
The ECho Event Delivery System

Greg Eisenhauer
eisen@cc.gatech.edu

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332

December 4, 2000 { ECho Version 2.0

1 Introduction

ECho is an event delivery middleware system developed at Georgia Tech. Super�cially, the

semantics and organization of structures in ECho are similar to the Event Channels described

by the CORBA Event Services speci�cation[COSEvents]. Like most event systems, what ECho
implements can be viewed as an anonymous group communication mechanism. In contrast with

more familiar one-to-one send-receive communication models, data senders in anonymous group

communication are unaware of the number or identity of data receivers. Instead, message sends
are delivered to receivers according to the rules of the communication mechanism. In this case,

event channels provide the mechanism for matching senders and receivers. Messages (or events) are

sent via sources into channels which may have zero or more subscribers (or sinks). The locations
of the sinks, which may be on the same machine or process as the sender, or anywhere else in

the network, are immaterial to the sender. A program or system may create or use multiple
event channels, and each subscriber receives only the messages sent to the channel to which it is

subscribed. The network tra�c for multiple channels is multiplexed over shared communications

links, and channels themselves impose relatively low overhead. Instead of doing explicit read()
operations, sink subscribers specify a subroutine (or handler) to be run whenever a message arrives.

In this sense, event delivery is asynchronous and passive for the application.

Figure 1 depicts a set of processes communicating with event channels. The event channels are
shown as existing in the space between processes, but in practice they are distributed entities, with

bookkeeping data in each process where they are referenced. Channels are created once by some
process, and opened anywhere else they are used. The process which creates the event channel is

distinguished in that it is the contact point for other processes wishing to use the channel. The

channel ID, which must be used to open the channel, contains contact information for the creating
process as well as information identifying the speci�c channel. However, event distribution is not

centralized and there are no distinguished processes during event propagation. Event messages are

always sent directly from an event source to all subscribers. Because of this setup, if the process
which created an event channel exits the channel can no longer be opened by other processes.

However, the channel will continue to function for event distribution between the process that have

already opened it.

1

Process A

Event
Channel

Channel
Event

Event
Channel

Process C

Process B

Figure 1: Processes using Event Channels for Communication.

2 ECho API

ECho is largely built on top of the Connection Manager (CM)[Eisen00CM]. The next sections

provide the basic ECho API and discuss their implementation.

2.1 ECho Control Contexts

Many ECho entities and operations are associated with a \control context" or EControlContext

variable. These variables are the mechanism through which threads of control are associated

with synchronous and asynchronous actions in ECho. Later sections will expand up the use of
EControlContext variables, but many ECho programs have only a single context variable asso-

ciated with an instance of the Connection Manager. In particular, the ECho CM init() function
initializes a Connection Manager for ECho activity and returns an EControlContext variable which

can be used in subsequent ECho calls. This initialization allows ECho to piggyback on the Con-

nection Manager and use the thread of control which is used by CM for servicing the network.

In particular, there are a couple of common ways to structure the control ow in ECho/CM

programs. In the simplest, non-threaded program the control ow looks like this:

int main()

{

CManager cm;

EControlContext ec;

/* ... */

cm = CManager_create();

ec = ECho_CM_init(cm);

/* ... */

CMrun_network(cm); /* handle network events in in CM/ECho */

}

In this program, the CMrun network() is a blocks forever (or until the CM is shut down, servicing

any network connections established by CM.

For threaded programs, CM relies on the gen threads package to provide a generic wrapper
around threads libraries. After gen threads has been initialized by calling a speci�c init function,

the subroutine CMfork comm thread() causes CM to fork a kernel-level thread to handle network
tra�c. ECho will also use this thread for various asynchronous tasks. A sample control structure

for a threaded program using Pthreads is given below:

int main()

{

CManager cm;

EControlContext ec;

int forked;

gen_pthread_init();

cm = CManager_create();

forked = CMfork_comm_thread(cm);

if (!forked) {

printf("Fork of communications thread failed, exiting\n");

exit(1);

}

ec = ECho_CM_init(cm);

/*

* communications thread is forked - main() should not return

* until time for program exit.

*/

}

A variety of other control schemes are discussed in the CM documentation, Section 4.2. This

documentation is available at http://www.cc.gatech.edu/systems/projects/CM/.

2.2 Channel Creation and Subscription

ECho Event Channels are created with the EChannel create() call given below:
EChannel EChannel_create(EControlContext ec);

Channel creation essentially involves initializing a data structure that will record information about
the subscribers to the event channel. The process in which the creation is performed is the perma-

nent contact point for the event channel and participates in the subscription and unsubscription

process. However, it does not necessarily participate in event propagation.

