
Run-time Detection in Parallel and Distributed Systems:
Application to Safety-Critical Systems

Beth Plale Karsten Schwan

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332
fbeth,schwang@cc.gatech.edu

Abstract

There is growing interest in run-time detection as
parallel and distributed systems grow larger and more
complex. This work targets run-time analysis of com-
plex, interactive scientific applications for purposes of
attaining scalability improvements with respect to the
amount and complexity of the data transmitted, trans-
formed, and shared among different application com-
ponents. Such improvements are derived from us-
ing database techniques to manipulate data streams.
Namely, by imposing a relational model on the data
streams, constraints on the stream may be expressed as
database queries evaluated against the data events com-
prising the stream. The application in this paper is to a
safety-critical system.

This paper also presents a tool, dQUOB, Dynamic
QUery OBjects, which (1) offers the means for dynamic
creation of queries and for their application to large
data streams, (2) permits implementation and runtime
use of multiple ‘query optimization’ techniques, and (3)
supports dynamic reoptimization of queries based on
streams’ dynamic behavior.

1. Introduction

There is growing interest in run-time detection tech-
niques as parallel and distributed systems grow larger
and more complex. Run-time detection applied to such
systems enables the analysis of the system’s dynamic be-
havior for purposes of:
� evaluating system performance,
� recognizing current system states and/or predict-

ing/forecasting future states, and
� validating system correctness in terms of its run-

time operation.

System performance evaluation, as is done by per-
formance measurement tools such as Paradyn [6],
Falcon[4], or Pablo[11], employs run-time detection to
gather information about program performance and re-
source usage, including the measurement of predeter-
mined quantities like system utilization or program ex-
ecution times, the analysis of application-specific quan-
tities like the execution times of certain procedures or
inner loops, or the collection of more complex infor-
mation like the detection and evaluation of critical ex-
ecution paths in parallel programs.Recognizing current
system states to predict future states is demonstrated by
network management tools [16] which attempt to under-
stand network behavior in order to forecast future per-
formance. Runtime validation techniques use data gath-
ered at runtime to identify behavior deviating from some
user-provided definition of correctness. Such deviant
behavior may then be reported and/or corrected. Detect-
ing hazard conditions in a safety critical system [12] is
an example.

Runtime detection can be used as part of a larger
adaptation strategy where collection and decision phases
precede an enactment phase. For example, run-time de-
tection might collect and analyze information to identify
inappropriate behavior in a target system. An adaptation
policy would then be invoked to adjust operation to im-
prove performance or to meet its future goals. Adapta-
tion strategies vary considerably in purpose. Algorith-
mic or parametric changes in real-time systems manage
timing behavior in the presence of unpredictable pro-
grams or external environments; automated adjustments
in distributed or high performance systems are carried
out to improve the usage of scarce resources; and finally
user-directed system changes, typically termed program
steering, occurs.

1

1.1. Approach.

The runtime detection techniques we are develop-
ing are intended for distributed and parallel applications.
The specific example of their use presented in this paper
is the detection of hazards in continuous safety-critical
applications. Our ongoing work is in applying these
techniques to large-scale high performance applications
running on multiprocessors and clusters of workstations,
in the context of the Distributed Laboratories project de-
scribed elsewhere[9]. Our approach to run-time detec-
tion imposes a relational database model upon the data
arriving from the application. Specifically, we view the
flow(s) of data from the application being observed to
the analysis tool(s) as streams of events. Events may be
extracted from files, received from sockets, or received
as signals from an electro-mechanical sensor. When
modeled in the context of our relational approach, an
event is described as a database tuple [13]. All events of
a given type are then members of the same relation, and
relation membership is distinct (i.e., no tuple belongs to
more than one relation.)

By imposing the relational model on events, run-time
detection reduces to the problem of query evaluation. A
query is a language expression that describes data to be
retrieved from a database. In our model, the event stream
replaces the database as the data source. Specifically,
events flow through a query evaluator in a pipelined
fashion. If a particular set of events causes the query
to be true, the query is said to be satisfied by that set of
events. If applied to runtime validation, assuming a con-
straint is represented as a single query, a satisfied query
equates to a constraint violation. If applied to perfor-
mance enhancement, a satisfied query means the event
or set of events met the criteria specified by the condi-
tion. A satisfied query can trigger such actions as per-
forming computation, forwarding events, or generating
a new event.

