
The Connection Manager Library

Greg Eisenhauer
eisen@cc.gatech.edu

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332

December 13, 2000 { CM Version 1.1

1 Introduction

Connection Manager is a library of communications routines which manage the complexity of sys-

tems with multiple communication links between heterogeneous machines. The library is designed

to be used as an implementation basis for networks of agents communicating application-speci�c
data. CM is a follow-on to the DataExchange[2] communication library and was designed to ad-

dress some of the di�culties of using DataExchange in multi-network environments and with using

DataExchange in libraries with evolving message formats. As such, it contains support for estab-
lishing communication between agents, matching incoming messages with handlers, and assisting

in the distribution of message format information to entities with which it is communicating. This
paper details the services and interfaces o�ered by Connection Manager.

2 Overall Description

The core purpose of Connection Manager is to ease the task of creating and operating networks of
communicating entities over specialized and con�gurable data transport mechanisms. In particular,

it is designed to abstract away the intricacies of those transports and to satisfy two conicting goals:
allowing uncustomized applications and libraries to transparently use specialized data transport

mechanisms (such as raw ATM), while still allowing knowledgeable application layers to con�gure

transport particulars.

CM also directly supports heterogeneous applications by providing for binary data transmis-

sion between entities and locating the most appropriate handler for incoming data. To provide

heterogeneity support, PBIO relies mostly upon PBIO, a lower-level communications library that
supports binary transmission of C-style data structures between heterogeneous machines. PBIO is

documented in Portable Self-Describing Binary Data Streams [1]. This document is available

in the PBIO source distribution and an older version is Georgia Institute of Technology College
of Computing Technical Report GIT-CC-94-45. Familiarity with the concepts and speci�cations

1

FD select()
Module

Standard
TCP/IP socket

Module (ATM, Myrinet)

Other transport
Modules

Transport-independent
CM functionality

Demand-driven Transport Loader

Connection Manager

Application

Figure 1: Structure of the Connection Manager.

used in PBIO are necessary for understanding messaging in CM. Under normal circumstance, CM
relies on PBIO's internal mechanisms for distributing message format information. However, in

circumstances where dependency upon PBIO's external format server is impossible, such as for
operation within the kernel, each CM application can act as its own format server.

In order to allow applications to transparently use a variety of data transport mechanisms, CM

is structured so that individual transports are implemented with dynamically loadable modules as
depicted in Figure 1. Applications can use transport mechanisms that might not have existed when

the application as written and they are not burdened with the code and memory requirements of

unused transports. In addition to the dynamically loadable transports, Figure 1 shows FD select()
functionality separated out into a loadable module. This module provides control-ow support

for transports which may be integrated into the OS �le descriptor system. Its separation into a

loadable module allows CM to be used as a communications manager even in situations where FD
select() is not a viable control-ow mechanism, such as within the OS kernel.

In addition to allowing applications to transparently use di�erent data transport mechanisms,
CM is also designed to allow more aware applications to customize the behavior of those data

transports, for example to specify bandwidth requirements, expected reliability or other transport-

speci�c characteristics. Because CM does not have a priori knowledge of the speci�c transports
that might be used by an application, it must have a mechanism though which it can pass virtually

any type of parametric speci�cation between applications and the selected data transport. This

role is �lled by attribute lists. An attribute is a name/value pair that speci�es something about a
connection or message. Lists of these attributes are used to specify to CM the characteristics of

the connections it should make. For example, a standard TCP/IP connection might be speci�ed
by the attribute list:

{IP_HOST,"latte.cc.gatech.edu"},{IP_PORT,40767}

Attribute lists are used by CM for a variety of other purposes as well, in both the application-layer

API and in communication with the data transport modules.

2.1 A \Hello, World!" Program #include <stdio.h>

#include "atl.h"
#include "cm.h"

typedef struct _msg {
char *string_field;

} msg, *msg_ptr;

static IOField msg_field_list[] =

{
{"string_field", "string", sizeof(char*), 0},
{NULL, NULL, 0, 0}

};

static void
msg_handler(CManager cm, CMConnection conn, void *msg,

void *client_data)

{
printf("%s\n", ((msg_ptr)msg)->string_field);

}

int

main (int argc, char **argv)
{

CManager cm;

CMFormat format;
attr_list contact_list;

cm = CManager_create();
CMlisten(cm);

contact_list = CMget_contact_list(cm);
printf("Contact list \"%s\"\n",

attr_list_to_string(contact_list));

format = CMregister_format(cm, "hello",
msg_field_list, NULL);

CMregister_handler(format, msg_handler, NULL);
CMrun_network(cm);

}

At this point it is useful to discuss Con-

nection Manager in the context of a sim-

ple program. The program at the right
is the receiving side of a basic \Hello,

World!" program. Users of our ear-
lier DataExchange will �nd the struc-

ture of the program quite familiar. Like

DataExchange, CM provides a reactive
programming style. That is, most pro-

grams are structured around the ex-

change of messages, utilizing CM's abil-
ity to call application-speci�ed handlers

when messages of appropriate types ar-
rive. This particular program does noth-

ing except wait for the arrival of a \hello"

message. When one arrives, the subrou-
tine msg_handler() is called and it prints

out the string_field element of the mes-

sage.

