CS 6260
Applied Cryptography

Message Authentication Codes (MACs).




New cryptographic goals

 Data privacy is not the only important
cryptographic goal

e It is also important that a receiver is assured
that the data it receives has come from the
sender and has not been modified on the way
(and detect if it is not the case)

* The goals are data authenticity and integrity




Encryption solves data privacy, not
authenticity/integrity
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Message Authentication Code (MAC)

* is the primitive for the goal of data authenticity

in the symmetric-key setting
N=(K,MAC,V¥F)

@ MsgSp-message space
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It is required that for every MeMsgSp and every K that can be output by
K, VF(K,M,MAC(K,M))=1




Message Authentication Code (MAC)

e If the key-generation algorithm simply picks a
random string from some KeySp, then KeySp
describes K

e If the MAC algorithm is deterministic, then the
verification algorithm V¥ does not have to be

defined as it simply re-computes the MAC by
invoking the MAC algorithm on the given

message M and accepts iff the result is equal to
its input TAG.




Towards a security definition for MACs

We imagine that an adversary can see some
number of message plus tag pairs

As usual, it is necessary but not sufficient to
require that no adversary can compute the
secret key

Right now we will not be concerned with replay
attacks

We don’t want an adversary to be able to
compute a new message and a tag such that
the receiver accepts (outputs 1).




Security definition for MACs

Fix M=(K,MAC,VF)
Run K to get K

For an adversary A consider an experiment Expima(A)

—IMAC (K,")
MA < VF(K’v)
M,il'ag

Return 1 iff VF(K,M,Tag)=1 and M was not queried to the MAC oracle

The uf-cma advantage of A is defined as
Advif ™ (4) = Pr|Expff“™(4) = 1]

UF-CMA security is defined the usual way.




Examples

We fix a PRF F: {0,1}* x{0,1}* — {0,1}*
I, = (K,MAC)

algorithm MACgk (M)
if (|[M|mod¢#0or |M|=0)then return L
Break M into ¢ bit blocks M = M[1]... M]|n]
for i=1,...,ndoy; — Fr(M]i])
Tag —y1 @D - ®yYn
return Tag

, A AdviEm(A)) =1
It is easy to construct s.t.




Examples

We fix a PRF F: {0,1}* x{0,1}* — {0,1}*

I, = (K, MAC)

algorithm MACg (M)
l—0l—m
if (|M|modl#0or |M|=0o0r|M|/l>2™)then return L
Break M into [ bit blocks M = M[1]... M|n]
for i=1,...,ndo vy, — Fg([i],, || M[i])
Tag —1y1 & -+ D yp
return Tag

Adversary Alz\/[ACK ©
Let a1, b; be distinct, £ — m bit strings
Let a9, by be distinct ¢ — m bit strings
Tag1 — MACK(alag) ; Tag2 — MACK(albg) ; Tag3 — MACK(blag)
Tag «— Tag, ® Tagy © Tags
return(b1b2,Tag)

Advif, "™ (42) = 1




Note

* We broke the MAC schemes without breaking
the underlying function families (they are
secure PRFs).

* The weaknesses were in the schemes, not the
tools




A PRF as a MAC

Fix a function family F: Keys x D — {0,1}"

Consider a MAC II = (K, MAC)

algorithm K | algorithm MAC g (M)
K <& Keys if (M ¢ D) then return |
return K Tag «— Fg (M)
Return Tag

Theorem. Let A be an adversary attacking TT making gma MAC oracle
queries of total length mma and qva verification oracle queries of total

length mva and running time ta. Then there exists an adversary B
attacking F as a PRF such that

Advif™ (4) < AdvE(B)+
and B makes gma+qva+1 queries and runs the time ta+gva tc, where tc

is the time to compare strings of the tag length. The total length of the
queries is at most mma+mva+the largest length of strings in D.




e Proof.

Adversary Bf
d«—0;5«10
Run A
When A asks its signing oracle some query M:
Answer f(M)to A ; S — SU{M}
When A asks its verification oracle some query (M, Tag):
if f(M) = Tag then
answer 1 to A
else answer 0 to A
When A outputs forgery (M’ ,t")
If f(m’)=t’ then return 1
otherwise return 0

Pr(Expy™(B)=1| = Advif*™(4)

Pr [Expgrf‘o(B):l] < 2%




Any PRF makes a good MAC
Are we done?