1.2. Discussion.

There are several advantages to a relational approach
to describing and manipulating event streams. The rich
and well-understood semantics of query languages per-
mit the specification of complex conditions upon which
events and event streams may be manipulated. We have
investigated interesting runtime optimizations derived
from known query optimization techniques. Finally, the
resulting solutions to detection are scalable with respect
to the size and complexity of the problems they address,
and they offer means of adapting to changes in applica-
tions and their execution environments. Specifically:
� it is straightforward to specify detection conditions

across multiple event streams and/or event types;
� conditions may be stated across both spatial and

time properties of events;
� new event types may be created at runtime and

queries may be changed dynamically, as well; and
� action routines may be executed when conditions

are satisfied, thereby permitting the execution of
application-specific computations as part of event
processing.

Supporting scalability and adaptability is important
for several reasons. First, run-time violations often in-
volve multiple sources. For example, a constraint vi-
olation in an electro-mechanical system may involve a
pump’s pressure sensor, temperature gauge, and water
valve sensor. The ability to handle conditions involv-
ing a large number of event types is one difference of
our work compared to past approaches in violation de-
tection that embed assertions in sensors or that use auto-
matic code generation; both of which restrict conditions
to attributes of a single task or single event type. Second,
violations occurring in distributed systems often involve
time. Therefore, scalability in terms of complexity of
event streams is served by a query language that sup-
ports both relative time (e.g., b happens aftera) and log-
ical or physical time (e.g., a happens within 10 timesteps
of b). Third, for large-scale distributed applications, any
approach to detection should handle a large number of
streams in a natural fashion.

Adaptability is important because realistic large-scale
applications are typically dynamic, including the run-
time creation and deletion of application components,
the dynamic migration of components across underly-
ing machines, and the use of alternative internal solu-
tion algorithms, data representations, etc. Our approach
supports dynamic application behaviors in two ways.
First, the database concept of a view is extended to event
stream thus permitting the runtime creation of a new
event type which can then serve as the input to a query.
Second, the semantics of the query language presented
in this paper permit the invocation of an action routine
upon condition satisfaction. Action routines, having ac-
cess to the events causing the violation, may perform
useful application-specific analyses. New event types
coupled with dynamically swapped queries and action
routines provide interesting adaptation possibilities. this
is part of our ongoing work.

To test the effectiveness of the relational approach to
data stream analysis and manipulation, we have devel-
opedDynamic QUery OBjects(dQUOB), a query eval-
uation tool for event streams. Its initial design [12] and
its SQL-like, rule-based language [10] have been pre-
sented elsewhere. This paper focuses on the tool’s dy-
namic capabilities and the performance results obtained

defns
sensor

Tcl
script

interpreter

C:2

rules

sensor
specs

sensor
specs

parser

C:3C:1

di
sp

at
ch

er

generator
sensor

dQUOB library

optimizer

script name

event info
web-enabled GUI

commands
control

data stream

detection
component

AST
generation

code

component

management

Tcl

Figure 1. dQUOB components.

from applying dQUOB to a safety critical system.
The remainder of the paper is organized as follows.

Section 2 provides a brief overview of the dQUOB tool.
Section 3 discusses the safety-critical application used
in our work and defines an example constraint. Dy-
namic constraint optimization is discussed in Section 4,
followed by performance results in Section 5. Related
work and the conclusion follows in Sections 6 and 7,
respectively.

2. dQUOB Model

dQUOB is modeled as a set of nodes, queues between
nodes, and a dispatcher controlling overall execution. A
node is a collection of select, project, and join opera-
tions. Nodes are connected as a DAG where an arc ex-
ists between two nodesA andB if nodeB requires an
input event type that is generated byA.

A node implements one event-action rule. Rules are
specified with the dQUOB rule language. The rule lan-
guage draws heavily on the active database rule lan-
guage Starburst [15] for its meta statements, and on the
relational temporal query language ATSQL2 [14] for the
event conditions. In this paper we give a single example
of a complex constraint implemented as two rules. Fur-
ther details on the rule language can be found in [10].

