraint violation graph for B.

0/0

Figure 3. Constraint Violation Graph

Consider Figure 3. A shows the initial event rates speci-
fied by the constraints. B shows the event rates after� time.
C shows the constraint violation graph that corresponds to
B. Note that the Spectral2Grid and the AnnotateData instru-
ments inherit internal violations from the external violations
of the task downstream to them. As a result, the task with
the largest violation is the Spectral2Grid instrument.
Predict Next State: Once it has been determined that re-
configuration is necessary, a new configuration is computed
by a rate determined by the attributes� and�. Toward
this end, the detection heuristic identifies the target node
it suspects to be the worst offender in contributing to the
level of violations in the system. There are four reasons
for such violations: the node is sending (1) too many or
(2) too few events downstream, or it is receiving (3) too
many or (4) too few events from upstream. To reduce the
offending node's violation value, its adaptation options are
considered. For each such option, a new constraint graph
is constructed with the violation value of the offending task
reset to zero, thereby representing that the violation repre-
sented by the task itself was relieved. The available adap-
tation options aremigrate, clone, andmerge. The migrate
option permits a task to migrate left or right along a path, re-
sulting in two new constraint graphs. A task is constrained
to migrate only along its path so that it can at most move to
one different workgroup, thereby creating at most one alter-
native constraint graph. The clone option permits a task to
duplicate itself. Tasks upstream from a cloned task divide

their outputs among each of the cloned tasks. Likewise,
the clones feed all of their outputs to the same source as
the original task. The clone adaptation creates only one al-
ternative constraint graph. After building all potential new
constraint graphs, the adaptation option producing the low-
est overall violation value for the entire graph is selected
and enacted. This may cause the assignments of tasks to
workgroups to change.

For the GCTM scenario, the Spectral2Grid instrument is
the offending task. The adaptation options available to it are
clone and migrate. When computing the two possible new
constraint violation graphs, the clone adaptation option is
determined to be the best choice.

To prevent thrashing among configurations, the occur-
rence histogram maintained by the Configuration Manager
is marked to identify the configuration that occurs most, and
is then disallowed as a viable configuration for future selec-
tions.

The workgroup to computation unit mapping algorithm
is straightforward and relies on the adaptation options for
meeting QoS constraints rather than frequently shifting
workgroups among computation units. The initial mapping
of tasks to workgroups is done by the user.
Shift State: Once a new configuration has been determined,
the system enacts the changes necessary to transform the
current to the new configuration. The reconfiguration pro-
cess occurs in two phases. The first phase involves send-
ing reconfiguration messages to those tasks that either send
messages to or receive messages from the target task. The
second phase is the actual physical reconfiguration of com-
munication channels and the movement of tasks to different
computation units, if necessary.

The configuration manager is informed by the constraint
manager that certain reconfiguration actions are required.
The configuration manager then sends a 'start reconfigura-
tion' message to the first task in the path that is directly
involved in communicating with the offending task. This
message includes a list of the affected tasks so that each sub-
sequent task can inspect the message to see if it is involved.
If affected, a task performs the appropriate reconfiguration,
send a 'done' message to the reconfiguration manager, and
then forwards the reconfiguration message downstream Af-
ter the reconfiguration message is finished, the task sends a
' reconfiguration done' message to the reconfiguration man-
ager. When a task receives a reconfigurationdone message,
it sends an acknowledgment to the configuration manager.

6. Evaluation of the ILI Framework

Performance Evaluation: static caseThe base perfor-
mance of the computational instruments used in the ILI
evaluation is established by encapsulating each instrument
as a separate process and then configuring these processes



as GCTM) Spectral2Grid) AnnotateData) Visual-
izeWinds2D. Each instrument, except for the GCTM itself,
is assigned to a uniprocessor SGI Indy workstation con-
nected via 10Mb switched Ethernet. The GCTM runs on
a 12-processor SGI Powerchallenge connected via ATM to
an Ethernet switch. The values in the tables below represent
the input and output event rates of specific instruments. An
output event rate that is consistently greater than the input
event rate indicates that the instrument currently does not
have sufficient cpu resources to process all of the events it
receives. An input event rate that initially exceeds the out-
put event rate but eventually decreases to be less than the
output rate indicates that the instrument is ' catching up' on
previously buffered events. The VisWinds rate represents
the rate at which it is able to visualize events since this in-
strument does not produce events.