When they are created, channels are assigned a character-string global ID. This string can be

used to open the channel for use in other processes. The calls involved are given below:
char *ECglobal_id(EChannel chan);

EChannel EChannel_open(EControlContext ec, char *global_id);

Opening a channel that was created in another process involves obtaining a CM connection to the

creating process and obtaining from that process a list of other processes which have opened the
channel. CM connections are then obtained to each process in this list. These direct connections

will be used for event delivery.

2.3 Event Submission

Several subroutines make up the event submission API in the ECho. The �rst of these is
ECsource subscribe(), which derives an ECSourceHandle to which an event can be submitted.
Given an ECSourceHandle, events can be submitted to the channel with ECsubmit event() given
below:

ECSourceHandle ECsource_subscribe (EChannel chan);

void ECsubmit_event (ECSourceHandle handle, void * event, int event_length);

Event submission is synchronous in the sense that before the submission call returns, any local
handlers for the event have been called, the event has been transmitted to any remote sinks and

the application is free to destroy the data that was submitted.

2.4 Event Delivery

Events are delivered to event sinks that have registered handlers. Handler registration is ac-
complished through the EChannel subscribe handler() function:

typedef void (*ECHandlerFunction) (void *event, int length, void *client_data);

ECSinkHandle ECsink_subscribe(EChannel chan, ECHandlerFunction func, void *client_data);

When an event arrives from the network or is submitted to a channel that has a local sink, the

event is queued for later delivery. Event delivery consists of calling the speci�ed handler function

and passing the event as a parameter. The client data value speci�ed in the subscribe call is also
passed to the handler without interpretation by the library.

Event delivery is done at two points, just before ECsubmit event() returns and at the end of
network event handling in CM. In each case, all pending events are dispatched. During dispatch,

handler functions are called directly. Therefore, handler functions that can potentially block or

compute for long periods of time should fork a thread to perform those tasks. Preservation of the
event parameter data is the responsibility of the handler.

2.5 Simple Example Programs
int main()

{ /* this program creates an event channel */

EChannel chan;

CManager cm;

EControlContext cc;

cm = CManager_create();

cc = ECho_CM_init(cm);

chan = EChannel_create(cc);

printf("Channel ID is: %s\n", ECglobal_id(chan));

CMsleep(cm, 600); /* handle net for 10 min */

return 1;

}

Figure 2: Simple channel creation program.

Figures 2, 3 and 4 give simple indepen-

dent programs for creating an event chan-

nel, submitting events to a channel and es-
tablishing a handler for events in a channel.

The programs are similar in that they all

involve a setup phase where they create a
CM and initialize ECho on it to create a

EControlContext, and a phase where they
handle network tra�c (via some variant

of CMrun network(), CMpoll network(),

CMsleep(), etc.). The channel creation pro-
gram in Figure 2 is the simplest. Between

the CM setup and event handling phases,

all it does is create an event channel with EChannel create() and print out it's ID as given by
ECglobal id(). This ID is used by the event source and sink programs to access the channel. This

example sends a long integer which is initialized based on the time and incremented with each event

submission.

int main(argc, argv)

int argc;

char **argv;

{

CManager cm;

EChannel chan;

EControlContext cc;

ECSourceHandle handle;

long a = time(NULL) % 100;

cm = CManager_create();

cc = ECho_CM_init(cm);

chan = EChannel_open(cc, argv[1]);

handle = ECsource_subscribe(chan);

while (1) {

printf("I'm submitting %ld\n", ++a);

ECsubmit_event(handle, &a, sizeof(a));

CMsleep(cm, 5);

}

}

Figure 3: Simple event source program.

The program for sending events send-

ing (source program) is slightly more com-

plex than the creation program. It cre-
ates a CM and initializes ECho to create an

EControlContext, it uses EChannel open()

to connect to the channel created by the pro-

gram in Fig. 2. The second argument to

EChannel open() is the string channel ID
that is printed out when the channel creation

runs.1 Once the channel is opened, the pro-

gram identi�es itself as an event source for
that channel (and gets a source handle) by

calling ECsource subscribe(). After this,
the sample program enters a loop where it

submits events and uses CMsleep() to han-

dle the network and delay briey between
event submissions. The three arguments to

ECsubmit event() are the ECsource handle

from the ECsource subscribe() call and the
base address and length of the event data to send. The event system does not interpret the event

data, only delivers it to any sink subscribers.

void handler(event, length, client_data)

void *event;

int length;

void *client_data;

{

printf("event data is %ld\n", *(long *) event);

}

int main(argc, argv)

int argc;

char **argv;

{

CManager cm;

EChannel chan;

EControlContext cc;

cm = CManager_create();

cc = ECho_CM_init(cm);

chan = EChannel_open(cc, argv[1]);

(void) ECsink_subscribe(chan, handler, NULL);

CMsleep(cm, 120);

}

Figure 4: Simple event handling program.