As shown in Figure 1, dQUOB consists of a man-
agement component and a detection component. The
user interacts with the management component through
a web-enabled graphical user interface, and through it,
enters rules and sensor specifications, the latter to de-
scribe event sources. Sensor specifications are trans-
formed by the sensor generator into sensor definitions
which are subsequently linked with the application and

accessed by user inserted instrumentation points. Rules
are optimized before being transformed into calls to the
dQUOB library. A rule becomes instantiated in the de-
tection component through a control command issued to
the dispatcher. Upon receipt, the dispatcher invokes the
resident Tcl interpreter with the name of a script. The
interpreter invokes the dQUOB library to instantiate op-
eration and node objects that constitute the rule’s exe-
cutable form. Once instantiated, the rule registers itself
with the dispatcher. Figure 1 shows three rules:C:1,
C:2, andC:3. C:1 and C:2 take input from the data
stream whileC:3 takes input generated byC:2. The ar-
row back to the dispatcher fromC:3 means the rule in-
cludes an action to be executed on behalf ofC:3 by the
dispatcher.

The dispatcher controls dQUOB execution and as
such, is responsible for linking rules, and for main-
taining information about the current set of active rules
and their relationship to one another. More importantly,
however, the dispatcher services the data stream em-
anating from the distributed application components,
from the management component, or from the detection
component itself, as occurs during reoptimization, not
shown.

2.1. Run-time Environment.

The communication substrate of dQUOB is shown in
Figure 2. The application used for the paper is a threaded
robotics simulation, where one thread simulates the op-
eration of one robot. At instrumentation points in the
application, threads invoke sensors to write event data
to a shared buffer. The Falcon [4] monitoring substrate,
running as one or more additional threads, extracts event
data from the buffer, binary encodes it using the PBIO
binary library, then forwards it via the DataExchange
communication infrastructure [3].

C:1

PBIO DataExchange PBIO

network layernetwork layer

robotics application - robot threads

C:3

C:2

dispatcher

Falcon

steering invocation

Figure 2. The communication infrastruc-
ture.

Monitoring events arriving at the analysis tool are de-

coded with PBIO before being passed to the event dis-
patcher. The dispatcher forwards events to the relevant
rules. If a rule condition is satisfied, resulting in a steer-
ing action being triggered, as occurs forC:3, the rule
will notify the dispatcher which will in turn pass the
steering request to the application via DataExchange.
Falcon receives and decodes this event before invoking
the appropriate steering function embedded in the appli-
cation code. This compile-time approach to instrumen-
tation could be replaced by more dynamic instrumenta-
tion techniques such as binary editing [6].

3. Autonomous Robotics Example

The safety-critical application used in our work is
a parallel multiagent reactive robotic system simula-
tion.where a set of autonomous robots navigate toward a
goal across unmapped terrain, each ‘reacting’ to stimuli
in the environment. Some of the control schemes eval-
uated by this application have been tested with actual
physical robots in field applications.

The control scheme on which we focus in this pa-
per is calledforage, where each robot in the robot group
wanders the environment and upon encountering an at-
tractor, moves toward the attractor, attaches itself, and
returns the object to a specified home base. This is im-
plemented as a FSM of three states:wander, acquire,
anddeliver.

Suppose a user wishes to specify that a violation
occurs if a robot transitions to ACQUIRE state but
does not subsequently transition to DELIVER within 10
timesteps. The constraint, appearing in Figure 3, is spec-
ified as two rules.C:1 generates a derived event when-
ever a robot transitions from WANDER state to AC-
QUIRE state. The receipt of this event atC:2 causes
the nested query to be evaluated. Notice thatC:2 in-
corporates a real-time quantifier,IN 10 , on the negated
quantifierNOT EXISTS. The nested query fails if, from
the time of arrival of theAcquireEv for 10 timesteps,
no DELIVER event has been received. A failed nested
query yields a satisfied outer query so aNoDeliverEv
is generated. Additionally, a STEER action is executed
to change the gain force value to+0:2 for the robot iden-
tified by AcquireEv.id. A STEER action results in a
steering command being sent to the instrumented appli-
cation.