The typedef at the beginning of the

program declares the datatype of the

message. The IOField declaration creates
a PBIO-style IOFieldList that is used to

describe the message datatype to the
Connection Manager. The subroutine

msg_handler() has a prototype shared by

all CM message handlers. It has parame-
ters representing the calling Connection

Manager, the connection on which the

message was received, a pointer to the
message data (as a void* pointer, and the client_data parameter that was given by the application

when the handler was registered.

This program uses �ve basic CM functions:

CManager create() { This call creates and initializes a CManager data structure. All CM applica-

tions must call this at least once. The CManager data structure provides a means of associating

related communication channels. Essentially, the CManager is a control context in which
network messages are handled.

CMlisten(CManager cm) { This call requests CM to listen for incoming network connections.

What exactly this does depends upon what network transport layer is in use. In the de-

fault \sockets" transport, this will cause CM to create an internet socket on the current
host, bind it to randomly chosen IP port port num and begin listening for connections. Once

CMlisten() has been called, other programs can initiate a connection with this program

by calling CMinitiate conn() discussed further below. The contact information for a CM

is encapsulated in an attribute list. The contents of the attribute list are transport-speci�c.
Casual CM users should consider these attribute lists to be opaque. However, the goal of CM
is that these attribute lists might provide the mechanism through which application-speci�c

transport requirements, such as QOS speci�cations, can be communicated to the transport
layer. Applications with detailed knowledge of the transport in use can use:

extern int CMlisten_specific (CManager cm, attr_list listen_info);

to pass speci�c attributes to the transport-based listen call. In particular, the \sockets"
transport looks for an \IP PORT" attribute to specify the port upon which it is to listen.

CMFormat CMregister format(CManager cm, char *format name, IOFieldList field list,

CMFormatList subformat list);
{ CMregister format() provides the basic mechanism for making message formats known to

CM. Registration is a prerequisite for handler registration or writing data of that format. The
field list parameter is a PBIO �eld list specifying the structure of the message. Record

format descriptors are described in the PBIO documentation, but basically consist of a list

of �eld descriptions, where each �eld description is a quadruple giving the �eld name, data
type, size and o�set within the record. Given this information, PBIO can pack the record for

transmission to other machines and can decode it despite di�erences in machine architecture
or record layout. The subformat list parameter enables a feature not present in PBIO or

DataExchange. It is a list of format name/�eld list pairs as below:

typedef struct _CMformat_list {
char *format_name;

IOFieldList field_list;
} CMFormatRec, *CMFormatList;

and is used to specify the representation of any nested structures in the message. If the
message �eld types are simple pre-de�ned PBIO types, subformat list can be NULL. Oth-

erwise it should contain the transitive closure of all data types necessary to specify the message

representation. The list is terminated with a {NULL, NULL} value.

void CMregister handler(CMFormat format, CMHandlerFunc handler,

void *client data)
{ CMregister handler() binds the subroutine speci�ed in its handler parameter to the
arrival of messages of the type format. The pro�le of the handler function should be:

typedef void (*CMHandlerFunc) (CManager cm, CMConnection conn,
void *message, void *client_data);

The client data parameter speci�ed in the registration call is not interpreted by CM, but

merely passed to the handler function when it is called.

void CMrun network(CManager cm) { CMrun network() is one of the basic network event han-
dling calls in CM. A CM network event is a basic communications occurrence, such as a

connection request or message arrival. The routine CMrun network() essentially handles net-

work events until the CManager is shutdown. In this case, there is no CManager close()

call, so CMrun network() will run forever.

#include <stdio.h>

#include "atl.h"
#include "cm.h"
main(argc, argv)

int argc;
char **argv;

{
CManager cm = CManager_create();
CMConnection conn;

attr_list contact_list;

contact_list = attr_list_from_string(argv[1]);

conn = CMinitiate_conn(cm, contact_list);
CMConnection_close(conn);

CManager_close(cm);
}

Figure 2: A simple client program.

A correspondingly simple client program that connects to this server is given in Figure 2. Unlike
the sample server program, this client program doesn't really do anything useful. Assuming that

the �rst argument to this program is the stringi�ed attribute list printed out by the server program
of Section 2.1, this client connects to the server, then immediately shuts down the connection (with

CMConnection close(conn)) and shuts down the CManager with with CManager close(cm). The

return value from CMinitiate conn() is a value of type CMConnection and is a handle that can
be used to write to the CM program on other end of that particular network connection. Note
that unlike DataExchange, CM has no explicit network read function. More about this below in
Section 3.2.

These examples also introduce the two most important data types in CM, CManager and

CMConnection. A CManager value essentially represents a communications context for a program.
CM subroutines which operate on a communications context have a \CM" pre�x in their name and

take a CManager value as their �rst parameter. This paper will refer to a CManager value as \a

CM." Programs can create multiple CManagers and operations on those will be independent, but
most programs will need just a single CM to support all messaging operations. In multi-threaded

programs, only one thread should call CMrun network() or the other network handling functions.

CMConnection values are associated with a CManager and represent the endpoint of a bidirectional
communications link.

A CM acting as a simple client with a single communications connection will have only one

CMConnection. A CM operating as a server with many connections will have many CMConnection's,
one for each client to which it is connected. CM communications links have a CMConnection on

each end. CM's write subroutines for data operate on CMConnection values and send data across
the communications link represented by their CMConnection parameter.

