
Software Approach to Hazard Detection Using On-line Analysis of Safety
Constraints

Beth Schroeder� Sudhir Aggarwal
Karsten Schwan State Univ. of New York

College of Computing at Binghamton
Georgia Institute of Technology Binghamton, NY 13902

Atlanta, GA 30332 sudhir@cs.binghamton.edu
fbeths,schwang@cc.gatech.edu

Abstract

Hazard situations in safety-critical systems are typically
complex, so there is a need for means to detect complex
hazards and react in a timely and meaningful way. This
paper addresses the problem of hazard detection through
the development of an on-line analysis tool. The approach
allows the user to specify complex multi-source hazards
using a query-like language, uses both synchronous and
asynchronous on-line checking approaches to balance ef-
ficiency and expressiveness, accommodates dynamic appli-
cations through dynamic constraint addition, and supports
distributed and parallel applications running in heteroge-
neous environments.

1 Introduction

Public awareness of safety issues involving computers is
growing as incidents resulting in loss of life or near loss
receive widepublicity. One of the more tragic examples in-
volved the Therac-25, a therapeutic linear accelerator. Six
people either died or suffered serious injuries from mas-
sive overdoses of radiation between 1985 and 1987 before
the problems were acknowledged and corrected [11]. A
safe systemis one that is free from accidents or unaccept-
able losses [17]. There is important research and devel-
opment being done in providing intrinsically safe systems
[8, 15, 16, 20, 21], systems incapable of evolving into a state
that could lead to injury or loss of life. But the goal of an in-
trinsically safe system is difficult to achieve for some of to-
day's complex, dynamic applications running in parallel or
distributed environments. Adopting guidelines established
by system safety engineers [7], if one cannot guarantee an

�This work was funded in part by NSF equipment grants CDA-
9501637, CDA-9422033, and ECS-9411846.

intrinsically safe system, the next preferred approach is a
technique that prevents, minimizes, or detects the presence
of hazards. Ahazard is a state or condition of the system
that combined with some environmental conditions can lead
to an accident or loss event [17]. Automatic pressure relief
valves, lockins, lockouts, and interlocks are common hard-
ware hazard prevention approaches. An example of a soft-
ware approach is a trip computer in a nuclear power plant
that initiates procedures to shutdown the plant when operat-
ing conditions are hazardous [12].

The research here addresses the problem of enhancing
software safety through hazard detection. The premise of
our work is that hazard situations can and do occur, and are
often complex, involving multiple sources. So there is a
need for a mechanism to detect complex, multi-source haz-
ards and react in a timely and meaningful way. This pa-
per addresses such a detection mechanism through Cnet,
an on-line analysis tool that supports the specification of
complex hazards using a query-like language, uses both
synchronous and asynchronous checking approaches to bal-
ance efficiency and expressiveness, accommodatesdynamic
applications through dynamic constraint addition, and sup-
ports distributed and parallel applications running in hetero-
geneous environments.

We have applied our detection approach to a set of au-
tonomous robots that can navigate toward a goal across un-
mapped terrain, `reacting' to stimuli in the environment.
Envisioning more relaxed definitions of hazards, our detec-
tion approach is useful in many environments. For instance,
in the Iowa Driving Simulator (IDS) [10] a fully immersive
ground-vehicle simulator can place a driver in a highly re-
alistic driving environment. Hazard conditions in such an
environment are the same as in real-life but without the at-
tendant risk of harm or loss. For example, excessive driving
speeds on icy roads create hazard conditions to be avoided
in either a virtual or real world. Hazard detection could

1



profitably be applied during development of a virtual reality
driving simulator, allowing developers to play what-if sce-
narios by iteratively adjusting speed and environmental con-
ditions to determine what combination of conditions will be
classified a hazard to which the simulator will react.

1.1 Problem and Solution Strategy

Hazard detection is a viable approach to improving soft-
ware safety [12] and, in some cases, is the only approach.
For example, the confluence of events that caused the 1990
AT&T system runaway (a combination of heavy load, soft-
ware errors, and neighboring switches) caused a 9 hour na-
tionwide blockade that was not anticipated despite exten-
sive testing of the involved 114 electronic switching sys-
tems [18]. Multiple cause failures such as this can be most
easily mitigated with detection oriented approaches. Our
goal is to provide such a detection approach through on-line
hazard analysis.