4. Adaptive Query Evaluation

The adaptive capability of dQUOB makes it respon-
sive to dynamic and long running applications. The
adaptation reported in this paper replaces a rule with a
more appropriate or efficient rule at run-time. A more

CREATE RULE C:1 ON StateEv
IF

SELECT AcquireEv s1.id s2.state
FROM StateEv as s1, StateEv as s2
WHERE

s1.id = s2.id and s1.state = WANDER and
s2.state = ACQUIRE and s1 meets s2

THEN

CREATE RULE C:2 ON AcquireEv, StateEv
IF

SELECT NoDeliverEv
FROM StateEv as s1, AcquireEv as a1
WHERE NOT EXISTS IN 10 (

SELECT
FROM StateEv as s2, StateEv as s3
WHERE

s3.id = s4.id and s3.state = ACQUIRE and
s4.state = DELIVER and s3 meets s4

)
THEN

STEER changeGoalGainForce AcquireEv.id +0.2

Figure 3. Constraint specified in two rules
using the dQUOB event-action rule lan-
guage.

appropriate rule might surface as the user gains deeper
understanding of the system. More efficient rules might
also occur under algorithmic control triggered by statis-
tical data gathered about the event stream at run-time.
This latter adaptation can yield a significant reduction in
the number of events processed by a query. When statis-
tical data about application data is considered during the
ordering of a query’s select operations, even a simple
swapping of select operations can dramatically reduce
the number of events processed by a node.

The former, user controlled adaptation, is provided
through the management component shown in Figure 1
through which the user can add, remove, alter, activate,
and deactivate rules. The algorithmic approach, called
dynamic constraint optimization, is described in more
detail in the next section.

4.1. Dynamic Constraint Optimization

Query plan generation applies well-known heuristics
(e.g., push selects below joins), then generates multiple
plans based on indices available, order of joins, etc. A
critical factor in determining the cost of one of these
plans is the selectivity of the select conditions wherese-
lectivity is defined as the fraction of tuples satisfying the
condition [8]. For databases, the selectivity of a con-
dition can be computed during plan selection by scan-
ning the table containing the relevant attribute. For the

event streams addressed by our work, selectivity esti-
mates must be performed at runtime. Therefore, an im-
portant part of our research involves adapting selectivity
estimation to an event-stream model.

Selectivity estimation is complicated by the fact that
constraint violations often occur as spikes in the data,
the implication being that we cannot assume a uniform
distribution of data for event streams. This prevents us
from using many of the simpler selectivity estimates that
assume such a distribution [8].

Implementing selectivity estimates involves a two-
fold approach:

� using random sampling at run-time to compute se-
lectivity estimates, and

� building support for reoptimizing a query at run-
time by swapping one query for its more optimal
cousin.

4.2. Selectivity Estimation

Selectivity estimates (e.g., SEL(sex=”female”) = 0.5
and SEL(salary> $1,000,000) = 0.02) obtained by ear-
lier simple statistics such as minimum and maximum
values are accurate only if attribute values are uniformly
distributed. Those obtained by commonly-used equi-
width histograms, where the number of elements in a
bucket varies across buckets, suffer the same limita-
tion [7].

Equi-depth histograms, on the other hand, have been
shown to provide more accurate estimates for non-
uniformly distributed data [8]. Equi-depth histograms,
which fix the height of each bucket instead of its width,
are built by sorting the records in a table, and partition-
ing the records amongst the buckets. Since sorting a ta-
ble is not possible, we adopt a sampling technique to
approximate the distribution of values [8] and use a non-
parametric statistic, Kolmogorov’s statistic,for the anal-
ysis of estimation errors. Kolmogorov’s statistic states
the relationship between confidence and sample size.
For instance, suppose the sample size is 1064 tuples and
� is the fraction of tuples in the sample withattr < v,
then with confidence 99% the fraction of the tuples in
the entire relation withattr < v is in the interval [� -
0.05,� + 0.05]. The sample size does not depend on the
number of tuples in the relation.