3 Sending Data

To actually make the program in Figure 2 useful, it has to send a message. Before a message can

be sent, the message format must be registered with CM. This is done in the same manner as in the
�rst sample program of Section 2.1 with the CMregister format() call. The CMFormat return

value is then used in a call to CMwrite().

extern int CMwrite (CMConnection conn, CMFormat format, void *data);

The body of the client program of Figure 2 then becomes

{

CManager cm = CManager_create();
CMConnection conn;
attr_list contact_list;

CMFormat format;
msg message;

contact_list = attr_list_from_string(argv[1]);
conn = CMinitiate_conn(cm, contact_list);

format = CMregister_format(cm, "hello",
msg_field_list, NULL);

message.string_field = "Hello, World!";
if(CMwrite(conn, format, (void*)&message) != 1) {

printf("write failed\n");
}
CMConnection_close(conn);

CManager_close(cm);
}

This program should be run with its �rst argument being the contact list string printed out by

the example in Section 2.1.

3.1 Linking and Running

CM is built with `libtool', a tool which hides the complexity of building and using shared libraries
behind a consistent, portable interface. On platforms where it is possible, the library will be built

as both a traditional static library (.a �le) and a shared library (.so �le). CM extensively uses

libtool's support for dynamically loading code modules at runtime.

CM applications can also be built with libtool. How this is done is best explained by the

libtool documentation, available from http://www.gnu.org/software/libtool/libtool.html. If libtool
is utilized, using CM involves adding \-lcm" to the link line, preceeded if necessary by an appropriate

\-Llibdirectory" ag. Libtool will locate any other libraries required by libtool.

It is also possible to link CM applications without libtool. If this is done, the libraries that CM
depends upon must be speci�ed explicitly. A typical library spec might be \-lcm -latl -lIO", again

preceeded by an appropriate \-Llibdirectory" ag. (Some platforms, such as Solaris, may also need

\-lnsl -lsocket".) However there are some subtleties that may cause di�culties. In particular, on

many platforms, the linker will preferentially use the shared library if it is available. So, if both a

.a and .so �le are available in \libdirectory", the .so form will be used with implications describe

in the next subsection.

3.1.1 Using the shared library version

On some platforms (such as Solaris), the -L ag is not the only ag that controls where shared
libraries might be found. In particular, -L only controls the link time search path for shared

libraries. Other ags, typically -R, control the search path that will be used at run time. libtool

would automatically do this for you, but you must do it manually if you don't use libtool. If you
don't specify the appropriate run-time link path, the dynamic linker won't be able to locate the

appropriate shared libraries and you'll get a run-time error. On most platforms, 'ldd' is a tool that

lists the dynamic dependencies of an executable, including what the library search paths are and
which libraries would be loaded if the program were run.

3.1.2 Using the traditional library version

Creating statically linked versions of programs can be useful for debugging. You can (generally)

use the traditional library version (.a �les) of CM if you specify the .a �le directly. Additionally,

some versions of ld accept ags that cause only the static versions of libraries to be used (such as
-Bstatic on Solaris).

The principal caveat to using static libraries is that CM uses program-controlled dynamic linking

(dlopen-style) to load its network transport layer. On some platforms, statically linked programs
cannot use dlopen(). If CM is unable to load its transport layer, your program will exit with the

error \Failed to initialize default transport. Exiting.". You may be able to avoid this by linking only
some libraries statically and letting others, particularly libc, be dynamic. libtool users can produce

a completely statically linked executable because CM uses libtool's ltdl library. That library is

capable of simulating dynamic linking in a statically linked environment (if all the dlls are known
at link time.) See the libtool docs for how this works.

3.1.3 Running

Depending upon how they were linked, CM applications may require the environment variable
LD LIBRARY PATH to be set at run-time. Using LD LIBRARY PATH can �x-up exe-

cutables which do not have the correct run-time link paths built in with ld's -R ag.

3.1.4 Example Scripts

The tty sessions below demonstrate compiling, linking and running the programs a CoC Solaris

7 Sparc. The example of Section 2.1 is in the �le \server.c" and the program of Section 3 is in
\client.c". Note that the contact list speci�ed to the client is protected from interpretation in the

shell by quoting it.

marquesas% cc -c -I/users/c/chaos/include server.c
marquesas% cc -L/users/c/chaos/sun7/lib -R/users/c/chaos/sun7/lib -o server server.o -lcm \
-latl -lIO -lsocket -lnsl

marquesas% ./server
Contact list "{IP_HOST,S9,marquesas},{IP_PORT,4,33035},"
Hello, World!

Figure 3: Compiling, linking and running the server.

latte% cc -g -c -I/users/c/chaos/include client.c
latte% cc -L/users/c/chaos/sun7/lib -R/users/c/chaos/sun7/lib -g -o client client.o -lcm \

-latl -lIO -lsocket -lnsl
latte% ./client "{IP_HOST,S9,marquesas},{IP_PORT,4,33035},"
latte%

Figure 4: Compiling, linking and running the client.

3.2 Di�erences from DataExchange

For the bene�t of users of DataExchange, this section will detail some of the basic di�erences that

will be encountered when porting to CM.

