CS 6260 Applied Cryptography

Alexandra (Sasha) Boldyreva Introduction, perfect (Shannon) secrecy

 All the information, including the link to the course web page is on T-Square.

Cryptography is very old and very new

- Crypto is an ancient discipline
 - Recall Julius Caesar, Enigma,...
- Crypto as a science (modern cryptography) has short but exciting history
 - Most of it happened in the last 30 years!
- This course will be an introduction to modern cryptography

Main goals of cryptography are

- data privacy
- data authenticity (message came from where it claims)
- data integrity (message has not been modified on the way)
 in the digital world

Who used some cryptography recently?

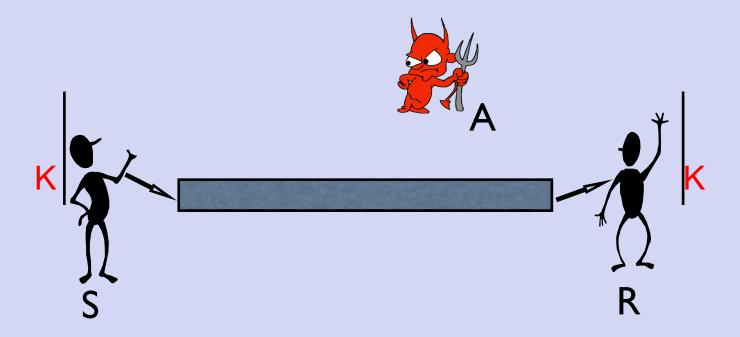
Crypto is used by most people when

Doing on-line shopping and banking

Talking on a cell phone

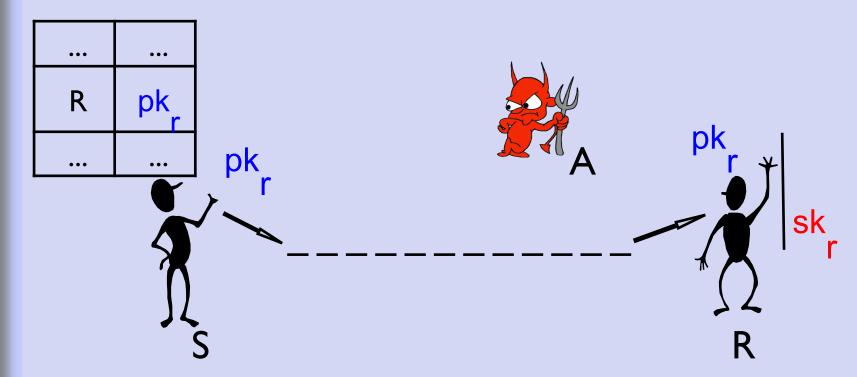
Watching satellite TV and pay-per-view movies

Players and settings



1. Symmetric-key setting

Players and settings



2. Asymmetric (public)-key setting

Goals and primitives

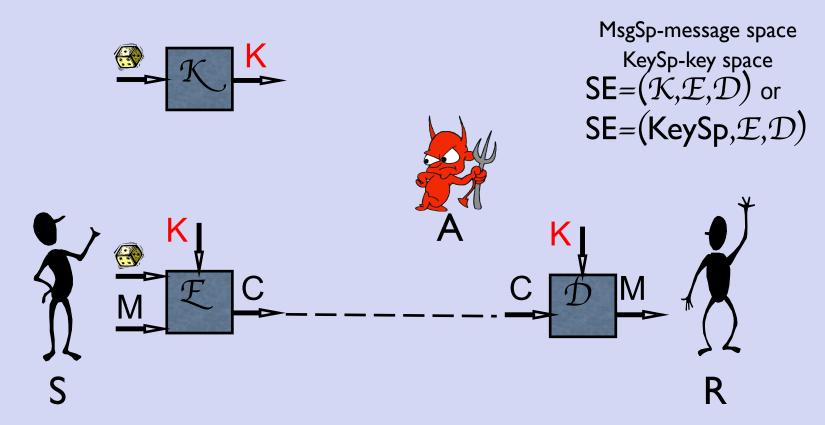
setting	symmetric-key	asymmetric-key
data privacy	symmetric (secret-key) encryption	asymmetric (public- key) encryption
data authenticity/ integrity	message authentication code (MAC)	digital signature scheme

How good is a scheme?