4.3. Query Reoptimization

Dynamic constraint optimization involves coopera-
tion among several components. As shown in Figure 4,
the ruleC:1 collects statistical data about its attributes
as equi-depth histograms. The rule triggers reoptimiza-
tion initially after a histogram has been established then

Dispatcher

Cnet
Optimizer

equi-depth
histograms

node"

C:1 "reoptimize(C:1)"

script
new

for
C:1

C:1"

"alter

"alter

abstract
syntax
tree

Figure 4. Dynamic rule optimization.

thereafter on a periodic basis. The optimizer, running
as a separate thread, retrieves the appropriate abstract
syntax tree based on the name of the invoking rule. Re-
optimization can now occur with selectivity data present
which will likely cause a more optimized version of the
rule to be generated. The optimizer generates a new
script and issues a command to the dispatcher to alter
the existing rule. The dispatcher replaces the rule with
the more optimized version, while preserving its accu-
mulated state to prevent missed violations.

5. Evaluation

5.1. Microbenchmark

We first undertook the timing of the individual oper-
ations (e.g., select, project, join) and used these times
to compute a total execution time for a query. These
microbenchmark values can be used to predict the exe-
cution time of a query and can also be useful to highlight
analysis overhead.

The benchmark numbers are obtained using a set of
twelve constraints, with the set composition varying de-
pending on the operation being measured. To measure
the gate operation, every constraint consists of a sin-
gle gate operation accepting a single primitive event.
Though the gate operation serves as both an entry-point
to the node and point-of-control for the node, during
testing the operation simply dequeues an event and re-

turns. In measuring the remaining operations, each con-
straint consisted of a gate operation and at least one op-
eration of the type being measured. For example, of the
twelve constraints in theselectbenchmark, eight have
one select operation and four have two; eight accept a
primitive event while four accept a derived event.

operation execution time
(microseconds)

gate 4.7
projection 8.6
selection 1.6
join 0.5

Table 1. Microbenchmark results.

The microbenchmark results are shown in Table 1.
Results were obtained using a set of 16872 events gener-
ated by the robotics application and run on a Sun Ultra-
SPARC 1. The time shown for the gate operation may be
misleading. The gate operation in fact does very little;
the time shown includes the overhead of the dispatcher.
As is evident, projection is a costly operation with re-
spect to the others, but the cost is reasonable consider-
ing that projection creates a new event for every event it
receives.

To verify the reasonableness of the benchmark val-
ues, we compare the computed time versus measured
time for atypical mixof realistic queries. Although the
individual queries in the mix are simple, each is a mean-
ingful query, the set accepts multiple event types, both
from sensors and from other queries. The structure of
the typical mix is shown in Figure 5. The queries C:1,
C:3, C:6, C:8, C:10, and C:7 accept input from sensors
while the remaining queries accept derived events.

As shown in Table 2 the typical mix resulted in
362,569 operations (i.e.,number of times a single select,
project, etc. operation was executed). The measured ex-
ecution time of 9% greater than the computed execution
time indicates there is activity in the analysis tool for
which the benchmark values are unable to account. We
suspect this is due, in part, to caching effects.

total ops measured execution computed execution
time (seconds) time (seconds)

362; 569 1:51988 1.39385

Table 2. Typicalmix.

ROBOT_STATE_EVROBOT_DIST_EV DIST_GOAL_EV

C:1

C:3

C:4

C:5 C:11

C:12 C:6

C:2

ROBOT_DIST_EV ROBOT_STATE_EV DIST_GOAL_EV

C:10
C:7

C:9

C:8

Figure 5. dQUOB for typical mix.

5.2. Performance Gains of Optimization

The evaluation criteria used in measuring the benefit
of optimization is total time to execute a query, mea-
sured from the time the first event is available until the
last event is received. The queries used execute no ac-
tions. The results include the total execution time and
number of operations performed for the constraint in op-
timized and unoptimized forms. Each constraint is ap-
plied to the event stream of 16872 events.

Optimization A optimized unoptimized

execution time (secs) 0:14427 1:08329

number ops 34; 070 865; 411

% by op :49=0=:51=0 .02/0/.11/.87
(gate/project/select/join)

Table 3. Optimization A, a complex con-
straint.

QueryA, shown in Table 3 accepts three input event
types. The optimization which emphasized pushing se-
lects down the parse tree, yielded a 87% reduction in
time and a 96% reduction in the number of operations.
As can be seen from the breakdown by type, in the unop-
timized version 87% of the operations were attributed to
join; the number of joins was reduced to zero in the op-
timized version. This indicates the optimization policy
of pushing selects is effective in reducing the number of
events reaching joins.