Di�erent handling of network contact information { DataExchange was largely oriented to-
wards the use of TCP/IP sockets as an underlying transport layer. Using a di�erent transport

was possible, but it relied on using di�erent DataExchange and PBIO calls to initiate con-
nections, etc. In practice, this made it very di�cult for higher-level libraries such as ECho

to support multiple network transport layers. The orientation towards a single transport

was also evident in DataExchanges assumption that a connection point would be completely
speci�ed by a hostname and IP port number.

In order to support many potential network transports and to allow their customization (with
such things as Quality-of-Service parameters), CM uses attribute lists. As noted in Section 2,

attribute is a name/value pair that speci�es something about a connection or message. Lists

of these attributes are used to specify to CM the characteristics of the connections it should
make. In the case of TCP/IP socket connections, the attribute list required contains the

same hostname/IP port pair that DataExchange would have used. Conceptually however,
what is in the attribute list used to specify network contact information is of interest only

to the CM transport layer making the connection. Non-specialized applications should treat

the attribute lists as if they were opaque.

Attribute lists operations are supported by the \atl.h" include �le and the \atl" library.

The include �le de�nes the attr list data type. Most CM applications will need only two
functions that operate on attribute lists. attr list to string() converts an attribute list to

string form and attr list from string() does the reverse, parsing a string into an attribute

list. Attribute lists can be freed with free attr list().

extern char *attr_list_to_string(attr_list attrs);

extern attr_list attr_list_from_string(char * str);
extern void free_attr_list(attr_list list);

Format handling is not \name" oriented { In DataExchange, message format registration

and handling were heavily name oriented. Only one format and one handler for a partic-

ular message name could be registered. This was a simple arrangement, but it seriously
limited program adaptability and evolution. For example, if an server wanted to add a �eld

to the request messages it accepted, it could not continue to service old clients by registering
a handler for both the old and new message formats. CM has considerably more complex

features that aid in program evolution, but in order to support them it was necessary to

eliminate the idea that a format's name was its principal \handle". Accordingly, there are
no direct counterparts to calls like DataExchange's DEport write data by name(). Instead,

applications should save the CMFormat value that is returned by format registration for use

in CMwrite(). Because data storage may be di�cult in some situations, such as for libraries
built on top of CM, there is a CMlookup format() call that takes a field list as a parame-

ter and returns the CMFormat value that was created when the �eld list was registered. This
features relies on the fact that �eld lists are typically statically allocated and their memory

is not reused in the course of a CM application. If you rely on this feature, you should ensure
that all �eld lists used to register formats are unique.

Subformat lists in format registration { In DataExchange, format registration was cumula-
tive. If you wanted to register a format that had nested subformats, you had to register those

subformats �rst. When looking for subformats, DataExchange looked them up by name. In

order to avoid the types of problems, described in the item above, CM does things di�er-
ently. In particular, every format registration is completely independent. Any subformats

that are necessary for the main format must be represented in the subformat list, a set of

name/�eld list pairs that should hold the transitive closure of nested formats. For example,
the doubly-nested structure simple rec below can be registered using simple field list

and simple format list.

typedef struct _complex_rec {
double r;
double i;

} complex, *complex_ptr;

typedef struct _nested_rec {

complex item;
} nested, *nested_ptr;

typedef struct _simple_rec {
int integer_field;

nested nested_field;
} simple_rec, *simple_rec_ptr;

static IOField complex_field_list[] =
{

{"r", "double", sizeof(double), IOOffset(complex_ptr, r)},
{"i", "double", sizeof(double), IOOffset(complex_ptr, i)},
{NULL, NULL, 0, 0}

};

static IOField nested_field_list[] =

{
{"item", "complex", sizeof(complex), IOOffset(nested_ptr, item)},

{NULL, NULL, 0, 0}
};

static IOField simple_field_list[] =
{

{"integer_field", "integer",

sizeof(int), IOOffset(simple_rec_ptr, integer_field)},
{"nested_field", "nested",

sizeof(nested), IOOffset(simple_rec_ptr, nested_field)},
{NULL, NULL, 0, 0}

};

static CMFormatRec simple_format_list[] = {
{"complex", complex_field_list},

{"nested", nested_field_list},
{NULL, NULL}

};

Adaptability features of format handling { Because CM is not as name-oriented as DataEx-

change, the name of an incoming message format does not map directly to a handler. In fact,
an application may have registered many handlers for a particular format name, each having

di�erent �eld and subformat lists. Thus, when an incoming message arrives CM tries to �nd

the most appropriate handler for it. Matching is �rst done by the format name, and then by
�eld lists. Any handler which requires �elds not present in the incoming message is rejected

as inappropriate. Among the remaining handlers, the one which matches the most �elds in

the incoming record is selected to handle the message. In the event of a tie, the format with
fewest �elds is selected.

Assuming that the format names match and ignoring data types for the moment, consider
the following local formats with registered handlers: Handler 1 : Format has �elds \a", \b"

Handler 2 : Format has �elds \a", \b", \c" Handler 3 : Format has �elds \a", \b", \c", \d"

� An incoming message with �elds \a", \b", \c" is passed to handler 2, matching all �elds

exactly.