Our approach consists of a language for specifying com-
plex hazards, a library for building executable versions of
the hazard descriptions, and a run-time environment to han-
dle execution. In particular, hazards are represented as
constraints specified on application behavior. These con-
straints, calledsafety constraintsare specified with a rule
language. The compiler generates a list of commands to
the library which builds an executable entity, or node, for
each constraint as a collection of selection, projection, and
join operations. The nodes are linked together at runtime
as a directed acyclic graph (DAG). As shown in Figure 1,
the compiler accepts sensor and constraint specifications.
From a sensor specification it generates sensor definitions
that are used to instrument the application code. Informa-
tion about sensor definitions is also used in calls to the li-
brary. The safety constraint specifications are compiled into
a sequence of Tcl [19] commands which are executed by
the Tcl interpreter resident in the executable. The inter-
preter is used initially when the graph is being created and
thereafter only when a constraint is dynamically added to
Cnet, so the performance impact generally associated with
interpreters is minimized. The Dispatcher is responsible
for event handling, event distribution, action execution, and
user command handling. The user intefrace provides a ve-
hicle through which commands to add, modify, and remove
constraints are issued.

The most significant contribution of this work is its novel
approach to hazard detection, highlighted by:

� accommodatesdynamic applications through dynamic
constraint addition, enabling, and disabling;

� provides synchronous and asynchronous constraint
checking with predictable performance and low per-
turbation; and

sensor
specifications

library calls,
user and compiler
supplied functions

constraint 
specifications

Tcl
interpreterlibrary

Cnet

sensor
definitions

event
data

user 
commands

user
interface

Cnet
analysis

constraint
compiler

robot
application

Dispatcher

action

Figure 1. The system architecture includes
the constraint compiler, instrumented appli-
cation, Cnet analysis task, and user interface.

� supports specification of complex, multi-source haz-
ards.

In contrast to previous static analysis approaches, Cnet ac-
commodates dynamic applications by allowing dynamic
constraint addition. Additional constraints can be specified
over a newly created application process, task, or object as
long as the application entity is instrumented.

Synchronous and asynchronous constraint checking is
provided by flexible placement of constraints. This allows
constraints with localized sensor data needs to be evalu-
ated in the sensor itself. Predictable performance guaran-
tees can be made because of the DAG restriction on the
constraint graph. Low perturbation is achieved through the
use of a separate thread to perform monitoring and syn-
chronous constraint checking. Perturbation could be further
reduced by employing a technique used in software fault
isolation [26] of embedding monitoring related instructions
in open slots in the instruction stream.

A multi-source hazard is a hazard that occurs when a
combination of conditions exist: a failed valve indicator,
condensate pump out of order, and a relief valve failing
to close, for example. It is likely that each condition oc-
curs in a separate piece of controlling software. To enforce
such a hazard, the analysis tool must be located such that it
can gather information from each source. This precludes a
completely synchronous approach. Additionally, the more
complex the hazard, the stronger the need for a language in
which to express complex relationships between conditions



of a hazard and between hazards themselves.
There is ample justification for implementing the anal-

ysis tool outside the application. The external nature of
the tool makes possible the specification of complex con-
straints. It also makes possible its use with legacy systems
with only minimal modifications needed for instrumenta-
tion. Also, by isolating safety related code we not only
reduce the perturbation of one or more application compo-
nents, but by separating the safety related code from the ap-
plication, we provide a well defined interface between the
two that minimizes the risk of the safety checking code in-
troducing hazards itself. Separate constraint analysis means
more portable constraint analysis as well. Our analysis tool
can be used with any system providing a uniform event
stream.

Our focus is largely pragmatic. Our first concern has
been to identify and support a variety of useful abstractions.
Over time we will determine the limits of the approach and
the degree to which reliance on the approach is justifiable as
we gain experience applying the tool to varied applications.