Figure 4 shows a simple program which
receives events. Like the event source

program in Figure 3, the sink program
uses EChannel open() to open the chan-

nel who's ID is passed in on the command

line. After opening the channel, the pro-
gram uses ECsink subscribe() to regis-

ter a subroutine to handle events in that

channel. Finally calls CMsleep() to handle
network messages for two minutes. When

an event arrives, the event handler subrou-
tine is called with the base address of the

event data, the length of the data, and the

client data value which was speci�ed as
the third parameter to ECsink subscribe.

In this case, the client data parameter

is unused, but it could give application-
speci�c information to the handler function.

The programs given in this section are

very simple examples of channel creation,

1The ECho API doesn't provide any explicit mechanisms for communicating event channel IDs between programs.
These simple example programs require the user to pass them in as command line arguments. Other programs might
write them to �les, send them in CM messages, or exchange them in some other way. Also, note that the contact
information for ECho version 2 event channels contains shell meta-characters. These characters must be quoted to
avoid interpretation by the shell.

submission and handling programs, however they should be su�cient to demonstrate the basic

principles of the channels. Note that you can run any number of event source or sink programs2

and that each sink will receive any event submitted by any source. Also notice that the channel
provides no bu�ering. That is, events are distributed to the sinks that exist at the time the event

is submitted by a source. Late joining sinks may miss early events. It's also worth noting that
while these programs show event functionality divided into separate programs, that is only done

for simplicity of presentation. In reality a single program can create any number of channels, and

submit events to those or other channels and register handlers for any channel.

3 Sending Events in a Heterogeneous Environment

One glaring de�ciency in the example programs in the previous section is that they do not

work correctly in a heterogeneous environment where the representation of \long" may di�er from

machine to machine. The event channel system itself will work because it is based upon CM
mechanisms which handle representation di�erences. However, because the event channels treat

event data as a simple block of bytes, binary event data (like the \long" value in the example)
created on one machine may not be interpretable on another machine.

There are several possible approaches to this problem, including using sprintf()/sscanf() to

encode/decode the data in ascii, or using htonl/ntohl to convert binary data to/from a standard
byte order for transmission. Another option in this environment is to use PBIO directly or to use

the user format facilities of CM. CM user formats are a layer on top of PBIO that can utilize

CM for format transmission and avoid the use of a separate PBIO format server. This makes the
service more useful in a variety of environments where socket connections to a PBIO format server

are impossible or undesirable (such as from within the OS kernel). However, those routines are

complex and their proper use is di�cult. Therefore in ECho version 2, we recommend the use of
typed event channels, described below.

3.1 Typed Event Channels

Typed event channels provide most of the functionality that is possible with CM user formats or

direct PBIO, but with considerably reduced complexity. However, the use of typed event channels

imposes some restrictions. For example, if PBIO is used directly, programmers have more exibility
in terms of submitting records of multiple types in the same event channel and using customized

decoding and handling for each type. The typed event channel interface restricts event channels
to carrying a single event type, but for that event type it handles all the conversions necessary to

exchange binary data across heterogeneous machines. The remainder of this section details their

use and interface.

Unlike untyped event channels, typed channels require type information to be speci�ed at the

time of channel creation. PBIO �eld lists are used to specify this information and the list of �eld

names and types become the \type" of the event channel. (Field size and o�set can be also be
speci�ed in the IOFieldList, but those values do not become part of the channel type speci�cation.)

In order to allow speci�cations of the �eld lists associated with structured sub�elds in the type, a

2While the number of event sources and sinks is theoretically unlimited, there are practical limits. In particular,
since event distribution is not centralized, each source process creates a CM connection to each sink process. Most
operating systems establish limits as to the number of simultaneous sockets or �le descriptors that may be in use at
one time. Programs using event channels may run into this limit when a large number of sinks are present.

null-terminated list of sub�eld type names and �eld lists can also be speci�ed in the subformat list

parameter.

typedef struct _CMformat_list {

char *format_name;

IOFieldList field_list;

} CMFormatRec, *CMFormatList;

EChannel EChannel_typed_create(EControlContext ec, IOFieldList field_list,

CMFormatList subformat_list);

If there are no structured sub�elds, the subformat list parameter should be NULL. The code to
create a typed event channel which carries a record with a nested subformat looks like this:

typedef struct R3vector_struct {

double x, y, z;

} R3vector;

typedef struct particle_struct {

R3vector loc, deriv1, deriv2;