Efficient PRFs (e.g. block ciphers) has short fixed input
length

We want it to work for arbitrary-length messages

What if we hash a message first before applying the block
cipher:

M Any length

HV

K1

v
H.,(M)| 128 bit

K2

TAG




What H will be good?

e Definition. [universal function family]
Let H: KeySp(H)xDom(H)—Ran(H) be a function
family. It is called universal if

V X,YeDom(H) s.t. X+Y: P{[HK(X):HK(Y)]=1/|Ran(H)|

e “Matrix” Construction. Let KeySp(H) be a set of all
nxXm matrices, where each element can be either

0 or 1. Let Dom(H)={0,1}'", Ran(H)={0,1}".
Define H, (X)=K-X (where addition is mod 2)

e Claim. The above “matrix” function family is
universal.




The problem with the matrix construction is that
the key is big.

There are other efficient constructions of
universal hash functions

But will combining a universal hash and a PRF
will really give us a secure MAC?

Yes. And let’s prove it.




“Hash-and-PRF" MAC

* Construction. Let H: KeySp(H)xDom(H)—Ran(H) and
F: KeySp(F)xRan(H)—Ran(F) be function families.
Define a MAC HPRF=(K,MAC,VF) with MsgSp=Dom(H) as follows:

$
. K: K1—KeySp(H), K2&KeySp(F), Return K1||K2

« MAC(K1||K2,M): Tag+F,,(H,;(M)), Return Tag

o« VF(K1]||K2,M,Tag): If Tag=FK2(HK1(M)) then return 1,
otherwise return O




Theorem. If F is PRF and H is universal, then
HPRF is a secure MAC.

Lemma. If F is PRF and H is universal then HPRF
is PRF.

Proof of the Theorem. Follows from the Lemma
and the fact that any PRF is a secure MAC.

Proof of the Lemma. We will prove that for any
A there exists B with t;=0(t,), g;=q; s.t.

qa(qa—1)

AdvZ . (A) < Adv2 (B
VHPRF( )— VF ( )+2\Ran(H)]




Adversary B/

K1 & KeySp(H)
Answer B’s queries M with f(Hg1(M))
Output the same bit B outputs
Let g be a random function with domain Ran(H) and range Ran(F)
Let g’ be a random function with domain Dom(H) and range Ran(F)
Let coll be an event when HK1(M)=HK1(M’) for any two queries M,M’ made by A

AdVP(B)
— Pr :Expf;?f—l(B)] _Pr [Expf”“f O(B)}
= Pr [ Bxplhph o (A) | - Pr[ Bxpll ()]
= Pr :EXPI;;IJ;]_%]F(HOF)(A): — Pr EXPM 1(14)} + Pr [Expprf 1(A)] — Pr [EXP
e[ Expl o (4) | — Pr [ Bx0l 0 o (4) ] + P [Bxpl = (4)] Py

— AdVE;RF(A) + Pr [EXpIg)Tf—l(A) ] — Pr [Expgofg_l(A) }

= AdvE;RF(A) + Pr [Expprf 1(4) ]

— Pr [Exp]ggg_l(A) | coll] -Pr[coll] — Pr [Expprf (A) | W] - Pr | coll |
< Advg;RF(A) + Pr [Expprf 1(A)] — Pr[coll] — Pr [Expggg_l(A) | @}

ga-(qa —1)
2Ran(H)

= AdeHr;RF(A) — Pr[coll] = AdVI;;;RF(A) -




CBC-MAC

Let E:{0,1}%x{0,13">£0,13" be a block cipher. CBC-MAC=({0,1}X,MAC):
MsgSp={O,1}nm for some m=1.

o" M[1] M[2] M[m]
— — > —»%

| | [Eel . E\e
\ 4 v l

[1] C[2] C[m]

MAC returns

Theorem. For any adversary A there exists an adversary B such that

2.2
m-qu
2n—1

Ade‘]l;Ec—n}\f[lAC < Advgp_cpa (B) +

where gs=qa+1,tp=14




Can we use a hash function as a building block?

* SHAL: {0,1}<% —-{0,13160

e Collision-resistant: hard to fund M,M’ s.t. SHA1(M)=SHA1(M")
e Is it a good idea to use SHA1 as a MAC?