The remainder of the paper is organized as follows. In
Section 2 we the example application used in our work and
specify a couple sample constraints. In Section 3 we in-
troduce the rule language while in Section 4 we introduce
the library and run-time environment. Related work is dis-
cussed in Section 5. We conclude in Section 6 with a dis-
cussion of current status and future work.

2 Autonomous Robots Example

The application used in our work is a multiagent reactive
robotic system simulation by Balch and Arkin [1] in their
work on the Autonomous Robot Architecture (AuRA) at the
Georgia Institute of Technology. The work was undertaken
to investigate the importance of communication in robotic
societies. The authors tested their strategy through an iter-
ation of simulation and instantiation on real systems. Our
work with robots is in the simulated environment witheach
robot running as a separate thread and employing shared
memory as a communication medium.

We briefly describe the robots to give the reader suffi-
cient background for understanding the constraints we spec-
ify below. The robots perform one of three tasks: forage,
consume, and wander. Duringforage, a robot wanders in
an environment, looking for attractors. Upon encountering
an attractor, it moves toward the attractor, attaches itself,
and returns the object to a specified home base. During
consume, a robot wanders the environment, looking for at-
tractors. Unlike forage, after attachment a robot performs
work on the object in place. In the final task,graze, dis-
crete attractors are not involved; the object is to completely
cover, or visit, the environment (akin to mowing the lawn).

A robot searches for an area not grazed, moves toward it,
then grazes until the entire environment (or some percent-
age thereof) has been covered. The robots are implemented
as a three state finite state machine with the state selection
dependent on the current task. For example, in the forage
task a robot can be inwander, acquire, or deliverstate. In
wander state, the robot roams freely. It transitions to ac-
quire state when it has detected an attractor and to deliver
state when it is returning the object to the home base. Once
the object has been delivered, transition is made to back
wander.

There are meaningful constraints that can be specified
over the behavior of the group of robots just described.
For instance, suppose a group of robots are tasked with
digging up drums filled with radioactive material that are
buried over a large area and moving them to a central site
on higher ground. In retrieving a drum, one of the robots is
splashed by the thick, murky contents and begins emitting
radiation. The user might be greatly concerned to keep the
other robots away from the contaminated robot. So in de-
vising a constraint, the user specifies a hazard based on the
concept of a danger zone, a region around the contaminated
robot in which a robot approaching to help is in a danger
but not imminently so. The user then wants to be notified
when an approaching robot is within 10 ft. of the contam-
inated robot even though danger of picking up debris from
the contaminated robot does not occur until the approaching
robot is within 5 ft. With this constraint in place and given
a work area large enough and the number of attractors great
enough, the user may be confident enough to allow work
to continue even after a robot becomes contaminated. The
constraint ensures the user will be notified when a robot has
been contaminated, and will be notified again, with enough
time to respond, when another robot has entered the `dan-
ger zone' . The danger zone constraint could trigger an alert
to the operators to halt the approaching robot or it could
invoke a user-defined handler in the approaching robot to
change its state so it no longer seeks to assist the contami-
nated robot. The constraint for the scenario just described
is as follows:
� If the radioactivity level of a robot exceeds 200 roent-

gens per hour, then a violation occurs if a robot ap-
proaches within 10 ft. of the radiating robot more than
once.

The constraint specifies that if any robot becomes radi-
ated, a violation occurs if any other robot comes within 10
ft. of the radiated robot. A second sample constraint has
a management focus: gathering statistical information for
evaluating performance:
� If during forage task, the average amount of time spent

by robots in the wander state exceeds a threshold while
progress toward a goal is less than some minimum, a
violation has occurred.



That is, the user may be interested in knowing when the
average amount of time a robot spends wandering as a func-
tion of the total amount of time working exceeds some rea-
sonable estimate. As long as the value is reasonable, the
user is willing to let the event pass without being notified.