} particle;

static CMFormatRec particle_format_list[] = {

{"R3vector", R3field_list},

{NULL, NULL},

};

static IOField R3field_list[] = {

{"x", "float", sizeof(double), IOOffset(R3vector*, x)},

{"y", "float", sizeof(double), IOOffset(R3vector*, y)},

{"z", "float", sizeof(double), IOOffset(R3vector*, z)},

{NULL, NULL, 0, 0},

};

static IOField particle_field_list[] = {

{"loc", "R3vector", sizeof(R3vector), IOOffset(particle*, loc)},

{"deriv1", "R3vector", sizeof(R3vector), IOOffset(particle*, deriv1)},

{"deriv2", "R3vector", sizeof(R3vector), IOOffset(particle*, deriv2)},

{NULL, NULL, 0, 0},

};

chan = EChannel_typed_create(ec, particle_field_list, particle_format_list);

Please note that both the �eld list and the format list are declared static. These lists must remain

valid for the duration of the channel's existence. Most commonly they will be known statically at

compile time and can be declared as in this example. They should not be stack-allocated variables.
They can be dynamically allocated, but in that case the programmer is responsible for freeing those

structures after the channel is destroyed.

Once a typed channel is created remote access can be accomplished through the standard
ECglobal id() and EChannel open() calls. However, there are special event submission and sink

and source subscribe calls as given below:

ECSourceHandle ECsource_typed_subscribe (EChannel chan, IOFieldList field_list,

CMFormatList format_list);

void ECsubmit_typed_event (ECSourceHandle handle, void *event);

typedef void (*ECTypedHandlerFunction) (void *event, void *client_data);

ECSinkHandle ECsink_typed_subscribe (EChannel chan, IOFieldList field_list,

CMFormatList format_list,

ECTypedHandlerFunction func, void *client_data);

Essentially, these calls are the same as the corresponding untyped calls except for the addition of
the field list and format list parameters to the subscribe functions and the elimination of the

event length parameter in the submit and handler functions. The field list and format list

speci�ed in the subscribe calls must be appropriate for the type of channel they are applied to.
Generally that means that the �eld names and types speci�ed in the subscribe field list and

format listmust exactly match those in the EChannel typed create() call.3 Note that while the

�eld sizes and o�sets in each of these calls must exactly specify the formats of those records on the
machine executing the call, there is no requirement that these match those speci�ed for the channel

or any other sink. Any necessary transformations are provided by the channel. Additionally, if
a channel is created with EChannel typed create(), all source and sink subscriptions must be

typed.

4 Events and Threads

The previous examples in this document have all assumed non-threaded execution environment.
In moving to threaded environments there are a number of issues to clarify, including questions of

simultaneous use of event channels, determining which thread actually executes the event handlers

and thread safe use of PBIO. This section will attempt to address these issues.

4.1 Thread basics

All CM routines, including the ECho routines, are capable of performing locking to protect their
own data structures from simultaneous access. To avoid having di�erent versions of CM for each

thread package which a program might use, CM uses a package called gen threads. Gen threads is

a generic wrapper for threads packages which provides an abstract thread interface implemented
with function pointers. Gen thread initialization calls �ll in function pointers appropriate to speci�c

thread packages so that CM routines can use them. If you use CM in a threaded environment,
you must initialize gen threads before calling CManager create() so that the appropriate locks are

created. If you initialize gen threads later something bad is likely to happen.

Currently there are three di�erent sets of wrappers with gen threads. gen pthread init()

will initialize gen threads to use the Pthreads package. Calling gen cthread init() sets up the

Georgia Tech Cthreads package instead. In addition to linking with the genthreads library these

routines also require you to link with the appropriate external libraries to support the threads
package. Initializing gen threads appropriately is necessary to protect CM, but you also have the

option of using the gen threads interface in your application. Doing this instead of directly calling

the threads package of your choice may make your application more portable in the sense that
you may not have to rewrite your code to change threads packages. However, be warned that

3There is some room for variance here. In particular, it is ok to provide more information than necessary and
to ask for less information than is available. So the �elds and formats provided for the source subscribe can be a
superset of those associated with the channel. Conversely the �elds and formats provided for the sink subscribe can
be a subset of those of the channel. Excess information is discarded at the sink end, so it does travel over the network.

int gen_thr_initialized();

thr_thread_t thr_fork(void_arg_func func, void *arg);

void thr_thread_detach(thr_thread_t thread);

void thr_thread_yield();

thr_mutex_t thr_mutex_alloc();

void thr_mutex_free(thr_mutex_t m);

void thr_mutex_lock(thr_mutex_t m);

void thr_mutex_unlock(thr_mutex_t m);

thr_condition_t thr_condition_alloc();

void thr_condition_free(thr_condition_t m);

void thr_condition_wait(thr_condition_t c, thr_mutex_t m);

void thr_condition_signal(thr_condition_t c);

void thr_condition_broadcast(thr_condition_t c);

void thr_thread_exit(void *status);

int thr_thread_join(thr_thread_t t, void **status_p);

thr_thread_t thr_thread_self();

Figure 5: Gen threads API

gen threads does not make all threads packages behave the same. For example, user-level and
kernel-level threads packages behave di�erently when a thread does a blocking call. In the former

case, all the threads in the process are blocked and in the latter only the calling thread is blocked.

