
A preliminary version of this paper appears in Proceedings of the Topics in Cryptology - CT-
RSA 2009, The Cryptographers’ Track at the RSA Conference 2009, LNCS, 2009. This is the
full version.

Strengthening Security of RSA-OAEP

Alexandra Boldyreva∗

Abstract

OAEP is one of the few standardized and widely deployed public-key encryption schemes.
It was designed by Bellare and Rogaway as a scheme based on a trapdoor permutation such
as RSA. RSA-OAEP is standardized in RSA’s PKCS #1 v2.1 and is part of several stan-
dards. RSA-OAEP was shown to be IND-CCA secure in the random oracle model under
the standard RSA assumption. However, the reduction is not tight, meaning that the guar-
anteed level of security is not very high for a practical parameter choice. We first observe
that the situation is even worse because the analysis was done in the single-query setting,
i.e. where an adversary gets a single challenge ciphertext. This does not take into account
the fact that in reality an adversary can observe multiple ciphertexts of related messages.
The results about the multi-query setting imply that the guaranteed concrete security can
degrade by a factor of q, which is the number of challenge ciphertexts an adversary can get.
We re-visit a very simple but not well-known modification of the RSA-OAEP encryption
which asks that the RSA function is only applied to a part of the OAEP transform. We
show that in addition to the previously shown fact that security of this scheme is tightly
related to the hardness of the RSA problem, security does not degrade as the number of
ciphertexts an adversary can see increases. Moreover, this scheme can be used to encrypt
long messages without using hybrid encryption. We believe that this modification to the
RSA-OAEP is easy to implement, and the benefits it provides deserves the attention of
standard bodies.

1 Introduction

Background and Motivation. OAEP is one of the few standardized and widely deployed
public-key encryption schemes. It was designed by Bellare and Rogaway [5] as a scheme based
on a trapdoor permutation such as RSA. RSA-OAEP is standardized in RSA’s PKCS #1 v2.1
and is part of the ANSI X9.44, IEEE P1363, ISO 18033-2 and SET standards. The scheme is
parameterized by k0, k1. The encryption algorithm of OAEP[F] takes a public key f , which
is an instance of a trapdoor permutation family F , and a message M , picks k0-bit string r
at random, pads M with k1 zeros to get M ′ and computes the ciphertext C = f(s ‖ t) for

∗School of Computer Science, College of Computing, Georgia Institute of Technology, 266 Ferst Drive,
Atlanta, GA 30332, USA. E-mail: sasha@gatech.edu. .

1

s = G(r)⊕M ′ and t = H(s)⊕ r, where G and H are hash functions. OAEP[F] was proven to
be IND-CPA secure assuming F is a one-way trapdoor permutation family [5] and IND-CCA
secure assuming F is partial one-way [12], both in the random oracle (RO) model, i.e., where
G and H are modeled as random oracles [4]. Partial one-wayness is a stronger property than
one-wayness and it asks that given the result of applying a random instance of the function
family to a random point x it be hard to compute the first part of x. RSA is believed to be
one-way, so under this assumption the result of [5] implies that OAEP[RSA] (RSA-OAEP) is
IND-CPA in the RO model. In [12] it was shown that one-waynes of RSA also implies partial
one-wayness, therefore RSA-OAEP is IND-CCA under the standard RSA assumption (stating
that RSA is one-way), in the RO model.

While the concrete security reduction showing OAEP is IND-CCA secure assuming partial
one-wayness of the underlying permutation family is tight, the concrete bound showing RSA-
OAEP is IND-CCA under the RSA assumption is quite loose, due to the “lossy” reduction
from partial one-wayness to one-wayness of RSA. Such a loose concrete security bound implies
that it may be easier to break the scheme than to invert RSA, and to maintain reasonable
security guarantees one would need to use the scheme with a larger security parameter. It was
shown in [16] that keys of length about 4-5 thousand bits are necessary, i.e. at least 4 times
larger than the standard 1024-bit keys, and this means decryption will be about 64 = 43 times
slower than before (since decryption requires a modulo exponentiation whose complexity is
cubic in the length of the security parameter). This is basically impractical.

Moreover, we note that the definitions of security of encryption in [5, 12] only consider an
adversary given a single challenge ciphertext. In reality, of course, an adversary can observe
multiple ciphertexts of possibly related messages. Such mismatch was studied in [3, 2], who
defined security in the “multi-query” setting where the adversary can see multiple challenge
ciphertexts on messages of its choice1. The result of [3] implies that security (IND-CPA or
IND-CCA) in the single-query setting implies security in the multi-query setting, however,
concrete security degrades as the number of queries increases, and this loss cannot be avoided
in general. However it is possible for some specific constructions, e.g. [3] shows that IND-CPA
security of the ElGamal encryption scheme [11] stays tightly related to security of the decisional
Diffie-Hellman problem regardless of how many queries an adversary makes. Concrete security
in the multi-query setting of RSA-OAEP has not been explicitly addressed before our work.

Interestingly, an extremely simple modification to the the RSA-OAEP scheme permits sev-
eral concrete security improvements. Unlike most of alternative constructions that have been
suggested [17, 9, 15], the modification we study does not change the transform construction.
The modified scheme differs from OAEP in that it uses trapdoor permutations of particular
structure. Informally, they just leave the last part of the input (t-part of the output of the
OAEP transform) in the clear. The scheme can be immediately instantiated with the RSA
family if we apply an RSA function only to the s-part of the OAEP transform output, or
to a portion of the s-part. This modification has been suggested under the name OAEP++
by Kobara and Imai in [14] in order to improve concrete security of OAEP. They show that
RSA-OAEP++ is IND-CCA secure in the RO model under the standard RSA assumption and
the reduction is tight. Moreover, no only the bound in the reduction is significantly improved,
but also the running time of the adversary in the reduction. However, they only consider the
single-query setting. The result of [3] implies that in the practical multi-query setting the
concrete security bound is worse by a factor of q, i.e. security may degrade as an adversary

1In fact, [3] considers what they call a “multi-user” setting which also allows the adversary to see multiple
challenge ciphertexts under multiple public keys. We do not consider multiple public keys in this work.

2

observes more ciphertexts of possibly related messages. We note that this modification has
been also suggested in [8] for an orthogonal reason of showing some positive results about
non-malleability of OAEP when one or both ROs are instantiated with existing functions. The
paper [8] neither considers the multi-query setting nor provides concrete security bounds.