Why not simply modify the robot application to enforce
the constraint behavior? Embedding constraint checking in
the robot application suffers the same limitations as other
embedded approaches: first, a single robot knows at most
state and goal information about another robot. Global, sta-
tistical knowledge cannot be known or computed by any
one robot. Second, constraints that dynamically modify pa-
rameters such as attraction/repulsion forces could be added
to the application but at the cost of recompiling and relink-
ing the application code. In a fluid environment where con-
straint specification is itself a dynamic process, subject to
learning on behalf of the users, evolving and dynamic appli-
cations, and evolving environments, the additional function-
ality provided by Cnet is best implemented separate from
the application. In the next section we discuss the rule lan-
guage used for specifying constraints.

3 The Rule Language

The constraints given in the robot example are expressed
in a natural language. A natural language is obviously not
a suitable choice for specifying constraints that are to trans-
formed into executable entities - particularly when done dy-
namically. A query language, on the other hand, given its
declarative style and ease of use, is suitable. The language
we have adopted for our use is based on the active database
rule definition language of the Starburst system [27]. The
language consists of five commands:create rule, alter
rule, drop rule , activate rule, anddeactivate rule. The
create rule is used to define a new constraint. The syntax
of the command is:

create rulenameon event-type
if condition
then action-list

The namenames the rule and each rule is defined on a
set of event-type. Theif clause specifies the rule's condi-
tion. The condition is the constraint that is checked when
the rule is triggered by an incoming event. Our language
uses the temporal query language ATSQL2 for specifying
the condition. ATSQL2 is a variant of TSQL2 [24] and is
currently being proposed for incorporation into SQL3 [25].
The condition can be any valid ATSQL2 query. Thethen
clause specifies the rule's actions. An action is executed
when the rule is triggered and its condition is true. Actions
are discussed in Section 3.2.

Figure 2 illustrates acreate rule command. The com-
mand creates a rule namedC:1. The event sources needed

CREATE RULE C:1 ON robotRad, robotState
IF

SELECT radiatedRobot r.ID, r.rad
FROM robotRad as r, robotState as s
WHERE

s.task = FORAGE and s.state = DELIVER and
r.rad >= 200 R and r.ID = s.ID

THEN
STEER disableRobot r.ID

Figure 2. Notify if foraging robot in `deliver'
state has radioactivity level that exceeds 200
roentgens per hour.

by this rule arerobotRadandrobotState. Event sources may
originate from a sensor in the application or as the result of
another query. Theif statement delineates the rule's con-
dition. The condition can be any ATSQL2 query. In the
example, the query is composed of a SELECT statement,
a FROM statement, and a WHERE statement. The SE-
LECT statement builds a new relation or event type from
attributes of one or more existing event types. The derived
event, radiatedRobot, will contain three attributes: a robot
ID and roentgen level taken from the robotRad relation and
a timestamp derived from the timestamps of the tuples satis-
fying the condition. The FROM statement defines variable
namesr ands that will represent the event typesrobotRad
androbotState, respectively. The WHERE clause specifies
a predicate on the explicit attributes that selects those events
that will contribute toward the new event type. Thethen
statement delineates the action list. In this example there
is a single action, aSTEERcommand. The first parame-
ter to STEERnames a function in the robot application to
be invoked. The second parameter identifies the task to be
affected by the action.

3.1 Applying a Query Language to On-line Mon-
itoring.

Snodgrass has shown that a relational database query
language can be used beneficially to specify queries that are
evaluated against event streams such as are generated with
on-line monitoring [23]. The significant difference between
evaluating queries against a database and evaluating them
against an event stream is that in the latter constraints must
be evaluated against aconceptualdatabase rather than an
actualdatabase. That is, no databaseper seexists. Instead,
each constraint must have sufficient storage to maintain the
application state it needs. Hence, a given event may exist in
multiple nodes at any moment; the length of time an event
remains in the node depends on the attributes upon which
the query is based and the complexity of the query.



There is an issue of efficiency with which one must deal
when executing queries in an on-line analysis environment.
Instead of a query being executed periodically or upon user
demand, and a set of tuples satisfying the query returned,
the query is in essence executed every time an event arrives.
What keeps this characteristic from being wholly inefficient
is that a constraint by its nature will reject the majority of
the events it receives. To further enhance efficiency, we
have in place compile-time optimization techniques to order
the operations such that event discarding occurs as early in
the sequence of operations as possible. Additionally, work
on run-time optimization is underway.