Using gen threads does not hide this or other important semantic di�erences that may exist between
thread libraries. It only provides a generic API to common thread functionality. The header �le

in Figure 5 summarizes the interface o�ered by gen threads. The names of these calls link them
with their obvious counterparts in common thread packages and should be familiar to most thread

programmers. The only one which might be non-obvious is gen thr initialized() which simply

returns true if gen threads has been initialized.

Given that gen thread is initialized, ECho programs can use CM's CMfork comm thread()

subroutine to fork a thread that will devote itself to handling the network. This routine can

be called anytime after creating the Connection Manager, but before any calls to CMsleep(),
CMpoll network(), etc.

4.2 Threads and Event Handler Routines

Multithreaded programs which use CM or ECho almost always devote a single thread to han-

dling the network, often via CMfork comm thread(). A less common alternative which works out

essentially the same is to have a single thread poll the network at intervals with CMpoll network().
4

Given that there may also be other application threads which may submit events, create channels

and/or register event handlers, which of these threads actually runs the event handlers? The answer
depends upon where the event is coming from. If the event was submitted in another process and

therefore arrives over the network, then the thread which is handling the network performs the call
to the handler. One side e�ect of this is that the network will not be serviced during the time that

an event handler is running. Because of this, long running handlers may want to fork a thread to

complete their work. In the case of a handler forking a thread, be aware that the event data is only
valid until the handler returns. If the forked thread needs access to the event data it must preserve

it somehow.

4Any situation in which multiple threads call network handling functions CMrun network() or CMpoll network()

is likely to have unpredictable results. Don't try this at home.

If a channel has event sources and sinks in the same process, then a di�erent situation results

and it is the thread which calls ECsubmit event() which is borrowed to run the event handler.

This situation has two side e�ects. First, as described in the paragraph above, long running
handlers may want to fork a thread instead of delaying the submitting thread. Second, it is

possible for handlers which themselves submit events to create an \event avalanche." That is, the
�rst call to ECsubmit event() results in a call to a local handler which itself calls ECsubmit event()

which calls a local handler which calls ECsubmit event() which calls a local handler which calls

ECsubmit event()... This is not per se a problem for the event channel system as long as the chain
ends eventually (otherwise it's an in�nite recursion), but there may be other consequences with

respect to stack usage and delay of the original submitting thread that may be of concern.

4.3 ECho Summary

ECho was initially developed as a data transport mechanism to support work in application-level

program monitoring and steering of high-performance parallel and distributed applications[ES98].
In this environment, e�ciency in transporting large amounts of data is of critical concern to avoid

overly perturbing application execution. Because of this, ECho was designed to take careful advan-

tage of CM and PBIO features so that data copying is minimized. Even typed event transmissions
require the creation of only small amounts of header data and require no copying of application

data. Also, because ECho transmits events directly to sinks, it naturally suppresses event tra�c
when there are no listeners.

However, as in many other situations using event-based communication, program monitoring

can produce large numbers of events which may overwhelm both the listeners and the intervening
networks. This can be particularly frustrating if the listener is not interested in every byte of data

that it receives. Unwanted events waste network resources in carrying the data, cause unnecessary

perturbation to the application sending the data, and waste compute time for the listener who has
to be interrupted, read, unpack and discard events he would rather not be bothered with. Using

many event channels to subdivide dataows is an e�ective and low-overhead of reducing unwanted

tra�c because listeners can limit their sink subscriptions to event channels carrying data that they
want to receive. However, e�ective use of this technique requires the event sender have a priori

knowledge of the appropriate subdivisions. The technique is also much more di�cult to apply when
a listener's de�nition of \unwanted event" depends upon the event content.

ECho's Derived Event Channels allow sink-speci�ed event �ltering, and even event data re-

duction, to be applied on the source end of event transmission. Performing these calculations at
the source can be a win-win situation, reducing costs for both the sender and receiver and reduc-

ing bandwidth requirements on the intervening networks. The next section describes the Derived

Event Channel abstraction and the critical role of dynamic code generation in performing these
calculations in an e�cient way in a heterogeneous environment.

5 Derived Event Channels

5.1 General Model

Consider the situation where an event channel sink is not really interested in every event submit-
ted, but only wants every Nth event, or every event where a particular value in the data exceeds

some threshold. Considerable network tra�c could be avoided if we could somehow manage to

transmit only the events of interest. One way to approach the problem is to create a new event

channel and interpose an event �lter as shown in Figure 6.