Our contributions. We show that this simple modification has even more advantages. We
prove that concrete IND-CCA security of the modified RSA-OAEP scheme stays tightly related
to one-wayness of RSA regardless of how many challenge ciphertexts an adversary sees (is
independent of parameter q). The proof is in Section 5 and it uses the self-reducibility property
of RSA. There we explain why does not the same idea apply to the original RSA-OAEP scheme.
Hence, the modified RSA-OAEP provides significantly better security guarantees than the
original version, for very practical parameter sizes, which results in a very efficient scheme.

Additionally, the modified RSA-OAEP scheme can be used to encrypt long messages with-
out using symmetric encryption in the hybrid encryption construct. For that the function G in
the transform is made variable-output-length, i.e. its output size is of the length of the message
plus the zero padding of length k1. For a fixed-output-length hash G′(·) one can efficiently
construct G(·) as G′(〈0〉‖·)‖G′(〈1〉‖·) . . . ‖G′(〈l〉‖·), where 〈i〉 means the binary representation
of the counter i ∈ N. The function H in the transform needs to be variable-input-length, which
is not a problem. The RSA function is applied to the first k (e.g. 1024 bits) of the s-part
of the OAEP transform. The proof of security stays virtually the same. This scheme yields
more compact ciphertexts for long messages than the one obtained through the use of hybrid
encryption because there is no need to encrypt the symmetric key.

We hope the standard bodies will pay attention to the modified RSA-OAEP as the advan-
tages it offers seem to be well worth a very simple modification to the standard scheme.

More related work. After it was realized by [12] that IND-CCA security of RSA-OAEP
is not tight there appeared several alternative encryption schemes using different transforms
before applying the RSA function. These include OAEP+ [17], SAEP+ [9], REACT [15].
Another alternative, which was proposed in [18] is the simplest construction and is known as
Simple RSA or RSA-KEM. IND-CCA security of all of these schemes are tightly related to
the hardness of the RSA problem, in the RO model and in the single-query setting. The latter
two schemes, unlike the former two, can also be shown to have an improved security reduction
in the multi-query setting (though it was not formally proved). We think it is important to
show that the standardized RSA-OAEP scheme has similar properties, with the help of a very
simple modification that is easy to implement, because it appears very hard to replace the
standardized schemes with completely different constructions.

Improving the concrete security bounds is very important. Many papers besides the afore-
mentioned work of [3] focused on this issue. For example, Coron [10] showed a new proof
with improved security reduction for the RSA-based Full-Domain Hash signature scheme and
his technique has been widely used since then. Abe et al. [1] improved the time bound in
the security proofs of some of RSA-based encryption schemes by considering 4-round Feistel
network transformation.

2 Preliminaries

Notation and conventions. We denote by {0, 1}∗ the set of all binary strings of finite
length. We will refer to members of {0, 1}∗ as strings. If X,Y are strings then X ‖ Y denotes

3

the concatenation of X and Y . If S is a set then X
$
← S denotes that X is selected uniformly

at random from S. If k ∈ N then 1k denotes the string consisting of k consecutive “1” bits. If A

is a randomized algorithm and n ∈ N, then the notation X
$
← A(X1,X2, . . . ,Xn) denotes that

X is assigned the outcome of the experiment of running A on inputs X1,X2, . . . ,Xn. When
describing algorithms, if X is a variable and Y is a string, then X ← Y denotes that X is
assigned the value of Y .

All algorithms we consider are possibly randomized unless indicated otherwise. By conven-
tion, the running-time of an algorithm is measured relative to the bit-length of the input and
refers to both the actual running-time and program size, including that of any overlying exper-
iment, according to some fixed RAM model of computation. k denotes the security parameter.
All algorithms we consider run in time polynomial in k.

Syntax of public-key encryption. A public-key encryption (PKE) scheme PE = (K, E ,D)
with associated message space MsgSp, which may depend on the security parameter k, consists
of three algorithms. The key-generation algorithm K on input 1k returns a public key pk and
matching secret key sk. The encryption algorithm E takes pk and a plaintext M to return a
ciphertext. The deterministic decryption algorithm D takes sk and a ciphertext C to return
a plaintext. The consistency condition requires that for all k ∈ N and all M ∈ MsgSp(k) the
probability of Dsk(C) = M is 1, where the probability is over the experiment

(pk, sk)
$
← K(1k) ; C

$
← Epk(M) .

Security of PKE. We recall the notions of security of public-key encryption (PKE). We only
consider the definitions addressing chosen-ciphertext attack (as opposed to a weaker version
for chosen-plaintext attack). We present two variants of the standard IND-CCA definition. In
the first one the adversary is given a single challenge ciphertext, and in the second definition
the adversary can see multiple challenge ciphertexts. We then show the relation between the
definitions.

Definition 2.1 [Single- and Multi-query CCA Security of PKE] Let PE = (K, E ,D) be
a PKE scheme. Let the left or right selector be the map LR defined by LR(M0,M1, b) = Mb

for all equal-length strings M0,M1, and for any b ∈ {0, 1}. For an adversary A and b ∈ {0, 1}
define the experiment:

Experiment Expind-cca
PE,A (1k)

b
$
← {0, 1}

(pk, sk)
$
← K(1k)

d
$
← AEpk(LR(·,·,b)),Dsk(·)

If b = d then return 1 else return 0

It is mandated the LR encryption oracle (also known as the challenge oracle) is queried on
pairs of messages in MsgSp(k) and of equal length and the decryption oracle is not queried on
the outputs of the LR encryption oracle.

For an adversary A who is allowed to make a single query to its challenge oracle (we will
refer to such an adversary a single-query adversary) define the single-query(sq)-cca-advantage,

Advind-cca-sq
PE,A (k) as

2 · Pr
[

Expind-cca
PE,A (1k) = 1

]

− 1 .

4

We define the multi-query(mq)-cca-advantage, Advind-cca-mq
PE,A (k) the exact same way, but

for the adversary A who can query its challenge oracle an arbitrary number of times. We will
refer to such A a multi-query adversary.

A scheme PE is said to be IND-CCA secure in the single- (resp. multi-) query setting if the
single-query (resp, multi-query) -cca-advantage of any polynomial-time adversary is negligible.