Filter A filter no filter

execution time (secs) 0:22191 0:23224

number ops 33; 345 72; 171

% by op :33=:33=:33=0 :31=:07=:62=0
(gate/project/select/join)

Table 4. Effects of factorization.

5.3. Inter-Rule Optimization

Greater gains in optimization can be achieved when
inter-rule optimizations are considered as well.Factor-
ization is the factoring out of a subexpression common
to two or more queries; Table 4 illustrates the effects.
The results seem to indicate that little benefit is accrued
as a result of factorization. Though the total number of
operations is reduced by more than half in the filtered
version, the execution time drops only 4.6%. Insight to
the problem can be gained by looking at the operations
breakdown, particularly at the percentage attributed to
projection. In the no-filter case, projects make up 29%
of the total time and 7% of the total operations. In the
filter case, projects account for a significant 67% of the
total time and 33% of the total operations.

The time gained in the rather substantial filtering that
took place (not evident by the numbers presented) was
partially lost through additional projection operations
which we know from microbenchmarking are costly.
The benefit of factorization, we conclude, depends on
a number of variables: first, the filtering capacity of the
factored-out select condition weighed against the cost of
introducing at least one project. Since filtering capac-
ity is determined by selectivity estimates, factorization
decisions should be deferred to run-time. The second
factor is the location of the filter. Were the filter lo-
cated closer to the source, the cost of filtering could be
weighed against the benefit of lower latency and less-
ened network demand.

6. Related Work

Afjeh et. al [1] propose a monitoring and control
system for observing and steering a parallel propulsion
system simulation. Analysis employs an expert system
where satisfied rules trigger steering commands. An ex-
pert system may not be appropriate for our work for two
reasons. First, distributed analysis is not easily accom-
plished with expert systems. Second, the rules which
encapsulate domain-specific knowledge can require sig-
nificant setup times and much up-front knowledge about
potential violations.

Brockmeyer and Jahanian [2] incorporate a moni-

toring and assertion checking tool into the Modechart
Toolset (MT). Assertion checking is performed on trace
data from symbolic executions of real-time specifica-
tions . Although similar to ours in its support of tem-
poral and complex specifications, this work cannot be
directly applied to run-time detection.

Snodgrass [13] develops an information based ap-
proach to modeling program behavior that treats mon-
itoring information (runtime data, states of processes,
states of processors, messages, etc.) as relations. Prior
applications of this formalism were geared toward per-
formance evaluation where the focus is collection and
organization of information for what is often post-
mortem analysis. Run-time detection, on the other hand,
is oriented toward discarding information as early and
often as possible. This focus shift makes the technique
more tractable than earlier work. In addition, prior
approaches were static, that is, they required that all
constraints be known at compile time. Given the ex-
ploratory, ‘what-if’ potential of safety constraints, appli-
cation of the relational model to hazard detection must
be accompanied by adaptation techniques.

Leveson’s work in the early 1980’s [5] is early recog-
nition of the need for run-time checking for hazard pre-
vention. The synchronous approach doesn’t scale well
to detection for distributed applications.

7. Conclusion and Future Work

This paper presents results of our research on run-
time detection achieved through imposing a relational
model on the event stream. The detection techniques we
are developing are broadly applicable to distributed and
parallel applications, but the specific domain to which
we apply the work in the context of this paper is safety
critical applications. Existing approaches to safety, often
based on formal techniques, cannot always provide the
required assurance of safety. Detection approaches can
complement formal techniques to provide greater levels
of assurance.

Our ongoing work is applying the formalism to large-
scale high performance computations running on multi-
processors and clusters of workstations. As described in
the paper, query evaluation can be beneficially applied
to data stream management in a Distributed Laboratory
environment.

