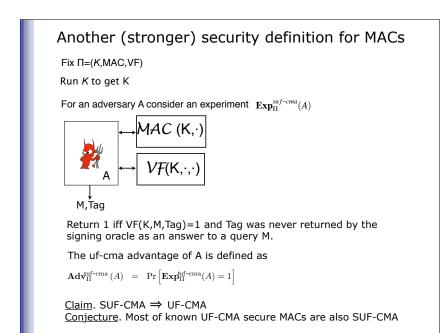
Composite schemes

- Fix a symmetric encryption scheme and a message authentication code
- There are several ways to use them together
 - 1. Encrypt-and-MAC
 - 2. MAC-then-Encrypt
 - 3. Encrypt-then-MAC
- If the components are secure, are the composite schemes secure (provide privacy and integrity)?



Encrypt-and-MAC

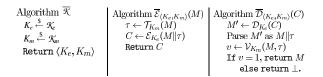
- Fix a symmetric encryption scheme $SE = (\mathcal{K}_{e}, \mathcal{E}, \mathcal{D})$ and a MAC $MAC = (\mathcal{K}_{o}, \mathcal{T}, \mathcal{V})$
- Consider a symmetric encryption scheme $EaM = (\overline{\mathcal{K}}, \overline{\mathcal{E}}, \overline{\mathcal{D}})$

Algorithm $\overline{\mathcal{K}}$	Algorithm $\overline{\mathcal{E}}_{\langle K_e, K_m \rangle}(M)$	Algorithm $\overline{\mathcal{D}}_{\langle K_e, K_m \rangle}(C)$
$K_e \stackrel{\$}{\leftarrow} \mathcal{K}_e$	$C' \leftarrow \mathcal{E}_{K_e}(M)$	Parse C as $C' \ \tau$
$K_m \stackrel{\$}{\leftarrow} \mathcal{K}_m$	$\tau \leftarrow \mathcal{T}_{K_m}(M)$	$M \leftarrow \mathcal{D}_{K_e}(C')$
Return $\langle K_e, K_m angle$	$C \leftarrow C' \tau$	$v \leftarrow \mathcal{V}_{K_m}(M, \tau)$
	Return C	If $v = 1$, return M
		else return \perp .

<u>Theorem1</u>. There exist an IND-CPA SE and SUF-CMA MAC s.t. EaM constructed as above is NOT IND-CPA secure.

MAC-then-Encrypt

- Fix a symmetric encryption scheme $SE = (\mathcal{K}_e, \mathcal{E}, \mathcal{D})$ and a MAC $MAC = (\mathcal{K}_n, \mathcal{T}, \mathcal{V})$
- Consider a symmetric encryption scheme $MtE = (\overline{\mathcal{K}}, \overline{\mathcal{E}}, \overline{\mathcal{D}})$



<u>Theorem2</u>. There exist an IND-CPA SE and SUF-CMA MAC s.t. MtE constructed as above is NOT IND-CCA secure.

2

Encrypt-then-MAC !

- Fix a symmetric encryption scheme $SE = (\mathcal{K}_e, \mathcal{E}, \mathcal{D})$ and a MAC $MAC = (\mathcal{K}_m, \mathcal{T}, \mathcal{V})$
- Consider a symmetric encryption scheme $EtM = (\overline{\mathcal{K}}, \overline{\mathcal{E}}, \overline{\mathcal{D}})$

Algorithm $\overline{\mathcal{K}}$	Algorithm $\overline{\mathcal{E}}_{\langle K_e, K_m \rangle}(M)$	Algorithm $\overline{\mathcal{D}}_{\langle K_e, K_m \rangle}(C)$
$K_e \stackrel{\$}{\leftarrow} \mathcal{K}_e$	$C' \leftarrow \mathcal{E}_{K_e}(M)$	Parse C as $C' \ \tau'$
$egin{array}{l} K_m \stackrel{\$}{\leftarrow} \mathcal{K}_m \ ext{Return} ig \langle K_e, K_m angle \end{array}$	$\tau' \leftarrow \mathcal{T}_{K_m}(C')$	$M \leftarrow \mathcal{D}_{K_e}(C')$
	$C \leftarrow C' \tau'$	$v \leftarrow \mathcal{V}_{K_m}(C', \tau')$
	Return C	If $v = 1$, return M
		else return \perp .

<u>Theorem3</u>. For every IND-CPA SE and SUF-CMA MAC, EtM constructed as above is IND-CPA, INT-CTXT and IND-CCA secure.

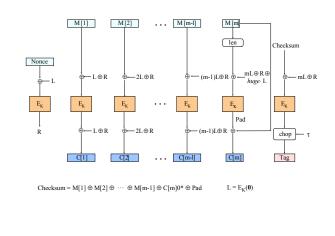
2) Adversary $F^{\mathcal{T}_{K_m}(\cdot),\mathcal{V}_{K_m}(\cdot,\cdot)}$ $K_e \stackrel{s}{\leftarrow} \mathcal{K}_e$ For $i = 1, \dots, q_e + q_d$ do When A makes a query M_i to its encryption oracle do $C'_i \leftarrow \mathcal{E}_{K_e}(M_i); \tau_i \leftarrow \mathcal{T}_{K_m}(C'_i); A \leftarrow C'_i || \tau_i$ When A makes a query C_i to its verification oracle do Parse C_i as $C'_i || \tau'_i; v_i \leftarrow \mathcal{V}_{K_m}(C'_i, \tau'_i); A \leftarrow v_i$ <u>Proof</u>. We will show that for every adversary A attacking *ind-cpa* security of EtM there exists an adversary B attacking *ind-cpa* security of SE with the same resources, and for every adversary A attacking *int-ctxt* security of EtM there exists an adversary F attacking *suf-cma* security of MAC with the same resources s.t.

- 1) $\mathbf{Adv}_{EtM}^{ind-cpa}(A) \leq \mathbf{Adv}_{SE}^{ind-cpa}(B)$
- 2) $\mathbf{Adv}_{EtM}^{int-ctxt}(A) \le \mathbf{Adv}_{MAC}^{suf-cma}(F)$

and the statement of the theorem will follow by using the theorem we proved before: [IND-CPA \land INT-CTXT \Rightarrow IND-CCA].

```
\begin{split} & \text{Adversary } B^{\mathcal{E}_{k\epsilon}(\mathcal{LR}(\cdot,\cdot,b))} \\ & K_m \stackrel{\$}{\leftarrow} \mathcal{K}_m \\ & \text{For } i = 1, \dots, q \text{ do} \\ & \text{When } A \text{ makes a query } (M_{i,0}, M_{i,1}) \text{ to its left-or-right encryption oracle do} \\ & C_i \leftarrow \mathcal{E}_{K_e}(\mathcal{LR}(M_{i,0}, M_{i,1}, b)) \text{ ; } \tau_i \leftarrow \mathcal{T}_{K_m}(C_i) \text{ ; } A \Leftarrow C_i || \tau_i \\ & A \Rightarrow b' \\ & \text{Return } b' \end{split}
```

- It's possible to construct a secure (IND-CPA and INT-CTXT) symmetric encryption scheme without using a generic composition.
- Example: OCB



6