3.2 Action Statements

The user has control over the set of executing constraints
in two ways. The first is through issuing commands (e.g.,
alter rule) through the user interface. The second is through
a rule's action statement. An action statement is a com-
mand listed in the action part of a rule. The set of allowable
actions must be basic enough and broad enough such that
when taken alone or combined, they allow the user to effect
a desired behavior. Three action statements are supported:
� invoke a user-defined function in node;
� invoke a handler in the application; and
� enable or disable a constraint.

Invoking a user-defined function in a node may do some-
thing simple like causing a bell to ring or a message to be
printed to an operator console or something more complex
like collecting statistics. Invoking a handler in the applica-
tion causes a steering command to be issued to the applica-
tion that results in the execution of a user-defined function
residing in the application. The mechanisms for such steer-
ing are discussed in the next section.

Enabling and Disabling Constraints. When a constraint
is disabled, it no longer processes events although its code is
still resident in the system. Enabling, the default mode, re-
verses the disabling action and allows the constraint to pro-
cess events once again. Constraint enabling and disabling
has multiple useful application.

Any approach, such as the one discussed in this paper,
that allows dynamic constraint addition must deal with the
eventuality that an added constraint will conflict with an ex-
isting one. The effect of such conflicting constraints is that
one or the other will continuously be violated; perhaps not
a desirable behavior from the point of view of the user. To
obviate the problem, the DISABLE clause is provided as a
means for the user to manage the conflict.

The enable and disable clauses are also useful for loosely
hierarchical error recovery [4]. For example, when a robot
encounters an obstacle in its path, its first response could be
to wait some amount of time in the hope that the obstacle

will move. If this simple error recovery fails, its second
response would be to determine a new route.

4 Library and Dispatcher

The rule language provides a means for specifying con-
straints. The library and run-time environment, on the other
hand, provide the means for the specified constraints to
be transformed into individual executable entities and the
mechanism to execute the constraints against the incoming
event stream. Thelibrary is a collection of functions that
build two types of compnents: operations and nodes. An
operationis a component that implements one of selection,
projection, or join. Control flows between operations by
procedure calls. Anodeis a collection of operations with a
number of methods defined for it. A node can be created and
can accept connections. Additionally, it possesses general
information about itself so it can respond to questions as to
its state (active, inactive), it can be called upon to activate
or deactivate itself, or it can return a list of its input events
and output events. Control flows between nodes under the
control of the dispatcher.

The dispatcher controls net execution. At startup, it
awaits nodes to register their existence and event needs. The
dispatcher links those nodes together having data dependen-
cies as shown by their event lists. During execution, the Dis-
patcher accepts events from the application and routes them
to the interested nodes andaccepts and executes commands
from the user.

4.1 From Rules to Executable Entities

The transformation of a constraint from a rule to a node
begins with the rule compiler. The rule compiler parses
a constraint, and converts it to a relational algebraic ex-
pression in conjunctive normal form. From the relational
algebraic expression an abstract syntax tree is constructed
and it is from this that the optimizer performs compile-
time optimization before generating a sequence of Tcl com-
mands [22]. So roughly for every select, project, and carte-
sian product operation in the relational algebraic expres-
sion, there is a corresponding Tcl command in the script
file. Also included in the script file are Tcl commands to
build the node, the entity to which the operations belong,
and to link the operations in the proper order.

The initial set of queries become executable nodes when
the analysis tool is first executed. The dispatcher accepts
the name of a script file as an argument, and invokes the Tcl
interpreter, passing it the name of the script file. The in-
terpreter executes the commands in the file, each command
resulting in a call to the library. Through a sequence of calls
the node is built. The script file can contain any number of



queries in any order. Linking queries takes place when a
node registers itself with the dispatcher.

4.2 Multi-Source Hazards

Multisource hazards, hazards which can be described as
consisting of events from multiple sources, make up an im-
portant and substantial subset of hazard descriptions [12].
Implementing detection of such hazards requires making
tradeoffs between latency, perturbation, and ease of use.
Latency is far more of an issue in external approaches to
hazard detection than it is, for example, when constraints
are embedded directly in the application code. But em-
bedded approaches suffer from increased perturbation and
decreased breadth of potential event sources. Our exter-
nal approach trades decreased perturbation and the ability
to specify multi-source hazards for increased latency. More
complex hazard descriptions also require a more general
language, such as a query language, to distinguish events
from mulitple sources and describe complex relationships
between events in a natural way.