It is shown by using a hybrid argument in [3] that for any k ∈ N, a scheme PE and any
multi-query adversary A making q queries to its challenge oracle there exists a single-query
adversary B so that

Advind-cca-mq
PE,A (k) ≤ q ·Advind-cca-sq

PE,B (k) , (1)

where the running time of B is that of A plus O(log q), and B does the same number of
decryption oracle queries as A.

It was also shown in [3] that the above bound is tight and cannot be improved in general.
But for specific schemes, e.g. ElGamal, the concrete security in the multi-query setting is
basically the same as in the single-query setting.

In this paper we are interested in improving the bound in concrete security treatment
of the popular RSA-OAEP scheme in the multi-query setting. Accordingly we recall the
computational assumptions used in the analyses of the scheme.

Computational Assumptions. A trapdoor-permutation generator is an algorithm F that
on input 1k returns the description of a permutation and its inverse f, f−1. The trapdoor
property means that for every instance f there exist a function f−1 with the same domain and
range so that f(f−1) ≡ f−1(f) ≡ ID, the identity function.

Definition 2.2 [One-wayness] A trapdoor permutation generator F is called one-way if for
every k ∈ N and every adversary I its advantage Advowf

F ,I(k) defined as

Pr
[

x = x′ : (f, f−1)
$
← F(1k) ; x

$
← {0, 1}k ; x′ $

← I(1k, f, f(x))
]

is negligible.

Definition 2.3 [Partial-Domain One-wayness] A trapdoor permutation generator F is
called partial-domain one-way for k ∈ N and some extra parameter k′ ≤ k, whch can be a
linear function of k, if for every k ∈ N and every adversary I its advantage Advpd−owf

F ,I (k, k′)
defined as

Pr
[

x[1 . . . k′] = x′ : (f, f−1)
$
← F(1k) ; x

$
← {0, 1}k ; x′ $

← I(1k, f, f(x))
]

is negligible, where x[1 . . . k′] denotes the first k′ bits of x.

An RSA trapdoor permutation generator is an algorithm F that on input 1k returns
(N, e), (N, d) where N is the product of two random distinct ⌊k/2⌋-bit primes and ed ≡ 1
mod φ(N). (Here φ(·) is Euler’s phi function.)

The standard assumption is that the RSA trapdoor permutation generator is one-way, and
the reasonable security level requires k to be at least 1024 bits. It was shown in [12] that
under this assumption RSA is also partial one-way. But the concrete reduction in [12] is not
tight showing that a much larger RSA modulus is required to guarantee reasonable level of the
stronger notion of partial one-wayness.

5

3 RSA-OAEP and its Security

OAEP encryption. The OAEP encryption [5] is parameterized by k0, k1 and k2 (that can
be linear functions of k, but typically k0 = k1 = 128 and k2 = k) and makes use of a trapdoor
permutation generator F with domain and range {0, 1}k2 and two random oracles

G : {0, 1}k0 → {0, 1}k2−k0 and H : {0, 1}k2−k0 → {0, 1}k0 .

The message space is {0, 1}k2−k0−k1 . The scheme OAEP[F] = (K, E ,D) is defined as follows:

• The key generation algorithm K(1k) picks a pair (f, f−1)
$
← F(1k2) and returns f as pk

and f−1 as sk.

• The encryption algorithm E(pk,M) picks r
$
← {0, 1}k0 , computes s← G(r)⊕ (M ‖ 0k1),

t← H(s)⊕ r and C ← f(s||t) and returns C.

• The decryption algorithm D(sk, C) computes s ‖ t ← f−1(C), r ← t⊕H(s) and M ←
s⊕G(r). If the last k1 bits of M are zeros, then it returns the first k2 − k0 − k1 bits of
M , otherwise it returns ⊥.

Security of OAEP. The encryption scheme OAEP[F] is IND-CCA secure in the RO model if
the underlying trapdoor permutation generator F is partial-domain one-way [12]. The concrete
security results in [12] are done for the single-query IND-CCA security. We “translate” them
into the the multi-query IND-CCA security using the result from [3] recalled in Equation 1.

Theorem 3.1 [12, 3] Let F be a trapdoor permutation generator with domain and range
{0, 1}k . Let OAEP[F] be the encryption scheme defined above. Then for any adversary A
making qe challenge oracle and qd decryption oracle queries, qH , qG queries to RO oracles H
and G, there exist an adversary B s.t.

Advpd−owf
F ,B (k, k2 − k0) ≥

Advind-cca-mq
OAEP[F],A(k)

2qeqH
−

1

qeqH

(

qdqG + qd + qG

2k0

+
qd

2k1

)

,

and the running time of B is that of A plus qG · qH · (TF (k) + O(1)) + O(log qe), where TF (k)
is the time needed for evaluating a random instance of F .

As we can see the reduction is not particularly tight, but the situation becomes even worse
if we use RSA, pretty much the only practical trapdoor permutation. It is believed to be
one-way, and it was shown in [12] that under this assumption it is partial one-way as well, but
the reduction is not tight. The concrete result is as follows.

Theorem 3.2 [12, 3] Consider the RSA trapdoor permutation generator with domain and
range {0, 1}k . Let OAEP[RSA] be the encryption scheme defined above. Then for any ad-
versary A making qe challenge oracle and qd decryption oracle queries, qH , qG queries to RO
oracles H and G there exist an adversary B s.t.

Advowf
RSA,B(k) ≥

(Advind-cca-mq
OAEP[RSA],A(k))2

4qe

−
1

qe

(

qdqG + qd + qG

2k0

+
qd

2k1

+
32

2k−2k0

)

,

and the running time of B is 2 times that of A plus qH · (qH + 2qG) ·O(k3) + O(log qe).

6

Such a loose concrete security bound implies that to maintain reasonable security guarantees,
i.e. so that it not much harder to break the scheme than to invert 1024-bit RSA, one would
need to use the scheme with a larger security parameter. It is shown in [16] show that keys
of length about 4-5 thousand bits are necessary, i.e. at least 4 times larger that the standard
1024-bit keys, and this means decryption will be about 64 = 43 times slower than before (since
decryption requires a modulo exponentiation whose complexity is cubic in the length of the
parameters). This is basically impractical. Note that the this estimate is for qe = 1, i.e. when
a single challenge ciphertext is considered. If we take into account the maximum number
of queries to the challenge oracle an adversary makes – qe, then to have reasonable security
guarantees in the practical multi-query settings the RSA parameters should be even larger,
making the scheme’s algorithms prohibitively slow.