Monotonically increasing rate
Event Rate for Instruments (in/out)

Time GCTM Spectral Annotate VisWinds
2Grid Data 2D

5min 74(1x) 74/74 74/74 74/74
10min 148(2x) 148/120 120/120 120/120
15min 222(3x) 222/100 100/100 100 100
20min 296(4x) 296/97 97/97 97/97

Cyclic/oscillating rate (2x)
Event Rate for Instruments (in/out)

Time GCTM Spectral Annotate VisWinds
2Grid Data 2D

5min 74(1x) 74/74 74/74 74/74
10min 148(2x) 148/120 120/120 120/120
15min 74(1x) 74/74 74/74 74/74
20min 148(2x) 148/120 120/120 120/120

Table 2. Event Streams for Static Chains

Event Rate for Instruments (in/out)
Time GCTM S2G1 S2G2 Annotate VisWinds

– Data 2D
5min 74(1x) 74 – 74 74
10min 148(2x) 74 74 110 110
15min 222(3x) 110 110 220 220
25min 296(4x) 110 110 220 220
30min 370(5x) 100 100 200 200

Table 3. Event Streams for Clone Adaptation

The normative results for a static chain of instruments
with steady event streams are shown in Table 2. These re-
sults indicate that the Spectral2Grid instrument is the bottle-
neck in this configuration. As the GCTM sends more data to

Event Rate for Instruments (in/out)
Time GCTM S2G AnnotateData VisWinds
5min 74(1x) 74 74 74
10min 148(2x) 74 110 110

GCTM — S2G & Annotate VisWinds
15min 222(3x) — 150 150
25min 296(4x) — 270 270
30min 370(5x) — 370 370

Table 4. Event Streams for Migrate Adaptation

the Spectral2Grid instrument, it becomes overwhelmed and
cannot process events at the same rate as it receives them.
Eventually, it spends all of its time receiving events and not
actually processing them, therefore causing all instruments
downstream from it to starve and do no useful work. If the
amount of buffer space in the instrument is static, then the
instrument may terminate abnormally as well.
Performance Evaluation: dynamic caseIf the ' clone'
adaptation option is applied to the Spectral2Grid instrument
in the static scenario, the values presented in Table 3 result.
The effect of the cloning option is that the Spectral2Grid
instrument is able to process more events and forward them
downstream. This particular case assumes that another rela-
tively unloaded computation unit is available for the instru-
ment's clone. If this is not the case, the migrate adaptation
option may be used. Table 4 shows the results of this option
on the Spectral2Grid instrument. In this case, the Spec-
tral2Grid instrument is migrated to the same computation
unit as the AnnotateData instrument. Once there, it is able
to process more events. When the system reaches a state
where there are no violations, reconfiguration will cease.

Although not explored here, the merge adaptation is also
available. Merge is the reverse of cloning and effectively
transfers the event processing load of one instrument to an
identical instrument located elsewhere. This option occurs
when an instrument consistently does not meet its minimum
event threshold and there exists another identical instrument
that is at no more than 75 percent of its maximum event rate
threshold.

Pre-Replicated Tasks On-Demand Tasks
Option time state Option time state
migrate() 15ms 2K migrate() 1.5s 2K
clone() 38ms 2K clone() 9.0s 2K
merge() 25ms 2K merge() 5.8s 2K

Table 5. Task creation costs

Table 5 lists the costs of the low level abstractions of ILI.
Each heuristic was tested with two implementations. The



first implementation uses task replication so that all tasks
are pre-allocated on all computational units. Thus, task mi-
gration only employs state movement. The second imple-
mentation uses the UNIX command ' rsh' to startup remote
tasks on demand and then transfers state. Clearly, task repli-
cation drastically reduces the amount of time required for
this adaptation option.