� An incoming message with �elds \a", \b", \c", \d" is passed to handler 3.

� An incoming message with �elds \a", \b", \d" is passed to handler 1, e�ectively dis-

carding �eld \d".

� An incoming message with �elds \a", \b", \c", \e" is passed to handler 2, e�ectively

discarding �eld \e".

� An incoming message with �elds \a", \c" is discarded because no handler matches.

In actual practice, most of these matching rules are unlikely to come into play. They just pro-
vide a format structure for CM to pick an appropriate handler while supporting the evolution

of message formats in a system of communicating programs. For example, the rules mean
that if a new �eld is added to an existing format, old clients can receive the new messages

and with transparently convert them into the old format. At the same time, new servers can

register handlers for both the old and new formats and have them called at the appropriate
times.

no \read" call { Unlike DataExchange, CM has no explicit network \read" call. Instead there

is only the implicit read achieved through registering handlers. CM eliminates explicit read

because it is a appropriate only in the rarest of circumstances, and even then it is easily

emulated while maintaining more generality than an actual explicit read. Because an explicit

DataExchange-style read blocks at least the thread that performs the read and because it

bypasses the normal handler mechanisms, explicit read is only appropriate for a pure client
with no ability to accept connections from others, only one current network connection, and

absolute knowledge of the message type it is to receive next. Generally this only happens in
client-side request-reply tra�c. In this circumstance, it's easy to emulate a read using CM's

condition variables (explained in more detail in Section 4.3). Instead of issuing an explicit

read, as in the following code segment:

request_msg_t request;

reply_msg_t reply;
CMwrite(conn, request_format, &request);

CMread(conn, reply_format, &reply);

the program should register a handler for the reply message and use a CM condition variable

to wait for the message. Using CMCondition wait() has the advantage that messages of
other types are properly handled while waiting for the reply. The following code substitutes

for the write/read pair above, with an additional integer \condition" �eld in the request and

reply formats:

request_msg_t request;

reply_msg_t reply;
int condition;

condition = CMCondition_get(cm, conn);
CMCondition_set_client_data(cm, condition, &reply);
request.condition = condition;

CMwrite(conn, request_format, &request);
CMCondition_wait(cm, condition);

In addition, a handler must be registered for the \reply" message format. This handler should
be of this form:

extern void

Reply_handler(cm, conn, data, client_data)
CManager cm;
CMConnection conn;

void *data;
void *client_data;
{

int condition = reply.condition;
reply_msg_t *incoming_reply_msg = (reply_msg_t *) data;

reply_msg_t *saved_reply_ptr;

saved_reply_ptr = CMCondition_get_client_data(cm, condition);

*saved_reply_ptr = *incoming_reply_msg;
CMCondition_signal(cm, condition);

}

The request handler in the server should �ll in the reply.condition �eld with the value from

request.condition.

4 Control Flow

Unlike simple send-receive communications libraries, CM provides facilities that impact the ow of

control in programs that use the library. While using CM does not imply a speci�c control model
in the application and various control styles are possible, CM does need to know some basics, such

as what thread library in use. Given that, it can infer other information, such as which thread is
responsible for handling network tra�c.

4.1 Threads Interface

In order to avoid the need to build a di�erent version of the CM library for every available thread

package, CM does not contain embedded calls to any particular thread package. Instead, invokes
thread locking through function pointers provided by a package called gen thread. Gen thread

is distributed with CM and essentially, it provides a generic wrapper mechanism that captures

common functionality of thread packages. CM and gen thread are organized such that it is only
necessary to link with the gen thread library if a thread package is in use. Gen thread comes with

interfaces to three threads libraries, Georgia Tech Cthreads, generic POSIX threads, and native

Windows NT threads, but interfaces to additional libraries are easily constructed.1 To a great
extent, the impact upon the application caused by CM using thread functions should be minimal.

Except where discussed in the next section, CM only uses mutex locks to protect critical data

structures from simultaneous access. When locks are used, CM attempts to lock at the smallest
granularity possible to maximize the potential for concurrent execution. In general, read operations

do not interfere with write operations, and operations on a single CMConnection lock only that
port. Blocking operations, such as connection writes, hold the appropriate lock for the duration of

the operation. To avoid broad long-term locks, the polling operations are an exception to this rule.

They acquire locks just before data is read from ready ports. Many miscellaneous informational
and housekeeping operations (such as format and handler registration, etc.) also momentarily

acquire locks on CM-level data structures. However these operations are not generally blocking, so

short-term locking involved is unlikely to signi�cantly a�ect application behavior.

4.2 Common Control Structures for CM Programs

The principal issue in considering control structures for CM programs is \what thread will service

the network?". If noone is servicing the network (receiving messages, accepting connections, etc.)

distributed deadlock is possible when other programs try to communicate. Additionally, if multiple
threads try to service the network, serious confusion may result inside CM. So for multi-threaded

programs, exactly one thread should be responsible for servicing the network. This thread will also

execute message handlers, so any long-running handler should be forked into a separate thread so
that the original can go back to servicing the network.