4 Known Concrete Security Improvements

Interestingly an extremely simple modification to the scheme permits several concrete security
improvements. The modified scheme differs from OAEP[F] in that it uses trapdoor permu-
tations of particular structure, which leave the last part of the input in the clear. Let F be
a generator producing trapdoor permutations with domain and range {0, 1}k . Define a new
generator Fk first to run F ; let (f, f−1) be its output of F , and define the first output of Fk

as fp(x) ≡ f(x[1, . . . , k]) ‖ ID(x[k + 1, . . . , p]) = f(x[1, . . . , k]) ‖ x[k + 1, . . . , p] for any inputs
x of length p ≥ k, where x[1, . . . , k] denotes the first k bits of x. The second output, the
inverse permutation, is defined straight-forwardly. With regard to the OAEP construction we
will be interested in cases when p = k2 and k ≤ k2 − k0, so that applying Fk to the output
of the OAEP transform leaves the t-part in the clear. This modification has been suggested
under the name OAEP++ by Kobara and Imai in [14] in order to improve concrete security
of OAEP. This modification has also been previously suggested in [8] for an orthogonal reason
of showing some positive results about non-malleability of OAEP when one or both ROs are
instantiated with existing functions. The paper [8] does not provide concrete security bounds.

It is basically straightforward to see that if F is one-way, then Fk is partial one-way, in
that it is infeasible to recover first k bits of the preimage. With respect to RSA, we get that
RSAk, applying RSA to only the first k bits of the input, is partial-one-way under the standard
RSA assumption. That immediately implies that OAEP[Fk], when k ≤ k2 − k0 is IND-CCA
in the RO model, if F is one-way, and we get that OAEP[RSAk] is IND-CCA in the RO model
under the standard RSA assumption2. For the concrete security result we can use the bound
of Theorem 3.1.

But as shown in [14] we can get rid of factor qh. This is possible for the modified scheme
for the following reason. The proof of the original scheme constructs an adversary B breaking
partial one-wayess of F using the IND-CCA adversary A for OAEP[F]. B needs to partially
invert its input y = f(s ‖ t), i.e. find s. This input y is given to A as the challenge ciphertext.
The proof argues that the only way A can win the IND-CCA game is by querying the random
oracle H on s at some point. While B cannot check which of the RO queries A made is the
correct value B is looking for (since B does not know the second part t to verify this), it can
just pick one query at random. This is where the factor qh, the number of RO queries, is
coming from. For the modified scheme, the proof from [12] applies without a single change,

2This was previously observed in [8]. The reduction in [14] does not use this observation and the proof is
done “from scratch”.

7

except we can note that B will now be able to select the correct s out of A’s RO queries because
t is in the clear. B just checks if f(si ‖ t) = y for all queries to the random oracle H that
A makes. Here is the improved security result, which also takes into account the multi-query
setting (not considered in [14]).

In addition, the running time of the constructed adversary in the reduction is also improved.
We comment on this below and give more details in the next section.

Theorem 4.1 [14, 3] Let F be a trapdoor permutation family with domain and range {0, 1}k .
Let Fk be a trapdoor permutation generator producing permutations with domain and range
{0, 1}p for p ≥ k as defined above. Let OAEP[Fk] = (K, E ,D) be the encryption scheme defined
in Section 3 so that p = k2 and k ≤ k2 − k0. Then for any adversary A making qe challenge
oracle queries, qd decryption oracle queries, qH , qG queries to RO oracles H and G there exist
an adversary B s.t.

Advowf
F ,B(k) ≥

Advind-cca-mq
OAEP[Fk],A(k)

2qe

−
1

qe

(

qdqG + qd + qG

2k0

+
qd

2k1

)

,

and the running time of B is that of A plus qd · qH · (TFk
(k) + O(1)) + O(log qe), where TFk

(k)
is the time needed for evaluating a random instance of Fk.

Note an improvement compared to the running time of the adversary in the proof of Theorem
3.1. There the number of trapdoor permutation computations is proportional to qG · qH i.
Here it is proportional to qd · qH . This is much better as in practice the number of decrypted
ciphertexts can be much smaller that the number of hash computations. We explain the reason
for this saving in the next section.

The RSA instantiation result is immediate if we use RSA in place of F and RSAk in place
of Fk above.

5 Improving the Security in the Multi-Query Setting

We show that security in the multi-query setting does not have to degrade as more messages are
encrypted by each user (when an adversary does multiple queries to the challenge encryption
oracle), i.e. we can get rid of the factor qe in the bound of Theorem 4.1 when OAEP(RSAk)
is used. Hence, the modified scheme provides significantly better security guarantees than
the original version, for very practical parameter sizes. The following theorem states the
improvement result.

Theorem 5.1 Let RSA be a trapdoor permutation generator with domain and range {0, 1}k .
Let RSAk be a trapdoor permutation generator with domain and range {0, 1}p for p ≥ k as
defined in Section 4. Let OAEP[RSAk] be the encryption scheme defined in Section 3 so that
k2 = p and k ≤ k2− k0. Then for any adversary A attacking IND-CCA security of the scheme
making at most qe queries to its challenge oracle, qd decryption oracle queries, qH , qG queries
to RO oracles H and G, there exist an adversary B s.t.

Advowf
RSA,B(k) ≥

Advind-cca-mq
OAEP[RSAk],A(k)

2
−

(

qdqG + qeqd + qeqG

2k0

+
qd

2k1

)

,

and the running time of B is that of A plus (qe+1)·Tm(k)+(qd ·qH +1)·Te(k)+O(log qe), where
Tm(k) and Te(k) are times required to compute one modulo multiplication and exponentiation
respectively in Z

∗
N , where N ≤ 2k.