The event �lter can be located on the same node as the event source and is a normal event
sink to the original event channel and a normal source to the new, or �ltered, event channel. This

is a nice solution in that it does not disturb the normal function of the original event channel.
However, it fails if there is more than one event source associated with the original event channel.

The di�culty is that, as a normal sink, the event �lter must live in some speci�c process. If there is

more than one source subscribed to the original event channel and those sources are not co-located,
as shown in Figure 7, then we still have raw events traveling over the network from Process A to

Process B to be �ltered.

The normal semantics of event delivery schemes do not o�er an appropriate solution to the event
�ltering problem. Yet it is important problem to solve because of the great potential for reducing

resource requirements if unwanted events can be suppressed. Our approach involves extending
event channels with the concept of a derived event channel. Rather than explicitly creating new

event channels with intervening �lter objects, applications that wish to receive �ltered event data

create a new channel whose contents are derived from the contents of an existing channel through
an application supplied derivation function, F . The event channel implementation will move the

derivation function F to all event sources in the original channel, execute it locally whenever events

are submitted and transmit any event that results in the derived channel. This approach has the
advantage that we limit unwanted event tra�c (and the associated waste of compute and network

resources) as much as possible. any of the sources in the original tra�c, network tra�c between

those elements is avoided entirely. Figure 8 shows the logical arrangement of a derived event
channel.

5.2 Mobile Functions and the E-code Language

A critical issue in the implementation of derived event channels is the nature of the function F

and its speci�cation. Since F is speci�ed by the sink but must be evaluated at the (possibly remote)

source, a simple function pointer is obviously insu�cient. There are several possible approaches to

Event
Source

Event
Channel

Event
Sink

Event
Channel

Channel
Event
New

Event
Source

EventEvent
SinkFilter

With interposed filter

Original arrangement

Figure 6: Source and sink with interposed event �lter.

Event
Source

Event
Channel

Event

Source

Process A

Event

Process C

SinkEvent
Channel

New

Process B

Event
Filter

Figure 7: Filter with more than one source.

FEvent

Source

Event

Source

Event
Channel Event

Channel

Derived

F

Event

Process C

Sink

Process B

Process A

Figure 8: A derived event channel and function F moved to event sources.

this problem, including:

� severely restricting F , such as to preselected values or to boolean operators,

� relying on pre-generated shared object �les, or
� using interpreted code.

Having a relatively restricted �lter language, such as one limited to combinations of boolean oper-
ators, is the approach chosen in the CORBA Noti�cation Services[COSNot] and in Siena[CRW98].

This approach facilitates e�cient interpretation, but the restricted language may not be able to

express the full range of conditions that may be useful to an application, thus limiting its applicabil-
ity. To avoid this limitation it is desirable to express F in the form of a more general programming

language. One might consider supplying F in the form of a shared object �le that could be dynam-

ically linked into the process of the event source. Using shared objects allows F to be a general
function, but requires the sink to supply F as a native object �le for each source. This is relatively

easy in a homogeneous system, but becomes increasingly di�cult as heterogeneity is introduced.

In order to avoid problems with heterogeneity one might supply F in an interpreted language,

such as a TCL function or Java code. This would allow general functions and alleviate the di�culties

with heterogeneity, but it impacts e�ciency and requires a potentially large interpreter environment
everywhere event channels are used. Given that many useful �lter functions are quite simple

and given our intended application in the area of high performance computing we rejected these

approaches as unsuitable. Instead, we consider these and other approaches as a complement to the
methods described next.

The approach taken in ECho preserves the expressiveness of a general programming language

and the e�ciency of shared objects while retaining the generality of interpreted languages. The
function F is expressed in E-Code, a subset of a general language, and dynamic code generation is

used to create a native version of F on the source host. E-Code may be extended as future needs
warrant, but currently it is a subset of C. Currently it supports the C operators, for loops, if

statements and return statements. Extensions to other language features are straightforward and

several are under consideration. Please contact the author for more information.

E-Code's dynamic code generation capabilities are based on Icode, an internal interface devel-

oped at MIT as part of the 'C project[PEK96]. Icode is itself based on Vcode[Engler] also developed

at MIT by Dawson Engler. Vcode supports dynamic code generation for MIPS, Alpha and Sparc
processors. We have extended it to support MIPS n32 and 64-bit ABIs and x86 processors5. Vcode

o�ers a virtual RISC instruction set for dynamic code generation. The Icode layer adds register
allocation and assignment. E-Code consists primarily of a lexer, parser, semanticizer and code

generator.