To achieve efficient communication between multiple
sources and the analysis tool, we employ a communica-
tion infrastructure, DataExchange [5], developed at Georgia
Tech. DataExchange provides for binary IO of event data
between the multiple sources and the analysis tool. The full
features of DataExchange, in its ability to forward data to
multiple clients based on event type, can be utilized in the
version of Cnet underway where the analysis tool is itself
distributed.

4.3 Dynamic Applications

Support for dynamic applications occurs in part by the
design concept ofevent types. All events possessing the
same set of attributes belong to the same event type, regard-
less of the sensor from which they originate. For example,
every event consisting of a robot ID, location, and current
timestamp is of therobotID event type, regardless of which
of the many robots generated the event. A constraint node
registers its interest in event types, so any dynamically cre-
ated application task generating events of a known event
type will automatically be included in the constraint check-
ing done by nodesaccepting events of that type.

Support for dynamic applications based solely on event
types would only partially solve the problem. Also needed
is the ability to add new constraints. With constraints de-
scriptions encoded as Tcl scripts, dynamic constraint addi-
tion becomes straightforward. As shown in Figure 3, when
an ADD command arrives at the dispatcher (from the user
interface), the dispatcher invokes the Tcl interpreter, pass-
ing it the script file name as an argument. The interpreter
executes the script, the execution of which results in a se-

Dispatcher

Cartes Product

Cartes Product

Gate

Selection

Cartes Product

Cartes Product

Projection

Gate

Cartes Product

Cartes Product

Gate

Selection

Projection

Tcl
Interpreter

Cnet library

newQuery.
script

Selection

ADD "newQuery.script"

Projection

Cnet Analysis
Task

Figure 3. The Cnet analysis task includes a
dispatcher, Tcl interpreter, library, and con-
straint nodes.

ries of calls to the Cnet library to build a node. The new
node, once built, automatically registers its existence with
the dispatcher, providing it a list of input and output events
of which the dispatcher adds to its internal lists. Control
then returns to the dispatcher and event processing resumes.
Events arriving at the dispatcher for which the new node is
interested will immediately be forwarded to the new node.

4.4 Synchronous Constraint Checking

Asynchronous constraint checking has been explained in
some detail in the general discussions of Cnet. Less has
been said, however, about synchronous constraint checking.
Synchronous constraint checking is checking performed in
the application data space. It is suitable for filtering data
to reduce the volume of events flowing to the analysis tool.
Synchronous placement is restricted to constraints having a
single input event type. The restriction is necessary because
the constraint node is invoked from within the sensor gen-
erating the event type. The constraint is evaluated prior to
the event being forwarded to the analysis tool.

The constraint compiler provides support for handling
synchronous constraint checking by identifying those con-
straints suitable for synchronous placement. A Tcl inter-
preter creates the synchronous nodes in a separate thread in
the application data space. Since we do not want the over-
head of the interpreter executing while the application is
running, we restrict dynamic constraints to an asynchronous
implementation.



5 Related Work

Parallels to our work can be drawn from a couple of dis-
tinct bodies of work: assertion checking in real-time sys-
tems and applying query languages to on-line monitoring.

Assertion Checking in Real-Time Systems. Gerber's
work [6] on guaranteeing end-to-end timing constraints is
an automated design methodology that generates a solu-
tion for a set of tasks that keeps consistent a set of end-
to-end timing constraints. Gerber's work is a prevention
approach with the goal of designing an architecture such
that it is impossible for any of the constraints to be violated.
Ours is a detection oriented approach: we provide a mech-
anism for detecting constraint violations that we maintain
cannot all be known a priori. The work is important to us
though in that it defines a class of constraints specifiable
and monitorable by our tool. The Monitoring and Assertion
tool (MAC) [2] is a formal analysis technique for monitor-
ing symbolic execution traces generated by the Modechart
Toolset [3]. It provides a mechanism for evaluating proper-
ties of the system on a particular execution trace. Leveson's
work in the early 1980's [13] is early recognition of the
need for run-time checking for hazard prevention. Her syn-
chronous approach, though, requires embedding constraints
in the application.