The relational approach offers a rich and well-
understood query language, and known optimization
techniques that make detection scalable with respect
to the size and complexity of the problems they ad-
dress. Further, our solution offers a means of adapt-
ing to changes in applications and their execution en-
vironments by the ability to create new event types and

add/replace rules at run-time.
More specific ongoing work includes distributing the

analysis to enable communication between constraints
irrespective of constraint location and evaluating the se-
lectivity optimization algorithm. Additionally, research
continues into the fruitfulness of selectivity estimates.
These statistics offer an interesting potential for mak-
ing statements about the selectivity of an entire query
and are particularly useful applied to filtering in the Dis-
tributed Laboratories environment. Finally, the temporal
aspects of the language are being more richly exploited
through application to additional applications.

References

[1] A. Afjeh, P. Homer, H. Lewandowski, J. Reed,
and R. Schlichting. Development of an intelligent
monitoring and control system for a heterogeneous
numerical propulsion system simulation. InProc.
28th Annual Simulation Symposium, Phoenix, AZ,
April 1995.

[2] Monica Brockmeyer, Farnam Jahanian, Connie
Heitmeyer, and Bruce Labaw. An approach to
monitoring and assertion-checking of real time
specifications in Modechart. InWorkshop on Par-
allel and Distributed Real-Time Systems, April
1996.

[3] Greg Eisenhauer, Beth (Plale) Schroeder, and
Karsten Schwan. DataExchange: High perfor-
mance communication in Distributed Laboratories.
In Proceedings Ninth IASTED Int’l Conference on
Parallel and Distributed Computing Systems, Oc-
tober 1997.

[4] Weiming Gu, Greg Eisenhauer, Karsten Schwan,
and Jeffrey Vetter. Falcon: On-line monitoring for
steering parallel programs.Concurrency: Practice
and Experience, 10(9):699–736, Aug. 1998.

[5] Nancy G. Leveson and Timothy J. Shimeall. Safety
assertions for process-control systems. InProceed-
ings 13th Int’l Symposium on Fault Tolerant Com-
puting, pages 236–240, June 1983.

[6] Barton P. Miller, Mark D. Callaghan, Jonathan M.
Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin,
Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. Paradyn parallel performance
measurement tools.IEEE Computer, 28, Novem-
ber 1995.

[7] M. Muralikrishna and David J. DeWitt. Equi-depth
histograms for estimating selectivity factors for

multi-dimensional queries. InProceedings ACM
SIGMOD Conference, pages 28–36, June 1988.

[8] Gregory Piatetsky-Shapiro and Charles Connell.
Accurate estimation of the number of tuples satis-
fying a condition. InProceedings ACM SIGMOD
Conference, pages 256–276, June 1984.

[9] Beth Plale, Greg Eisenhauer, Karsten Schwan,
Jeremy Heiner, Vernard Martin, and Jeffrey Vetter.
From interactive applications to Distributed Labo-
ratories.IEEE Concurrency, 6(2), 1998.

[10] Beth Plale and Karsten Schwan. Language is-
sues in hazard detection using queries. Tech-
nical Report GIT-CC-97-36, College of Com-
puting, Georgia Institute of Technology, 1997.
http://www.cc.gatech.edu/techreports.

[11] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe,
Keith A. Shields, and Bradley W. Schwartz.An
Overview of the Pablo Performance Analysis Envi-
ronment. Department of Computer Science, Uni-
versity of Illinois, 1304 West Springfield Avenue,
Urbana, Illinois 61801, November 1992.

[12] Beth (Plale) Schroeder, Sudhir Aggarwal, and
Karsten Schwan. Software approach to hazard de-
tection using on-line analysis of safety constraints.
In Proceedings 16th Symposium on Reliable and
Distributed Systems, pages 80–87. IEEE Computer
Society, October 1997.

[13] Richard Snodgrass. A relational approach to mon-
itoring complex systems.IEEE Transactions on
Computers, 6(2):156–196, May 1988.

[14] Richard T. Snodgrass, Michael H. B¨ohlen, Chris-
tian S. Jensen, and Andreas Steiner. Adding
valid time to SQL/temporal. In ISO/IEC
JTC1/SC21/WG3 DBL MAD-146r2, November
1996.

[15] Jennifer Widom and Stefano Ceri, editors.Active
Database Systems. Morgan Kaufmann, 1996.

[16] Rich Wolski. Dynamically forecasting network
performance to support dynamic scheduling us-
ing the network weather service. InProceed-
ings 6th High-Performance Distributed Computing
(HPDC6), August 1997.