ECho currently supports derived event channels that use E-Code in two ways. In the �rst, the
event type in the derived channel is the same as that of the channel from which it is derived (the

parent channel). In this case, the E-Code required is a boolean �lter function accepting a single

parameter, the input event. If the function returns non-zero it is submitted to the derived event
channel, otherwise it is �ltered out. Event �lters may be quite simple, such as the example below:
{

if (input.level > 0.5) {

return 1; /* submit event into derived channel */

}

}

5Integer x86 support was developed at MIT. We extended Vcode to support the x86 oating point instruction set
(only when used with Icode).

EChannel EChannel_derive(EControlContext ec, char *chan_id, char *filter_function);

EChannel EChannel_typed_derive(EControlContext ec, char *chan_id, char *filter_function,

IOFieldList field_list, CMFormatList format_list);

Figure 9: Derived event channel API.

When used to derive a channel, this code is transported in string form to the event sources associated
with the parent channel, is parsed and native code is generated at those points. The implicit context

in which this code evaluated is a function declaration of the form:

int f(hinput event typei input)

where hinput event typei is the type associated with the parent channel.6 The API for channel
derivation is shown in Figure 9. Once derived, the created channel behaves as a normal channel

with respect to sinks. It has all of the sources of the parent channel as implicit sources, but new

sources providing un�ltered events can also be associated with it.

While this basic support for event �ltering is a very powerful mechanism for suppressing un-

necessary events in a distributed environment, ECho also supports derived event channels where

the event types associated with the derived channel is not the same as that of the parent channel.
In this case, E-Code is evaluated in the context of a function declaration of the form:

int f(hinput event typei input, houtput event typei output)

The return value continues to specify whether or not the event is to be submitted into the derived

channel, but the di�erentiation between input and output events allows a new range of processing
to be migrated to event sources.

One use for this capability is remote data reduction. For example, consider event channels used
for monitoring of scienti�c calculations, such as the global climate model described in [KSSTA96].

Further, consider a sink that may be interested in some property of the monitored data, such as an

average value over the range of data. Instead of requiring the sink to receive the entire event and
do its own data reduction we could save considerable network resources by just sending the average

instead of the entire event data. This can be accomplished by deriving a channel using a function

which performs the appropriate data reduction. For example, the following E-Code function:
{

int i;

int j;

double sum = 0.0;

for(i = 0; i<37; i= i+1) {

for(j = 0; j<253; j=j+1) {

sum = sum + input.wind_velocity[j][i];

}

}

output.average_velocity = sum / (37 * 253);

return 1;

}

performs such an average over atmospheric data generated by the atmospheric simulation described
in [KSSTA96], reducing the amount of data to be transmitted by nearly four orders of magnitude.

6Since event types are required, new channels can only be derived from typed channels.

typedef struct _ECdata_struct {

IOFieldList data_field_list;

CMFormatList data_subformat_list;

void *initial_value;

}ECdata_struct, *ECdata_spec;

EChannel EChannel_derive_data(EControlContext ec, char *chan_id, char *filter_function,

ECdata_spec data_spec);

EChannel EChannel_typed_derive_data(EControlContext ec, char *chan_id,

char *filter_function, IOFieldList field_list,

CMFormatList format_list, ECdata_spec data_spec);

ECDataHandle EChannel_data_open(EChannel channel, IOFieldList data_field_list,

CMFormatList data_subformat_list);

void EChannel_data_update(ECDataHandle data_handle, void *data);

Figure 10: Channel Data in the derived event channel API.

5.3 Parameterized Derivation

Currently derivation functions are simple functions of their input events. However, there are
some obvious ways where more powerful functions could be valuable. Consider the situation where

a sink wants a �lter function based on values which change (hopefully more slowly than the event

stream they are �ltering). A simple example might occur in a distributed virtual reality application
using event channels to share participant location information. Rather than sending location infor-

mation as fast as the network allows, a more intelligent system might use derived event channels to

turn down the update rate when the participants are not in sight of each other or merely distant.
However, these conditions obviously change over time. One could periodically destroy and re-derive

channels with updated �lter functions, but a more straightforward approach would be to associate
some state with a derivation function and allow it to be updated by the originator.

This facility is provided in ECho through several channel derivation functions that allow chan-

nel data to be associated with the derived channel. This data block is accessible to the derivation
functions as a persistent structure named channel data. The contents of the structure, like those of

events, are de�ned through PBIO-style de�nitions at the time the channel is derived. Initial values

for the structure must be provided when the channel is derived. Thereafter values for the structure
can be updated through the EChannel data update() call. This call requires a ECDataHandle

value, which can be obtained through EChannel data open().