\Servicing the network" is done by any of several mechanisms, including two explicit mechanisms
that are normally used in non-threaded programs:

void CMrun network(CManager cm); { A blocking call that causes the current thread to handle

1Information on constructing new interfaces can be found in the README �le in the gen thread distribution.

network requests until the CManager is shut down with CManager close().

void CMpoll network(CManager cm); { A non-blocking call that handles any network requests

that are pending at the time of the call and then returns control. Principally used in single-

threaded programs that only occasionally service the network. Such programs must take care
to call it regularly or risk delaying communicating programs.

In addition, several calls in CM implicitly service the network. Those calls are:

void CMsleep(CManager cm, int secs); Waits for secs seconds and then returns.

void CMusleep(CManager cm, int usecs); Waits for usecs microseconds and then returns.

void CMCondition wait(CManager cm, int cond); Waits for the CMCondition cond to be sig-

nalled. Described in more detail in Section 4.3 below.

These calls can be used in threaded or non-threaded programs. In non-threaded programs, they

always service the network while waiting. In threaded programs, their behavior depends upon what
thread calls them. If they are called from a thread which does not normally service the network,

they block using thread-based mechanisms until it is time for them to return. If they are called

from the thread which normally services the network (such as when called from a handler), they
service the network while waiting.

Figures 5 through 9 give some example control styles for threaded and non-threaded CM pro-
grams. Figure 9 shows the use of CMfork comm thread(), a useful utility function that forks a

network handler thread if there is a kernel-level thread package in use. Otherwise it returns 0. This

is just a convenience for programs that use threads packages, but it is yet more useful for libraries
built on CM that might not have knowledge of the actual application's use of threads.

4.3 Waiting for Conditions

As is mentioned in Section 3.2, CM provides a general mechanism for safely waiting for some

condition, such as a response to an outgoing request, while continuing to handle incoming message.

This is often necessary for libraries and programs which need to perform distributed operation in
a \synchronous" manner. (That is, they don't return until the operation is compete).

The CM facilities for waiting for some event to occur are similar to those associated with
condition variables in threads libraries with the simpli�cation that there are generally no mutex

variables associated with these conditions and they can only be used once. The complete API for

CM condition variables is give below:

int CMCondition_get(CManager cm, CMConnection conn);
int CMCondition_wait(CManager cm, int condition);
void CMCondition_signal(CManager cm, int condition);

void CMCondition_set_client_data(CManager cm, int condition, void* client_data);
void *CMCondition_get_client_data(CManager cm, int condition);

The typical use of these routines in a synchronous operation would be begin with the use

of CMcondition get() to \allocate" a condition variable. The ID of this condition variable (an

main() {

CManager cm = CManager_create();
/*
* register formats and handlers

*/
CMrun_network(cm); /* service network until shutdown */

}

Figure 5: A reactive server that runs forever (or until a handler calls CManager close()).

main() {
CManager cm = CManager_create();
/*

* register formats and handlers
*/

CMsleep(cm, 600); /* service network for 600 seconds */

CManager_close(cm);
}

Figure 6: A reactive server that runs for a speci�ed time.

main() {
CManager cm = CManager_create();
/*

* register formats and handlers
*/

while (!done) {
/* do some work here */
CMpoll_network(cm);

}
CManager_close(cm);

}

Figure 7: A reactive server that does work in between handling the network.

main() {
CManager cm = CManager_create();

gen_pthread_init(); /* initialize Pthreads */
/*

* register formats and handlers
*/

thr_fork(worker_task, data); /* fork worker threads */
thr_fork(worker_task2, data2); /* fork worker threads */
CMrun_network(cm); /* service network until shutdown */

CManager_close(cm);
}

Figure 8: A threaded program where the main program handles the network.

main() {
CManager cm = CManager_create();

gen_pthread_init(); /* initialize Pthreads */
/*
* register formats and handlers

*/
CMfork_comm_thread(cm); /* fork network handler thread */

work_thread = thr_fork(worker_task, data); /* fork worker threads */
work_thread2 = thr_fork(worker_task2, data2); /* fork worker threads */
thr_thread_join(work_thread);

thr_thread_join(work_thread2); /* wait for threads to exit */
CManager_close(cm);

}

Figure 9: A threaded program that forks a network handler thread while the main program does

other things.

integer for easy transmission) would then be sent along with the \request" message (the �rst part
of the synchronous exchange). Then CMCondition wait() is called to wait for the condition to

be signaled. While waiting, CM will perform whatever action is necessary in order to continue
handling requests from the network. In order to complete the synchronous operation, a handler

should have been registered for the \result" message and that message should contain the ID

of the condition upon which the initiator is waiting. The handler's role is to store the results
somewhere and use CMCondition signal() to signal the occurrence of the condition. The routines

CMCondition set client data() and CMCondition get client data() are provided to allow an

arbitrary client address to be associated with the condition variable. This simpli�es communication
between the initiating and the handling routines because the initiator can setup a results area and

associate its address with the condition, where it can be retrieved by the handler routine. The

code in Section 3.2 showing how a read() operation can be replaced with a CMCondition wait()
provides a concrete example of how CMConditions might be used.

There are two exceptional conditions worthy of discussion. The �rst concerns the situation where
the far end of the synchronous operation dies between the time the request is sent and the time the

response is received. CM cannot handle this situation totally transparently because more than one

host may actually be involved in completing a remote operation. However, if the CMConnection

parameter in the CMCondition get() is set to a non-NULL value, the CMCondition wait() will

terminate if the indicated connection is closed. In this situation, CMCondition wait() will return

0 rather than its normal 1 return.