8

What does the improvement mean in practice? The current belief is that 1024-bit RSA provides
80 bits of security, so for any adversary B with reasonable resources Advowf

RSA,B(k) ≤ 2−80 (and
there are indications that this estimate is outdated in that it does not take into account newer
attacks and growing computing power, and the bound is likely to be lower [13]). Now assume
an adversary manages to obtain 220 ciphertexts of chosen messages. This is about the number
of TLS connections that were required to mount the well-known attack on RSA-PKCS1 by
Bleichenbacher [7] (though his attacks needed that many chosen ciphertexts). Then according

to Theorem 4.1 the bound on Advind-cca-mq
OAEP[RSAk],A(k) is only about 2−59, which not a strong

security level. Theorem 5.1 implies that in fact security of the scheme does not degrade as
an adversary mounts more chosen-plaintext attacks and stays tightly related to the assumed
security level of the underlying RSA problem.

Proof: We show how to modify the proof of security of RSA-OAEP in the single-query setting
from [12], which assumes an adversary A attacking IND-CCA security of OAEP[F] (in the RO
model). In our case we consider a special case of the scheme, OAEP[RSAk] (i.e. when RSA is
applied to the first k bits of the OAEP output, leaving the t-part in the clear). This will allow
us to use self-reducibility of RSA and to incorporate the RSA challenge into multiple challenge
ciphertexts, which the adversary is allowed to see in the multi-query setting.

Following [12] we use the game-playing technique of [6, 19] and consider a sequence of experi-
ments or games, associated with the adversary A and random oracles G(·),H(·). For the most
part the proof is a simple extension of the proof in [12]. The pseudocode for the games is
on Figures 1,2 and 3, and the description is below. For i ∈ N we let Pr[Gamei] denote the
probability that Game i outputs 1.

Game 0 corresponds to Expind-cca
OAEP[RSAk],A(1k), the standard multi-query IND-CCA experiment

(c.f. Definition 2.1 for the multi-query adversary). Each of qe challenge ciphertexts is generated
according to the definition of encryption of OAEP[RSAk] as follows. For 1 ≤ i ≤ qe, to
encrypt Mi,b first r∗i is chosen at random from {0, 1}k0 . Then Ci ← fk(s

∗
i ‖ ti), where s∗i =

G(r∗i)⊕Mi,b ‖ 0k1 and ti = r∗i ⊕H(s∗i). Decryption oracle queries are answered according to
the decryption algorithm of OAEP[RSAk]. By construction and Definition 2.1 we get

1

2
+

1

2
·Advind-cca-mq

OAEP[RSAk],A(k) = Pr[Game0] .

Game 1 is different from Game 0 in that it moves the computation of the random coins,
r+
1 , . . . , . . . , r+

qe
, used in the challenge ciphertexts explicitly up front, together with the compu-

tations of g+
1 , . . . , g+

qe
, the values simulating the corresponding random oracle G answers. By

computation we mean choosing the values at random from the corresponding domains ({0, 1}k0

and {0, 1}k2−k0 resp.) and storing the results. Further in the game r+
i is used in place of r∗i

and g+
i is used in place of G(r+

i), for all 1 ≤ i ≤ qe. I.e. each challenge ciphertext has the
form fk(s

∗
i ||t

∗
i), where s∗i = (Mi,b ‖ 0k1)⊕ g+

i , t∗i = h+
i ⊕ r∗i for r∗i = r+

i and h+
i = H(s∗i). And

whenever A queries the random oracle G on r+
i for any 1 ≤ i ≤ qe, it is given back g+

i . These
changes do not affect the distribution of the view of A compared to that in Game 0, because
(r∗1, G(r∗1), . . . , r∗qe

, G(r∗qe
)) and (r+

1 , g+
1 , . . . , r+

qe
, g+

qe
) have the same distribution, since G is a

random oracle:

9

Pr[Game1] = Pr[Game0] .

Game 2 differs from Game 1 only in that the queries to the random oracle G on points
r+
1 , . . . , r+

qe
made by the adversary or by the decryption oracle are answered at random in-

dependently from the values g+
1 , . . . , g+

qe
used to compute the challenge ciphertexts (e.g. by

calling G(·)). Hence the challenge ciphertexts are independent from the challenge bit b (since
they are uniformly distributed, independent of the rest of A’s view) and

Pr[Game2] =
1

2
.

Similarly to [12] we can argue that the view of A and thus its outputs have the same distribution
in Games 1 and 2 unless A queries G oracle on either of the points r∗1, . . . , r

∗
qe

(directly or making
the decryption oracle make this query). Let us denote the probability of such event in this
game Pr[AskG2], and such an event is defined similarly in the following games.

Pr[Game2]− Pr[Game1] ≤ Pr[AskG2] .

Game 3 is different from Game 2 in that it moves the computation of s+
1 , . . . , s+

qe
and h+

1 , . . . , h+
qe

)
explicitly up front. By computation we mean choosing the values at random from the corre-
sponding domains ({0, 1}k2−k0 and {0, 1}k0 resp.) and storing the results. Further s+

i is used
in place of s∗i and h+

i is used in place of H(s+
i), for all 1 ≤ i ≤ qe. I.e. each challenge ciphertext

has the form fk(s
∗
i ||t

∗
i), where s∗i = s+

i , t∗i = h+
i ⊕ r∗i for r∗i = r+

i and h+
i = H(s∗i). And

whenever A queries the random oracle H on s+
i for any 1 ≤ i ≤ qe, it is given back h+

i . These
changes do not affect the distribution of the view of A compared to that in Game 2, because
we replaced each quadruple (s∗i ,H(s∗i), g

+
i , b) with another having the same distribution, since

H is a random oracle:

Pr[AskG3] = Pr[AskG2] .

In Game 4, the difference with Game 3 is only in that the queries to the random oracle
H made by the adversary or by the decryption oracle on points s+

1 , . . . , s+
qe

are answered at

random independently from the values h+
1 , . . . , h+

qe
used in the challenge ciphertexts (e.g by

calling H(·)).

Similarly to [12] we can argue that the view of A and thus its outputs have the same distribution
in Games 3 and 4 unless A or the decryption oracle queries the H oracle on either of the points
s+
1 , . . . , s+

qe
. Let’s denote the probability of such event in this game Pr[AskH4], and such an

event is defined similarly in the following games.

10

Pr[AskG4]− Pr[AskG3] ≤ Pr[AskH4]

and

Pr[AskG4] ≤
qe(qG + qd)

2k0

.

Game 5 is similar to Game 4 except the way the challenge ciphertexts are generated. In this
game they are simply picked at random, independently from everything else. We can argue
similarly to the proof in [12] that this does not change the view and the outputs of A. The
reason is that fk is a permutation and in Game 4 it was applied to uniformly distributed points
s∗i ‖ t∗i , where s∗i = s+

i and t∗i = h+
i ⊕ r+

i .