5.4 Proto-Channels and Derivation

Another innovative ECho extension is the Proto-Channel facility. Consider an application which

has information that it wishes to make available on a more or less continuous basis, either in the
form of variables or function results. The application might make this information available via

event channels, but to do that it must decide on a form that the events will take and a frequency
with which it will be made available. This is less optimal than the ideal situation where the

receivers of the data would specify what they wanted to receive and the timing at which it was

made available.

Proto-channels address precisely this situation. A proto-channel is not an event channel in and of

itself, but is an association of variables and functions from which channels can be derived. Like event

ECproto ECproto_create(EControlContext ec, ecl_parse_context context);

char *ECproto_id(ECproto proto_chan);

EChannel ECproto_derive_periodic(EControlContext ec, char *proto_id, char *filter_function,

IOFieldList field_list, CMFormatList format_list,

int microsec_period);

EChannel ECproto_derive_pull(EControlContext ec, char *proto_id, char *filter_function,

IOFieldList field_list, CMFormatList format_list);

Figure 11: Proto-channel API.

channels, proto-channels have global IDs through which they can be accessed remotely. However,

events are never submitted to them. Instead those who wish to access the data provide a derivation
function which constructs an appropriate event from the available variables and functions. They

also specify that the circumstances under which the function is to be run. The current API provides

for the derivation functions to run either periodically or on demand via the event pull mechanism.

Proto-channels are created using the ECproto create() call. In addition to a CManager pa-

rameter, this call takes an ecl parse context parameter which de�nes the variables and functions
which will be available to derivation functions. The construction of ecl parse context values is de-

scribed in [EisenDCG]. Channel derivation is accomplished through ECproto derive periodic()

and ECproto derive pull(). The former call speci�es a period at which the derivation function
execute.7 The latter call assumes that any use of the derived channel is by active sinks using

pull-mode event requests. The proto-channel API is given in Figure 11.

6 Miscellaneous

There is a Java based version of ECho called JECho[JECho]. It was developed by Dong Zhou.

Additional information on ECho, including a porting guide for users of the DataExchange-based

ECho version 1, can be found at http://www.cc.gatech.edu/systems/projects/ECho.

References

[CRW98] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design of a scalable

event noti�cation service: Interface and architecture. Technical report, Department
of Computer Science, University of Colorado at Boulder, August 1998. Technical

Report CU-CS-863-98.

[EisenDCG] Greg Eisenhauer. Dynamic Code Generation with the E-Code Language. Unpub-

lished. /users/e/eisen/ecl/doc/ecode.ps.

[Eisen94] Greg Eisenhauer. Portable self-describing binary data streams. Technical Report
GIT-CC-94-45, College of Computing, Georgia Institute of Technology, 1994. (anon.

ftp from ftp.cc.gatech.edu).

7Actual periodicity is not guaranteed and is subject to scheduling and CM service considerations at the proto-
channel.

[ES98] Greg Eisenhauer and Karsten Schwan. An object-based infrastructure for program

monitoring and steering. In Proceedings of the 2nd SIGMETRICS Symposium on

Parallel and Distributed Tools (SPDT'98), pages 10{20, August 1998.

[Eisen00CM] Greg Eisenhauer. The Connection Manager Library. http://www.cc.gatech.edu/
systems/projects/CM

[Engler] Dawson R. Engler. Vcode: a retargetable, extensible, very fast dynamic code gen-

eration system. In Proceedings of ACM SIGPLAN'96 Conference on Programming
Language Design and Implementation, 1996.

[COSEvents] Object Management Group. CORBAservices: Common Object Services Speci�cation,

chapter 4. OMG, 1997. http://www.omg.org.

[COSNot] Object Management Group. Noti�cation service. http://www.omg.org, Document

telecom/98-01-01, 1998.

[KSSTA96] Thomas Kindler, Karsten Schwan, Dilma Silva, Mary Trauner, and Fred Alyea. A
parallel spectral model for atmospheric transport processes. Concurrency: Practice

and Experience, 8(9):639{666, November 1996.

[MS95] B. Mukherjee and K. Schwan. Implementation of scalable blocking locks using an

adaptive threads scheduler. In International Parallel Processing Symposium (IPPS).
IEEE, April 1996.

[PEK96] Massimiliano Poletto, Dawson Engler, and M. Frans Kaashoek. tcc: A template-

based compiler for `c. In Proceedings of the First Workshop on Compiler Support for
Systems Software (WCSSS), February 1996.

[RSYJ97] Daniela Ivan Rosu, Karsten Schwan, Sudhakar Yalamanchili, and Rakesh Jha. On

adaptive resource allocation for complex real-time applications. In 18th IEEE Real-

Time Systems Symposium, San Francisco, CA, pages 320{329. IEEE, Dec. 1997.

[JECho] Dong Zhou. JECho Project Homepage. http://www.cc.gatech.edu/~zhou/jecho