* What about:

« MAC, (M)=SHA1(M][K)?
« MAC, (M)=SHA1(K]||M)?
« MAC,(M)=SHA1(K]||M|[K)?

e Cannot prove security for these constructions.
* Secure construction: HMAC
. HMACK(M)=SHA1(K@C| |SHA1(K®d||M)), where c,d are some

constants




Can we get it all?

e We know how to achieve data privacy (IND-CPA
security) and data authenticity/integrity (UF-
CMA security) separately.

e Can we achieve the both goals at the same time
(can we send messages securely s.t. a sender is
assured in their authenticity/integrity)?

e Can we use the existing primitives: encryption
schemes and MACs?




Recall: symmetric encryption scheme

A scheme SE is specified a key generation algorithm K, an

encryption algorithm T, and a decryption algorithm D.

SE=(K,E,D)
D K MsgSp-message space
—| K |—
_ K@ K
D
.« 8 Lo
E |C C M

M| ES Z{D L
—_— or L or L

Sender S Receiver R

It is required that for every MeMsgSp and every K that can be output by
K, D(K,t(K,M))=M




Recall: IND-CPA security

Fix SE=(KeySp,E,D)
K<$¥ KeySp

d-cpa-b
For an adversary A consider an experiment Expln “opa (A)

b

Mn,M
O LR || B

#f [) |
\ E (LR(+)

A EXperlment Explnd b 1(A) Experiment EXPmd a0 (A4)
l d K&K K&K
_ d <& A€ (LR(-:1)) d & A€k (LR(-:,0))
The experiment returns d Return d Return d

The IND-CPA advantage of Ais:
Adv?g_Cpa(A) = Pr [Exp?g_Cpa_l(A) = 1} — Pr {Exp?g_Cpa_O(A) = 1]

A symmetric encryption scheme SE is indistinguishable under chosen -plaintext

attacks if for any adversary A with “reasonable” resources Advis **(A)is
“small” (close to 0).




Recall: IND-CCA security
Fix SE=(KeySp,E,D)

K<$¥ KeySp
For an adversary A and a bit b consider an experiment Exp?s ““~"(A)
b
MM A is not allowed to query
o LR(:,",") Mp EK(-) its decryption oracle on
- | ciphertexts returned by
— its LR encryption oracle
ﬁb Vo O B (R ()
A E
Vi DK( )

| d
The experiment returns d

The IND-CCA advantage of Ais:
Adv?E“(A) = Pr[Exp?e ““~'(A) = 1] — Pr[Exp7e ““*(A) = 1]

A symmetric encryption scheme SE is indistinguishable under chosen-
ciphertext attacks (IND-CCA secure) if for any adversary A with “reasonable”
resources Adv’}%‘“’“(A) is “small” (close to 0).




Integrity (INT-CTXT) of symmetric encryption schemes

Fix SE=(KeySp,E,D)
K<$¥ KeySp

For an adversary A consider an experiment Exp. “(A)

«—> EK(.)

# L D(")

A
return 1 iff DK
(¢)#L

Return 1 if Amade a query C to D () s.t.
D;(C) returns 1 and C was never a response of E, ().

Advir " (A) = Pr[Explr “(A) =1]




e Theorem.[IND-CPA A INT-CTXT = IND-CCA] For

any SE and an adversary A there exist

adversaries AC, AIO s.t.

Advgy“(A) < 2- Advi(A) + Advgg T(A,)

s.t. the adversaries’ resources are about the same

e Proof. Let E denote the event that A makes at

least one valid decryption oracle query C, i.e.
D (C)#1




Adversary AEK(')’D;{ )
b < {0,1}
When A makes a query M; o, M; 1
to its left-or-right encryption oracle do
A<= (SK(M@"()/).
When A makes a query C]
to its decryption oracle do
UV < D}((CZ)
If v =0,
then A < L,
else stop.

Pr[b':b A E]

IA

Pr| F ]
Pr. [ A, succeeds |

- Advg’%_“xt (A.)




Adversary AgK (LR(b))

When A makes a query M; o, M; 1

to its left-or-right encryption oracle do
A< EK(;CR(M@',(), M@',l, b))

When A makes a query C}

to its decryption oracle do
A= 1

A=
Return b

Pr[b=bA-E] < Pr,[b =0b]

1 int—cpa 1
:Q‘Advszf: g (Ap)+§




- 1
AV (A) + 3

DN [ —

= Pr[b =0]
= Pr

V=b AN E]+Pr[b=bA-FE]

1 int—cpa int—ctx 1
E'Ad"sé P(Ap) + Advg, (A + 5