On-line Application of Query Languages. In Liu and
Pu's work on continual queries [14], a client specifies con-
tinual queries over information stored in a distributed inter-
operable environment such as the Internet. The objective is
to compute the query and return the entire resulting relation
upon the first triggering only. On subsequent triggerings,
only the add, modify, and delete change information is re-
turned. The primary intent is to minimize the amount of
information returned as a result of the query and is most ef-
fective when the returned relation is large. The immediate
response requirements of our environment, however, force
us to reevaluate a query every time relevant event data ar-
rives (or in database terms, every time a change takes place
to one of the underlying relations) so the returned relation
is small; often a single tuple. The underlying assumptions
of the two approaches are quite different, hence continual
queries cannot be applied to our problem.

It has been shown that the relational model is an appro-
priate formalism for the information processed by the moni-
tor though earlier applications of this formalism to monitor-
ing were primarily for performance evaluation [9, 23]. In
addition, prior approaches to monitoring were static, that is,
they required that all constraints be known at compile time.
Given the exploratory and `what-if' potential of safety con-
straints, any realistic solution must allow for dynamically
added constraints.

6 Conclusion

The research presented here addresses the problem of
improving software safety through hazard detection. The
approach consists of a query-like language and compiler
for specifying hazards, a library for creating operations and
nodes, and a run-time tool to dispatch arriving events, trig-
ger node execution, and handle dynamic node addition.

Hazards are often described by a number of events oc-
curring simultaneously. Any realistic approach to hazard
detection must accommodate the complex hazard as eas-
ily as it accommodates the simple one. Our general lan-
guage approach allows for the specification of complex con-
straints specified over distributed components. Just as haz-
ards are complex, applications are growing more complex.
It is not unusual to find real-time applications characterized
by the dynamic addition of objects or tasks. Though these
applications do not lend themselves well to formal analy-
sis techniques, they are still amenable to hazard detection
approaches, particularly ones that allow constraints to be
added dynamically.

For a hazard detection approach to be realistic, however,
it must be responsive. That is, it must recognize a hazard
and respond within a reasonable period of time. That period
of time is the latency. Part of our effort to minimize latency
is concentrated on employing both synchronous and asyn-
chronous constraint checking with the emphasis on using
synchronous checking to filter event data.

There are several avenues of long term pursuit. We
would like to apply hazard detection to a virtual environ-
ment, where hazards still have meaning though in a less crit-
ical context. Additionally,hazard descriptions often include
components outside the software system. A hazard detec-
tion approach should be able toaccommodate a description
that includes state from these components as well. One
approach is to mirror these non-software components by
adding shadow objects representing the component. These
shadow objects would then be the source of state informa-
tion for the analysis tool. Finally, the purpose of hardware
hazard detection is often as a safeguard. It is the mecha-
nism, such as a pressure relief valve, to which an engineer
turns for the extra measure of safety. Such a device must at
all times provide the extra measure of safety, not decrease
the overall safety of the device on which it is placed. We
need to explore and delineate the situations in which our
software approach can be justifiably used in hazard detec-
tion. This final piece of work is one of its most important.

References

[1] Tucker Balch and Ronald Arkin. Communication
in reactive multiagent robot systems.Autonomous
Robots, 1(1):27–52, 1994.



[2] Monica Brockmeyer, Farnam Jahanian, Connie Heit-
meyer, and Bruce Labaw. An approach to monitoring
and assertion-checking of real time specifications in
modechart. InWorkshop on Parallel and Distributed
Real-Time Systems, April 1996.

[3] P. C. Clements, C. L. Heitmeyer, B. G. Labaw, and
A. T. Rose. MT: A toolset for specifying and ana-
lyzing real-time systems. InProceedings IEEE Real-
Time Systems Symposium, December1993.