Table 6 and Table 7 show the performance of ILI's
two current adaptation heuristics in various dynamic situ-
ations. The results indicate that neither heuristic performs
acceptably in all situations, which suggests that application-
specific heuristics would further improve performance.

Event Rate for Instruments (in/out)
Time GCTM S2G1 S2G2 S2G3 Annotate

– - Data
5min 74(1x) 74 – - 74
10min 148(2x) 74 74 - 110
15min 222(3x) 110 110 - 220
25min 296(4x) 110 110 - 220
30min 370(5x) 124 123 123 150

Table 6. Optimistically Greedy algorithm

Event Rate for Instruments (in/out)
Time GCTM S2G Annotate VisWinds

Data 2D
5min 74(1x) 74 74 74
10min 148(2x) 74 110 110

GCTM — S2G & Annotate VisWinds
15min 222(3x) — 150 150
25min 296(4x) — 270 270

GCTM S2G & Annotate & VisWinds
30min 370(5x) — 370 —

Table 7. Resource Conserving algorithm

7. Results and Contributions

This research addresses dynamic interactive high-
performance applications. These applications have Qual-
ity of Service constraints that must be met due to their use
of live input and their interactions with end users, which
may change the applications' resource requirements, the re-
sources available to them, the runtime behavior and possi-
bly, their inputs and outputs. In addition, QoS constraints
themselves may change with changing end user needs. The
ILI infrastructure described and evaluated in this paper
is able to accommodate such changes withlittle a priori

knowledge of the applications or of their execution envi-
ronments. This is achieved by use of a simple execution
model for ILI via on-line monitoring and steering and with
a method of load balancing that attempts to maintain event
rates stated by QoS specifications.

The prototype implementation of ILI evaluated in this
paper runs on a cluster of uni- and multiprocessor machines
and has been used to manage the computational instruments
of a large-scale interactive atmospheric modeling applica-
tion. As constraints on the execution environment change,
the ILI system detects constraint violations and corrects
them using low cost decision heuristics and simple adap-
tation procedures, such as instrument cloning and task mi-
gration. Attempts are also made to reduce thrashing when
switching between system configurations, by maintaining a
configuration history.

8. Related Work

ILI tasks, their connections, and their runtime use may be
modeled as a work flow system [10]. Extensive work in this
area concerns organizational and execution models, typi-
cally focusing on the formal semantics of workflow spec-
ification, the flexible specification and generation of alter-
native worflows, and the application of certain analyses to
workflow, such as the investigation of deadlines to workflow
tasks. Furthermore, some work has been done on building
distributed event-based workflow execution models similar
to ours [6]. That work focuses on the formal semantics of
modeling such event-based systems and designing them so
that it is easy to express arbitrary sub-flows that can be in-
stantiated into the existing workflow hierarchy during exe-
cution. In contrast, we provide a runtime infrastructure for
support of the decision-making processes necessary when
instantiating new sub-flows.

The primary goal in load balancing and migration sys-
tems [12] is to balance the load on computational units so
as to increase utilization or prevent any one unit from slow-
ing down the entire computation. This is useful if the con-
straints on the system are computation rather than interac-
tion. In interactive systems, slowing down overall progress
may actually be advantageous for purposes of debugging or
visualization. Therefore, the state sought by the ILI frame-
work is one in which a set of QoS constraints are met re-
gardless of equilibrium with respect to computational load.

[11] describes a model and performance metrics for eval-
uating adaptive resource allocation (ARA) performed to sat-
isfy application's real-time constraints. The model assumes
a priori knowledge of the application's structure. This as-
sumption is not made in our work.