The second exceptional condition concerns the side e�ects that might be encountered if somehow

a condition is never signaled or completed via connection closure. Essentially, the results and side-
e�ects in this circumstance depend a great deal upon the application control structure and any

underlying thread library. The possibilities range from a thread that is blocked forever to a stack

leak.2 However, none of the possible results are likely to be desirable and robust applications should
restrict their use of CM conditions to circumstances where waiting periods are relatively short and

response is assured. In other circumstances, behavior is unpredictable.

2A stack leak is a permanent loss of stack space, such as might occur if a subroutine always pushed more items on

the stack than it removed. In this case, it might be caused by an event handler subroutine calling itself recursively

but never returning.

5 User Formats

The formats registered using CMregister format() are used to encode messages that go directly

over the network connections, or to decode messages that come in over those connections. PBIO
manages these formats, gathering formats that it needs and caching them for future use.

However, CM also has facilities to support a second class of PBIO formats, called user formats.
Applications using these facilities can take advantage of CM's format management services to

encode data that is not transmitted directly over the network links.

To understand when this might be appropriate, consider an remote procedure call library that
allows its users to register procedure names and parameter type pro�les and make them available

for remote access. The library might be implemented in CM using a \RPC Request" message with

a the procedure to call speci�ed by a string name and the parameters to that procedure passed
as a dynamically sized block of characters. This is a simple approach to library implementation,

but how should the parameter block be encoded? Leaving the marshalling/unmarshalling to the
application is simple, but unappealing. PBIO's IOContext routines were designed for precisely

this sort of situation, allowing data to be encoded into an arbitrary memory block, transmitted

elsewhere by any mechanism, and then decoded upon arrival. The RPC library could use PBIO
for this task independently of CM, but then is loses out on the features that CM provides (such as

each CM acting as its own format server instead of using a common format server).

CM's user formats support routines allow such a library to leverage CM's format services while
still largely using PBIO without interference. Because these facilities are preliminary, subject

to change, and unlikely to be required except for the most advanced uses of CM, they are note

described here in detail. Instead we just list the current interface. Users requiring more information
are encouraged to contact the author.

extern IOContext CMget_user_type_context(CManager cm);

extern void CMfree_user_type_context(CManager cm, IOContext context);
extern IOFormat CMregister_user_format(CManager cm, IOContext context, char *format_name,

IOFieldList field_list, CMFormatList format_list);
extern IOFormat CMlookup_user_format(CManager cm, IOFieldList field_list);
extern IOFormat CMget_IOformat_by_name(CManager cm, IOContext context, char *name);

extern IOFormat CMget_format_IOcontext(CManager cm, IOContext context, void *buffer);
extern IOFormat *CMget_subformats_IOcontext(CManager cm, IOContext context, void *buffer);
extern void CMset_conversion_IOcontext(CManager cm, IOContext context, IOFormat format,

IOFieldList field_list, int native_struct_size);

6 Miscellaneous Features

The previous sections have covered the most basic of CM functionality. This section wraps up some

loose ends and covers smaller topics that do not �t well elsewhere.

6.1 Data Management

Generally speaking, incoming message data in CM is guaranteed to remain valid only for the

duration of the execution of the handler function. Thereafter, the memory where the data is

stored is subject to being overwritten or free()'d. Application which need to store all or part of the

incoming message beyond the lifetime of the handler should copy the data into application-managed

memory. Alternatively, the application can use the routine CMtake buffer() to inform CM that
it is taking control of the bu�er containing the incoming message data.

extern void CMtake_buffer(CManager cm, void *data);
extern void CMreturn_buffer(CManager cm, void *data);

The data parameter is the address of the incoming data (as provided to the handler). After
CMtake buffer() has been called during processing of a record, the CM library allocates itself a

new bu�er for holding input data and stops referencing the old bu�er. The application is then

responsible for eventually passing the bu�er to CMreturn buffer() when it is no longer of use.

6.2 Useful Variants of Standard Routines

In addition to the basic routines described in prior sections, there are a couple of variations that
are useful in some circumstances.

CMConnection CMget conn(CManager cm, attr list contact list)

CMget conn() behaves like CMinitiate conn() except that it �rst checks to see if an existing

connection matches the contact list. If so, it increments the reference count of that connection
and returns it. Otherwise it initiates a new connection.

int CMwrite attr(CMConnection conn, CMFormat format, void *data, attr list attrs)

CMwrite attr() allows an attribute list to be speci�ed along with the write request. While
no current transports interpret per-write attributes, this call could be used to specify QoS

parameters, priorities, deadlines, etc. CMwrite() is equivalent to CMwrite attr() with NULL

passed for the attrs parameter.