[4] Ingeman J. Cox and Narian H. Gehani. Exception
handling in robotics.Computer, 22(3):43–49, March
1989.

[5] Greg Eisenhauer, Beth Schroeder, Karsten Schwan,
Vernard Martin, and Jeffrey Vetter. DataExchange:
High performance communication in distributed labo-
ratories. InAccepted forpublication in 9th Int' l Con-
ference on Parallel and Distributed Computing and
Systems, October 1997.

[6] Richard Gerber, Seongsoo Hong, and Manas Saksena.
Guaranteeing end-to-end timing constraints by cali-
brating intermediate processes. InProceedings 15th
Real Time Systems Symposium, pages 192–203. IEEE,
December1994.

[7] W. Hammer.Handbook of system and product safety.
Prentice Hall, 1972.

[8] M. P. E. Heimdahl and Nancy G. Leveson. Complete-
ness and consistency checking of software require-
ments. IEEE Transactions on Software Engineering,
22(6), June 1996.

[9] Carol Kilpatrick, Karsten Schwan, and David Ogle.
Using languages for capture, analysis and display of
performance information for parallel and distributed
applications. InProceedings1990 Int' l Conference
on Programming Languages, 1990.

[10] Joh Kuhl, Douglas Evans, Yiannis Papelis, Richard
Romano, and Ginger Watson. The Iowa Driving Simu-
lator: An immersive research environment.Computer,
28(7):35–41, July 1995.

[11] Nancy Leveson. An investigation of the Therac-25 ac-
cidents.Computer, 26(7):18–41, July 1993.

[12] Nancy G. Leveson. Software safety in embedded com-
puter systems.Communications of the ACM, pages
34–46, February 1991.

[13] Nancy G. Leveson and Timothy J. Shimeall. Safety
assertions for process-control systems. InProceedings
13th Int' l Symposium on Fault Tolerant Computing,
pages 236–240, June 1983.

[14] Ling Liu, Calton Pu, Roger Barga, and Tong Zhou.
Differential evaluation of continual queries. Technical
Report TR95-17, Department of Computer Science,
University of Alberta, 1996.

[15] Robyn R. Lutz. Targeting safety related errors during
software requirements analysis. InProceedings 1st
ACM SIGSOFT Symposium on Foundations of Soft-
ware Engineering. ACM, 1993.

[16] Louise E. Moser and P.M. Melliar-Smith. Formal ver-
ification of safety-critical systems.Software - Practice
and Experience, 20(8):799–821, August 1990.

[17] title = Nancy G. Leveson, editor.

[18] Peter G. Neumann.Computer Related Risks. Addison-
Wesley, 1995.

[19] John Ousterhout.Tcl and the Tk toolkit. Addison-
Wesley, 1995.

[20] Vivek Ratan, Kurt Partridge, Jon Reese, and Nancy G.
Leveson. Safety analysis tools for requirements spec-
ifications. InProceedings Compass96, June 1996.

[21] Joh Damon Reese and Nancy G. Leveson. Software
deviation analysis: A “safeware” technique. Technical
report, University of Washington, 1996.

[22] Beth Schroeder, Sudhir Aggarwal, and Karsten
Schwan. Hazard detection using on-line analysis of
safety constraints. Technical Report GIT-CC-97-01,
College of Computing, Georgia Institute of Technol-
ogy, 1997. http://www.cc.gatech.edu/techreports.

[23] Richard Snodgrass. A relational approach to monitor-
ing complex systems.IEEE Transactions on Comput-
ers, 6(2):156–196, May 1988.

[24] Richard T. Snodgrass, editor.The TSQL2 Temporal
Query Language. Kluwer Academic Publishers, 1995.

[25] Richard T. Snodgrass, Michael H. Bohlen, Christian S.
Jensen, and Andreas Steiner. Adding valid time to
SQL/temporal. InISO/IEC JTC1/SC21/WG3 DBL
MAD-146r2, November 1996.

[26] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Ef-
ficient software-based fault isolation. InProceedings
14th SOSP, pages 175–188, December1993.

[27] Jennifer Widom and Stefano Ceri, editors.Active
Database Systems. Morgan Kaufmann, 1996.