Pr[AskH5] = Pr[AskH4] .

Note that the pre-computed values r+
i , g+

i , s+
i , h+

i for 1 ≤ i ≤ qe are not used further in the
game any more. Therefore in the following games we remove the code generating them for
convenience.

Games 6–8 deal with answering decryption oracle queries which were simulated perfectly before
that. The definitions of the games and their analysis done in [12] hold for our modified scheme
and are independent of the number of the challenge encryption oracle queries A does, but we
describe them for completeness. For a k2-bit ciphertext C we call its last k0 bits t, and the fist
k2 − k0 bits of f−1

k (C) we call s. We call r the result of xoring t with H(s).

Game 6 is like Game 5 except the decryption oracle rejects all ciphertexts for which the
underlying r-value has not been previously queried to the G oracle by the adversary. The
views of A in Games 5 and 6 are different only if A queries a valid ciphertext without querying
the underlying r-value to G oracle. A ciphertext is valid if the last k1 bits of s⊕G(r) are
zeros. But if r has not been queried, then G(r) is an independent random string and validity
will be satisfied with probability at most 2−k1 . For qd decryption queries we get

Pr[AskH6]− Pr[AskH5] ≤
qd

2k1

.

Game 7 is like Game 6 except that the decryption oracle rejects all ciphertexts for which the
underlying s-value has not been previously queried to the H oracle by the adversary. The views
of A in Games 6 and 7 are different only if A queries a valid ciphertext without querying the
underlying s-value to H oracle when the query r was made to the G oracle. Since r = H(s)⊕ t,
H(s) was not previously defined, it is random and independent. Hence the probability that r
was queried is at most qG/2k0 . And for qd decryption queries we get

Pr[AskH7]− Pr[AskH6] ≤
qdqG

2k0

.

11

In the last Game 8 the decryption oracle queries, for which either of the corresponding r and
s values have not been queried, are rejected. The game stores the pairs of the random oracle
queries and the corresponding answers in the arrays G-list and H-list. The other ciphertexts
are decrypted by using a simple plaintext extractor who expects all previously made G and H
queries made by A and returns the matching plaintext. Namely, to decrypt a ciphertext C ‖ t,
take every (sj ,H(sj)) in H-list for 1 ≤ j ≤ qH , compute r ← H(sj)⊕ t and check if there is
a pair (r,Gr) for any Gr in the G-list. If so, check if fk(sj ‖ t) = C ‖ t and the last k1 bits of
si ⊕Gr) are zeros, then return the rest of si ⊕Gr. Otherwise, return ⊥.

The view of the adversary does not change and thus

Pr[AskH8] = Pr[AskH7] .

Putting it all together we get

1

2
·Advind-cca-mq

OAEP[Fk],A(k) = Pr[Game0]−
1

2

= Pr[Game1]−
1

2

≤ Pr[Game2]−
1

2
+ Pr[AskG2]

≤ Pr[AskG2]

= Pr[AskG3]

≤ Pr[AskG4] + Pr[AskH4]

≤
qe(qG + qd)

2k0

+ Pr[AskH5]

≤
qe(qG + qd)

2k0

+
qd

2k1

+ Pr[AskH6]

≤
qe(qG + qd) + qdqG

2k0

+
qd

2k1

+ Pr[AskH7]

=
qe(qG + qd) + qdqG

2k0

+
qd

2k1

+ Pr[AskH8] .

We now claim that there exists an adversary B such that

Pr[AskH8] ≤ Advowf
RSA,B(k) . (2)

This is where we use self-reducibility of RSA to improve tightness of the reduction. To justify
Equation (2) we construct B as follows. B is given an RSA public key (N, e) and a challenge
y = xe mod N for a random x ∈ Z

∗
N . B picks qe values at random from Z

∗
N , let us call them

v1, . . . , vqe
; and qe values at random from {0, 1}p−k, let us call them w1, . . . , wqe

. B runs A on
public key (N, e), answers its RO queries with random and independent values (and records all
queries and answers). To answer the decryption oracle queries B checks if the corresponding
G and H queries were made, and in this case a simple plaintext extractor we described above
is used; otherwise, the ciphertexts are rejected (B returns ⊥). For 1 ≤ i ≤ qe for an i-th query
to the challenge oracle made by A, B returns (yve

i mod N) ‖ wi.

12

We claim that B simulates the view of A in Game 8 perfectly. (Except for the mismatch
between the sets Z

∗
N

and {0, 1}k , which is usually ignored. For the possible simple resolutions
of this issue see [12].) The challenge ciphertexts are random and independent strings, and the
decryption queries are answered according to the simple plaintext extractor algorithm that uses
the recorded queries to the random oracles and the (random) answers. Event AskH8 means
that A made a query h to the random oracle G so that h[1, . . . , k]e = yve

j (mod N) for some

1 ≤ j ≤ qe. B searches for such query and outputs hv−1
j mod N , which is yd mod N , i.e. it

breaks one-wayness of RSA.

We finally justify the running time of B. In addition to running A, to compute each of qe

challenge ciphertexts B does one modulo multiplication (note that under our convention we
do not have to count RSA computations in encryption as they are part of the A overlying
experiment), to answer each of qd decryption queries B does one RSA computation for each
of qH pairs stored in H-list, and does one modulo inverse and multiplication at the end. The
reason why the bound in the proof in [12] for the original RSA-OAEP is worse is because there
for each decryption oracle query the adversary has to apply RSA to values corresponding to
all possible combinations of pairs stored in G-list and H-list or use more storage to speed up
the check. But in any case it stays proportional to qG · qH . In our case we do not need to test
every r-value in G-list as the required value can be computed using the t-part of the ciphertext.

Remark. We comment on why does not the above proof showing the security improvement
work for the unmodified OAEP[RSA] scheme. The reason is that in the original scheme the
RSA permutation is applied to the whole output s ‖ t of the OAEP transform. The tight
security of OAEP[RSA] is only shown assuming partial-domain one-wayness of RSA. In the
proof above the adversary B given a challenge y could still use self-reducibility of RSA and
generate challenge ciphertexts for A as yve

1, . . . , yve
qe

mod N . In A’s view, these ciphertexts
have the right distribution (in Game 8) unless A queries the H oracle on any of the underlying
s values (the first part of ydv1, . . . , y

dvqe
). But if this happens, B cannot compute yd, as it

does not know the remaining part of the transform.