6.3 More Rarely Used Routines

There are also some rarely used routines that �ll special needs. In particular:

int CMcontact self check(CManager cm, attr list attrs)

Generally, it is bad form for an application to try to initiate a connection to itself.3 However,
contact lists are semi-opaque abstractions with properties that vary with various transports,

so checking to see if a contact list denotes yourself is not necessarily straightforward. This

is where CMcontact self check() comes in. It interacts with the CM transports to answer
the question \Does this contact list point to me". It returns 1 if yes, 0 if no.

void CMregister close handler(CMConnection conn, CMCloseHandlerFunc func,

void *client data))
This call provides a mechanism through which an appliation can be noti�ed when one of its

3Ever use a phone to call its own number? Sometimes if you dial and hang up quickly enough you can call your

own phone. Not always though, it depends upon what phone company hardware is involved. Initiating a network

connection to yourself is like that. Sometimes it works, othertimes it deadlocks, depending upon the OS and transport

involved.

connections closes, either through the application calling CMConnection Close() or through

a failure or shutdown of the network-layer connection.

CMregister non CM message handler((int header, CMNonCMHandler handler)

It is not unusual for messaging schemes to use a \magic number" as the �rst element of

their message in order that they are recognized on arrival. In CORBA's IIOP, for example,
all messages begin with the string \GIOP". In CM, messages begin with the 4-byte integer

0x434d440 (the string \CMDn0" expressed as an integer). This arrives as 0x00444d43 when

the native byte orders of the parties di�ers. CMregister non CM message handler() provides
a mechanism through which CM can be extended to directly accept and process IIOP and

other messages. The handler routine is passed the CMConnection upon which the message
has arrived and the 4-byte integer with which the header has been recognized. The remainder

of the message must be read directly from the connection. The prototype of the handler is:

typedef void (*CMNonCMHandler) (CMConnection conn, int header);

6.4 Asynchronous Task Support

CM contains the following support for asynchronous tasks:

CMTaskHandle CMadd periodic task (CManager cm, int period sec, int period usec,

CMPollFunc func, void *client data);
This call schedules a function to be called repeatedly, at a regular period. The period is
speci�ed in seconds and microseconds. The function (whose pro�le is speci�ed below) is passed

only the CManager value and the client data value. The periodic task can be cancelled with

the CMremove task() call below.

CMTaskHandle CMadd delayed task (CManager cm, int secs, int usec,

CMPollFunc func, void *client data);
This call schedules a function to be called one time only, after a particular period of time has
elapsed. The period is speci�ed in seconds and microseconds. Otherwise the behavior is like

CMadd periodic task().

void CMadd poll (CManager cm, CMPollFunc func, void *client data);

This call adds a function that will be called \occasionally." In particular, it will be called

after every message arrival and every timer expiration. The function cannot be cancelled.

All calls specifying a period are best-e�ort and are only as accurate as the underlying infrastructure.
Generally timing functions somehow map into a select() call with a particular timeout.

typedef void (*CMPollFunc)(CManager cm, void *client_data);

void CMremove_task (CMTaskHandle handle);

6.5 Shutdown

void CMConnection close(CMConnection conn)

This call is used to shut down a connnection. This call normally disables writing and incoming

messages on the connection as well as closing the underlying network link. However, because

CMget conn() can return an existing connection (as opposed to initiating a new connection),

CM maintains a reference count on connections. CMConnection close() decrements this

reference count and only has its �nal e�ect only when the reference count for the connec-

tion reaches zero. In general, the number of CMConnection close() calls should match the
number of CMinitiate conn() and CMget conn() calls. However, if connection was accepted

implicitly through a CMlisten() call, it can still be shutdown with CMConnection close().
CMConnection close() will be called implicitly if there is a permanent write error on the

connection or if CM detects that the network-layer link is terminated. The application is also

free to call CMConnection close() within a handler using the CMConnection value passed in
to the handler function.

void CMConnection add reference(CMConnection conn)

This call increments the reference count of a connection. This is useful if the application passes

CMConnection values to other contexts. Then each context can call CMConnection close()

and only the �nal close will have e�ect.

void CManager close(CManager cm)

This call shuts down an entire CM. It closes all connections, and terminates any network
handler thread forked with CMfork comm thread(). It also causes any CMrun network() call

to return to the caller.

6.6 Debugging

CM contains relatively a extensive tracing facility that dumps debuging output to standard output.

This tracing facility is turned on by setting shell environment variables prior to running the program.
The following environment variables are understood:

CMDataVerbose { Causes CM to print out the contents of every message that is sent or received.

CMConnectionVerbose { Prints information about connection initiation and acceptance.

CMControlVerbose { Prints information about control ow, condition waits, periodic task

scheduling, etc.

CMTransportVerbose { Turns on tracing of transport-level happenings.

CMLowLevelVerbose { Traces low-level read/write and locking behavior. (Probably only useful
for CM developers.)

CMVerbose { Turns on all CM*Verbose traces except CMLowLevelVerbose.

CMDumpSize { Controls the maximum number of length of the message contents output that

CMDataVerbose displays. Default value is 256.

7 Writing a CM Transport DLL

WAY outside the scope of this paper. Contact the author.

References

[1] Greg Eisenhauer. Portable self-describing binary data streams. Technical Report GIT-CC-94-
45, College of Computing, Georgia Institute of Technology, 1994. http://www.cc.gatech.edu/

tech reports.

[2] Greg Eisenhauer, Beth Schroeder, and Karsten Schwan. Dataexchange: High performance
communication in distributed laboratories. Journal of Parallel Computing, 24(12-13):1713{
1733, November 1998.