- "Trial-and-error" approach:
 - 1. Try to find an attack
 - 2. If an attack found then the scheme is insecure, fix the scheme, repeat step 1.
 - 3. If no attack found then?
- "Provable security" approach:
 - show that if an attack found (a scheme is insecure), then one can break some trusted assumption (e.g. factoring)
 - requires a definition of what "secure" means

Symmetric encryption schemes

• A scheme SE is specified by 3 algorithms $\mathcal{K}, \mathcal{I}, \mathcal{D}$.



It is required that for every M \in MsgSp and every K \in KeySp, $\mathcal{D}(\mathbf{K}, \mathcal{E}(\mathbf{K}, \mathbf{M}))=\mathbf{M}$

One Time Pad

- OneTimePad= $(\mathcal{K},\mathcal{F},\mathcal{D})$, MsgSp= $\{0,1\}^n$:
 - K: return a random n-bit string K (KeySp={0,1}ⁿ)
 - $\mathcal{L}(K,M)$: $C \leftarrow M \oplus K$, return C
 - $\mathcal{D}(K,C)$: M \leftarrow C \oplus K, return M
- Example: M=0111111111011101 K=110010011010100 C=101101100001001
- A new key must be used to encrypt a new message

Perfect (Shannon) security

Def 1. An encryption scheme SE=(K,E,D) is perfectly secure if for every probability distribution PD {0,1}ⁿ→]0,1] on a MsgSp={0,1}ⁿ, for every ciphertext C and message M Pr[message is M | ciphertext is C] = PD(M)

over the choices of K and a message that was encrypted

Def 2. An encryption scheme SE=(K,E,D) is Shannon-secure if for every ciphertext C and messages M1,M2
 Pr[E(K1,M1)=C] = Pr[E(K2,M2)=C]

over the choices of KI,K2

• <u>Claim</u>. Def 1 and Def 2 are equivalent, i.e. a scheme is perfectly secure iff it is Shannon-secure.

- Th.1 OneTimePad is a Shannon-secure encryption scheme.
 - Proof. Fix any ciphertext C∈{0,1}ⁿ.
 For every M Pr[E(K,M)=C] = Pr[K=M⊕C] = 2

- Th.2 [Shannon's theorem, optimality of OneTimePad]
 If a scheme is Shannon-secure, than a key must be as long as the message we want to encrypt.
 - Proof. We prove that |KeySp| cannot be smaller than |MsgSp|.
 - Fix a ciphertext C (by picking M1,K1 and setting C=E(K1,M1)). Thus Pr[E(K,M1)=C]>0.
 - Assume there exists M2 such that Pr[D(K,C)=M2]=0.
 - By the correctness requirement Pr[E(K,M2)=C]=0.
 Therefore Pr[E(K,M1)=C]≠ Pr[E(K,M2)=C] that violates
 Shannon secrecy.
 - Thus for every M2∈MsgSp there exists K∈KeySp s.t.
 D(K,C)=M2, and thus |KeySp|>= |MsgSp|.

- Th.3 If a scheme is perfectly secure, than a key must be as long as the message we want to encrypt.
 - Proof. We prove that |KeySp| cannot be smaller than | MsgSp|.
 - Assume |KeySp|<|MsgSp|.
 - Fix C.
 - Let's count messages to which C can decrypt to under various keys:
 - S={M₁,..M_{|KeySp|}}.
 - |S| < |MsgSp|, thus there exists M_i s.t. $Pr[message is M_i|ciphertext is C] = 0$ while $PD(M_i) > 0$.
 - A contradiction.

- So we cannot do better than OneTimePad. But it is impractical (needs a very long key). Is it the end?
 - Yes, of the information-theoretic crypto.
 - No, if we relax the security requirement and assume that adversaries are computationally bounded. We will also assume that
 - There are some "hard" problems
 - Secret keys are secret
 - All algorithms are public (Kerckhoff's principle)
- We move to the area of computational-complexity crypto, that opens many of possibilities.