6 Encrypting Long Messages with Modified RSA-OAEP

We observe that the modified RSA-OAEP scheme can be used to encrypt long messages without
employing symmetric encryption in the hybrid encryption construct. For that the function G
in the transform is made variable-output-length, i.e. it’s output is the length of the message
plus the zero padding of length k1. For a fixed-output-length hash G′(·) one can efficiently
construct G(·) as G′(〈0〉‖·)‖G′(〈1〉‖·) . . . ‖G′(〈l〉‖·), where 〈i〉 means the binary representation
of the counter i ∈ N. In the RO model G is a random oracle if G′ is. The function H in the
transform needs to be variable-input-length, which is not a problem, since most of the hash
functions are. The RSA function is applied to the first k (e.g. 1024 bits) of the s-part of
the OAEP transform. The proof of security stays virtually the same. This scheme yields
more compact ciphertexts for long messages than the one obtained through the use of hybrid
encryption because there is no need to encrypt the symmetric key.

13

7 Conclusions

We re-visited a previously suggested slight modification of the well-known and practical RSA-
OAEP encryption. We showed that this scheme has extra advantages, namely its IND-CCA
security remains tightly related (in the RO model) to hardness of the RSA problem, even in
the multi-query setting. Additionally, this scheme can be used for encryption of long messages
without employing the hybrid encryption method and symmetric encryption. We believe the
modification is very simple to implement and may be considered by the standard bodies.

8 Acknowledgments

We thank David Cash and Eike Kiltz for useful discussions, and Adam O’Neill and anonymous
reviewers for their comments on the draft. Alexandra Boldyreva is supported in part by NSF
CAREER award 0545659 and NSF Cyber Trust award 0831184.

References

[1] Masayuki Abe, Eike Kiltz, and Tatsuaki Okamoto. Chosen ciphertext security with opti-
mal ciphertext overhead. In Asiacrypt ’08, volume 5350 of LNCS, pages 355–371. Springer-
Verlag, Berlin, Germany, 2008.

[2] Olivier Baudron, David Pointcheval, and Jacques Stern. Extended notions of security for
multicast public key cryptosystems. In ICALP, volume 1853 of LNCS, pages 499–511.
Springer-Verlag, Berlin, Germany, 2000.

[3] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a
multi-user setting: Security proofs and improvements. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 259–274, Bruges, Belgium, May 14–18, 2000.
Springer-Verlag, Berlin, Germany.

[4] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73, Fairfax, Virginia,
USA, November 3–5, 1993. ACM Press.

[5] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis,
editor, EUROCRYPT’94, volume 950 of LNCS, pages 92–111, Perugia, Italy, May 9–12,
1994. Springer-Verlag, Berlin, Germany.

[6] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006. Springer-
Verlag, Berlin, Germany.

[7] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462
of LNCS, pages 1–12, Santa Barbara, CA, USA, August 23–27, 1998. Springer-Verlag,
Berlin, Germany.

14

[8] Alexandra Boldyreva and Marc Fischlin. On the security of OAEP. In Kaoru Kurosawa,
editor, ASIACRYPT 2006, LNCS, pages 210–225. Springer-Verlag, Berlin, Germany, De-
cember 2006.

[9] Dan Boneh. Simplified OAEP for the RSA and Rabin functions. In Joe Kilian, edi-
tor, CRYPTO 2001, volume 2139 of LNCS, pages 275–291, Santa Barbara, CA, USA,
August 19–23, 2001. Springer-Verlag, Berlin, Germany.

[10] Jean-Sébastien Coron. On the exact security of Full Domain Hash. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 229–235, Santa Barbara, CA, USA,
August 20–24, 2000. Springer-Verlag, Berlin, Germany.

[11] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[12] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-OAEP
is secure under the RSA assumption. Journal of Cryptology, 17(2):81–104, March 2004.

[13] Burt Kaliski. TWIRL and RSA key size. RSA Laboratories, 2003.

[14] Kazukuni Kobara and Hideki Imai. OAEP++ : A very simple way to apply OAEP to
deterministic OW-CPA primitives. Cryptology ePrint Archive, Report 2002/130, 2002.
http://eprint.iacr.org/.

[15] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-security Asymmet-
ric Cryptosystem Transform. In David Naccache, editor, CT-RSA 2001, volume 2020 of
LNCS, pages 159–175, San Francisco, CA, USA, April 8–12, 2001. Springer-Verlag, Berlin,
Germany.

[16] David Pointcheval. How to encrypt properly with RSA. RSA Laboratories’ CryptoBytes,
5(1):9–19, Winter/Spring 2002.

[17] Victor Shoup. OAEP reconsidered. In Joe Kilian, editor, CRYPTO 2001, volume 2139
of LNCS, pages 239–259, Santa Barbara, CA, USA, August 19–23, 2001. Springer-Verlag,
Berlin, Germany.

[18] Victor Shoup. A proposal for an ISO standard for public-key encryption. ISO/IEC JTC
1/SC27, 2001.

[19] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
cryptology eprint archive, report 2004/332, 2004. http://eprint.iacr.org/.

15

Game-0
G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k)
$
← K(1k)

Run A on input fk and
when G(·) is queried on r, return G(r)
when H(·) is queried on s, return H(s)
when A makes i-th query (M0,i, M1,i)

to E
G(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Pick r∗i
$
← {0, 1}k0

Compute s∗i ← G(r∗i)⊕Mb,i||0
k1

Compute C∗

i ← fk(s∗i)
Compute t∗i ← H(s∗i)⊕ r∗i
return C∗

i ‖ t∗i
when A makes j-th query Cj ‖ tj

to D
G(·),H(·)

f−1

k

(·), (1 ≤ j ≤ qd)

return D
G(·),H(·)
f−1 (Cj ‖ tj)