[8] describes Schooner, an interconnection system de-
signed to facilitate the construction of programs that re-
quires access to heterogeneous software and hardware re-



sources. Applications built using Schooner are composed
of pieces, called components, that communicate via special-
ized RPCs and are configured through a special configura-
tion language which explicitly listseach possible configura-
tion. Instead, ILI uses typed events as a method for implic-
itly and dynamically defining the possible ways in which
components may be assembled.

9. Conclusions

The ILI infrastructure permits the specification of end-
to-end constraints for clients that wish to interact with an
application. It also provides the necessary ”glue” for the
construction of distributed applications that span multiple
LANs and even WANs. Such ILI-based ' interactivity sys-
tems' are capable of adapting to dynamic application be-
havior in order to maintain end-to-end constraints, in part
by appropriate placement of intermediate processingnodes.
By exposing its low-level adaptation primitives and its inter-
nal data, ILI also empowers the programmer to tailor adap-
tation heuristics to specific applications.

The two reconfiguration heuristics presented in this pa-
per are examples of the manner in which quality of service
levels may be guaranteed in dynamic environments. Our fu-
ture work plans to examine additional heuristics and config-
urations with large numbers of tasks. to determine the low-
level abstractions required for dealing effectively with pre-
mature task termination, and with hierarchies of ILI struc-
tures. We also plan to investigate the scalability of ILI for
applications executing on platforms with large numbers of
processors.

References

[1] R. A. Aydt. Pablo Self-Defining Data Format. Department of
Computer Science, University of Illinois, 1304 West Spring-
field Avenue, Urbana, Illinois 61801, May 1993.

[2] G. Eisenhauer. Portable self-describing binary data streams.
Technical Report GIT-CC-94-45, College of Computing,
Georgia Institute of Technology, 1994.

[3] G. Eisenhauer, B. Schroeder, K. Schwan, V. Martin, and
J. Vetter. High performance communication in distributed
laboratories.To appear in Journal of Parallel Computing,
January 1998.

[4] G. Eisenhauer, K. S. Weiming Gu, and N. Mallavarupu. Fal-
con - toward interactive parallel programs: the on-line steer-
ing of a molecular dynamics application. InProceedings of
High-Performance Distributed Computing 3. IEEE, August
1994.

[5] M. Forum. MPI: A message passing interface standard.
Technical report, University of Tennessee, 1995.

[6] A. Geppert and D. Tombros. Event-based distributed work-
flow execution with eve. Technical Report 96.05, University
of Zurich, Department of Computer Science, University of
Zurich, September 1997.

[7] J. K. Hollingsworth and B. P. Miller. Dynamic control of
performance monitoring on large scale parallel systems. In
Proceedings of International Conference on Supercomput-
ing, Tokyo, July 1993.

[8] P. Homer and R. D. Schlichting. A software platform for
constructing scientific applications from heterogeneous re-
sources. Journal of Parallel and Distributed Computing,
pages 301–315, June 1994.

[9] T. Kindler, K. Schwan, D. Silver, M. Trauner, and F. Alyea.
A parallel spectral model for atmospheric transport pro-
cesses.Concurrency: Practice and Experience, 8(9):639
– 666, November 1996.

[10] M. Kradolfer and A. Geppert. Modeling concepts for work-
flow specification. Technical Report 5, University of Zurich,
May 1997.

[11] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha. On Adap-
tive Resource Allocation for Complex Real-Time Applica-
tions.18th IEEE Real-Time Systems Symposium, Dec. 1997.

[12] A. Sohn, R. Biswas, and H. D. Simon. A dynamic load bal-
ancing framework for unstructured adaptive computations
on distributed-memory multiprocessors.Symposium on Par-
allel Algorithms and Architectures, 1996.

[13] J. Vetter and K. Schwan. High performance computational
steering of physical simulations.IEEE Proceedings of the
Internatl Parallel Processing Symposium, pages 128–132,
1997.