Until A returns a bit d
Return 1 iff b = d

Game-1
G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k)
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0, g+

i

$
← {0, 1}k2−k0

Run A on input fk and
when G(·) is queried on r

and r = r+
l for some 1 ≤ l ≤ qe

then return g+
l , otherwise return G(r)

when H(·) is queried on s, return H(s)
when A makes i-th query (M0,i, M1,i)

to E
G(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Compute s∗i ← g+
i ⊕Mb,i||0

k1

Compute C∗

i ← fk(s∗i)
Compute t∗i ← H(s∗i)⊕ r+

i

return C∗

i ‖ t∗i
when A makes j-th query Cj ‖ tj

to D
G(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

return D
G(·),H(·)

f−1 (Cj ‖ tj)

Until A returns a bit d
Return 1 iff b = d

Game-2
G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k)
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0, g+

i

$
← {0, 1}k2−k0

Run A on input fk and
when G(·) is queried on r

and r = r+
l for some 1 ≤ l ≤ qe

then return G(r) , otherwise return G(r)

when H(·) is queried on s, return H(s)
when A makes i-th query (M0,i, M1,i)

to E
G(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Compute s∗i ← g+
i ⊕Mb,i||0

k1

Compute C∗

i ← fk(s∗i)
Compute t∗i ← H(s∗i)⊕ r+

i

return C∗

i ‖ t∗i
when A makes j-th query Cj ‖ tj

to D
G(·),H(·)

f−1

k

(·), (1 ≤ j ≤ qd)

return D
G(·),H(·)
f−1 (Cj ‖ tj)

Until A returns a bit d
Return 1 iff b = d

Game-3
G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k)
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0, g+

i

$
← {0, 1}k2−k0

s+
i

$
← {0, 1}k2−k0 , h+

i

$
← {0, 1}k0

Run A on input fk and
when G(·) is queried on r

then return G(r)
when H(·) is queried on s

and s = s+
l for some 1 ≤ l ≤ qe

then return h+
l , otherwise return H(s)

when A makes i-th query (M0,i, M1,i)

to E
G(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Compute C∗

i ← fk(s+
i)

Compute t∗i ← h+
i ⊕ r+

i

return C∗

i ‖ t∗i
when A makes j-th query Cj ‖ tj

to D
G(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

return D
G(·),H(·)
f−1 (Cj ‖ tj)

Until A returns a bit d
Return 1 iff b = d

Figure 1: Games 0–3 for the Proof of Theorem 5.1: Shaded areas indicate the differences between
the games.

16

Game-4
G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k)
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0, g+

i

$
← {0, 1}k2−k0

s+
i

$
← {0, 1}k2−k0 , h+

i

$
← {0, 1}k0

Run A on input fk and
when G(·) is queried on r

then return G(r)
when H(·) is queried on s

and s = s+
l for some 1 ≤ l ≤ qe

then return H(s) , otherwise return H(s)

when A makes i-th query (M0,i, M1,i)

to E
G(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Compute C∗

i ← fk(s+
i)

Compute t∗i ← h+
i ⊕ r+

i

return C∗

i ‖ t∗i
when A makes j-th query Cj ‖ tj

to D
G(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

return D
G(·),H(·)
f−1 (Cj ‖ tj)

Until A returns a bit d
Return 1 iff b = d

Game-5
G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k)
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0, g+

i

$
← {0, 1}k2−k0

s+
i

$
← {0, 1}k2−k0 , h+

i

$
← {0, 1}k0

Run A on input fk and
when G(·) is queried on r

then return G(r)
when H(·) is queried on s

return H(s)
when A makes i-th query (M0,i, M1,i)

to E
G(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Compute s∗i
$
← {0, 1}k2−k0 ; C∗

i ← fk(s∗i)

Compute t∗i
$
← {0, 1}k0

return C∗

i ‖ t∗i
when A makes j-th query Cj ‖ tj

to D
G(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

return D
G(·),H(·)
f−1 (Cj ‖ tj)

Until A returns a bit d
Return 1 iff b = d

Game-6
G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k)
$
← K(1k)

Run A on input fk and
when G(·) is queried on r

then return G(r)
when H(·) is queried on s

return H(s)
when A makes i-th query (M0,i, M1,i)

to E
G(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Compute s∗i
$
← {0, 1}k2−k0 ; C∗

i ← fk(s∗i)

Compute t∗i
$
← {0, 1}k0

return C∗

i ‖ t∗i
when A makes j-th query Cj ‖ tj

to D
G(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

If H(f−1(Cj))⊕ tj was queried to G(·)

then return D
G(·),H(·)

f−1 (Cj ‖ tj)

otherwise return ⊥
Until A returns a bit d
Return 1 iff b = d

Game-7
G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k)
$
← K(1k)

Run A on input fk and
when G(·) is queried on r

then return G(r)
when H(·) is queried on s

return H(s)
when A makes i-th query (M0,i, M1,i)

to E
G(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Compute s∗i
$
← {0, 1}k2−k0 ; C∗

i ← fk(s∗i)

Compute t∗i
$
← {0, 1}k0

return C∗

i ‖ t∗i
when A makes j-th query Cj ‖ tj

to D
G(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

If f−1(Cj) was queried to H(·)

and H(f−1(Cj))⊕ tj was queried to G(·)

then return D
G(·),H(·)
f−1 (Cj ‖ tj)

otherwise return ⊥
Until A returns a bit d
Return 1 iff b = d

Figure 2: Games 4-7 for the Proof of Theorem 5.1: Shaded areas indicate the differences between
the games.

17

Game-8
G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k)
$
← K(1k)

Run A on input fk and
when G(·) is queried on r

then return G(r) ; store (r, G(r)) in array G-list

when H(·) is queried on s

return H(s) ; store (s, H(s)) in array H-list

when A makes i-th query (M0,i, M1,i)

to E
G(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Compute s∗i
$
← {0, 1}k2−k0 ; C∗

i ← fk(s∗i)

Compute t∗i
$
← {0, 1}k0

return C∗

i ‖ t∗i
when A makes j-th query Cj ‖ tj

to D
G(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

If f−1(Cj) was queried to H(·) and H(f−1(Cj))⊕ tj was queried to G(·),

If G-list contains (r, Gr) and H-list contains (s, Hs), so that

Hs ⊕ tj = r, fk(s ‖ tj) = Cj ‖ tj and the last k1 bits of s⊕Gr are zeros

then return the rest of s⊕Gr, otherwise return ⊥

Until A returns a bit d
Return 1 iff b = d

Figure 3: Game 8 for the Proof of Theorem 5.1: Shaded areas indicate the differences between the
games.

18

