Composite schemes

- Fix a symmetric encryption scheme and a message authentication code
- There are several ways to use them together

1. Encrypt-and-MAC
2. MAC-then-Encrypt
3. Encrypt-then-MAC

- If the components are secure, are the composite schemes secure (provide privacy and integrity)?

Another (stronger) security definition for MACs
Fix П=(K,MAC,VF)
Run K to get K
For an adversary A consider an experiment $\operatorname{Exp}_{\Pi}^{\text {suf }-c m a}(A)$

Return 1 iff $\mathrm{VF}(\mathrm{K}, \mathrm{M}, \mathrm{Tag})=1$ and Tag was never returned by the signing oracle as an answer to a query M.
The uf-cma advantage of A is defined as
$\operatorname{Adv}_{I \mathrm{sif}} \mathrm{cma}_{(A)}=\operatorname{Pr}\left[\operatorname{Exp}_{\Pi}^{\text {piffema }}(A)=1\right]$
Claim. SUF-CMA \Rightarrow UF-CMA
Conjecture. Most of known UF-CMA secure MACs are also SUF-CMA

Encrypt-and-MAC

- Fix a symmetric encryption scheme $S E=\left(\mathcal{K}_{e}, \mathcal{E}, \mathcal{D}\right)$ and a MAC $M A C=\left(\mathcal{K}_{m}, \mathcal{T}, \mathcal{V}\right)$
- Consider a symmetric encryption scheme $\operatorname{EaM}=(\overline{\mathcal{K}}, \overline{\mathcal{E}}, \overline{\mathcal{D}})$

Algorithm ${ }^{\text {K }}$	Algorithm $\mathcal{E}_{\left\langle K_{e}, K_{m}\right\rangle}(M)$	Algorithm $\overline{\mathcal{D}}_{\left\langle K_{e}, K_{m}\right\rangle}(C)$	
$K_{e} \stackrel{\chi_{e}}{ }$	$C^{\prime} \leftarrow \mathcal{E}_{\text {Ke }}(M)$	Parse C as $C^{\prime} \\| \tau$	
$K_{m} \stackrel{\mathcal{K}_{n}}{ }$	$\tau \leftarrow \mathcal{T}_{\mathcal{K}_{m}}(M)$	$M \leftarrow \mathcal{D}_{K_{e}}\left(C^{\prime}\right)$	
Return $\left\langle K_{e}, K_{m}\right\rangle$	$C \leftarrow C^{\prime} \\| \tau$	$v \leftarrow \mathcal{V}_{K_{m}}(M, \tau)$	
	Return C	If $v=1$, return M else return \perp.	

Theorem1. There exist an IND-CPA SE and SUF-CMA $M A C$ s.t. EaM constructed as above is NOT IND-CPA secure.

MAC-then-Encrypt

- Fix a symmetric encryption scheme $S E=\left(\mathcal{K}_{\mathcal{L}}, \mathcal{E}, \mathcal{D}\right)$ and a MAC MAC $=\left(\mathcal{K}_{n}, \mathcal{T}, \mathcal{V}\right)$
- Consider a symmetric encryption scheme $\operatorname{MtE}=(\overline{\mathcal{K}}, \overline{\mathcal{E}}, \overline{\mathcal{D}})$

$\begin{aligned} & \text { Algorithm } \bar{K} \\ & K_{e} £ \mathcal{K}_{e} \\ & K_{m} £ \mathcal{K}_{n} \\ & \text { Return }\left\langle K_{e}, K_{m}\right\rangle \end{aligned}$	$\begin{aligned} & \text { Algorithm } \overline{\mathcal{E}}_{\left\langle\kappa_{e}, K_{m}\right\rangle}\left(M \leftarrow \mathcal{T}_{K_{m}}(M)\right. \\ & C \leftarrow \mathcal{E}_{K_{e}}(M \\| \tau) \\ & \operatorname{Return} C \end{aligned}$	$\begin{aligned} & \text { Algorithm } \overline{\mathcal{D}}_{\left\langle K_{e}, K_{m}\right\rangle}(C) \\ & M^{\prime} \leftarrow \mathcal{D}_{K_{e}}(C) \\ & \text { Parse }^{\prime} M^{\prime} \text { as } M \\| \tau \\ & v \leftarrow \mathcal{V}_{K_{m}}(M, \tau) \\ & \text { If } v=1, \text { return } M \\ & \text { else return } \perp . \end{aligned}$

Theorem2. There exist an IND-CPA SE and SUF-CMA $M A C$ s.t. MtE constructed as above is NOT IND-CCA secure.

Encrypt-then-MAC!

- Fix a symmetric encryption scheme $S E=\left(\mathcal{K}_{e}, \mathcal{E}, \mathcal{D}\right)$ and a MAC MAC $=\left(\mathcal{K}_{n}, \mathcal{T}, \mathcal{V}\right)$
- Consider a symmetric encryption scheme $E t M=(\overline{\mathcal{K}}, \overline{,}, \overline{\mathcal{D}})$

Algorithm \bar{K}	Algorithm $\overline{\mathcal{E}}_{\left\langle K_{e}, K_{m}\right\rangle}(M)$	Algorithm $\overline{\mathcal{D}}_{\left\langle K_{e}, K_{m}\right\rangle}(C)$	
$K_{e} \stackrel{(1)}{\underline{1}}$	$C^{\prime} \leftarrow \mathcal{E}_{K_{e}}(M)$	Parse C as $C^{\prime} \\| \tau^{\prime}$	
$K_{m} \stackrel{\chi_{m}}{ }$	$\tau^{\prime} \leftarrow \mathcal{T}_{K_{m}}\left(C^{\prime}\right)$	$M \leftarrow \mathcal{D}_{K_{e}}\left(C^{\prime}\right)$	
Return $\left\langle K_{e}, K_{m}\right\rangle$	$C \leftarrow C^{\prime} \\| \tau^{\prime}$	$v \leftarrow \mathcal{V}_{K_{m}}\left(C^{\prime}, \tau^{\prime}\right)$	
	Return C	If $v=1$, return M else return \perp.	

Theorem3. For every IND-CPA SE and SUF-CMA MAC, EtM constructed as above is IND-CPA, INT-CTXT and IND CCA secure.

Proof. We will show that for every adversary A attacking ind-cpa security of EtM there exists an adversary B attacking ind-cpa security of SE with the same resources, and for every adversary A attacking int-ctxt security of EtM there exists an adversary F attacking suf-cma security of MAC with the same resources s.t.

- 1) $\quad \operatorname{Adv}_{E T M}^{\text {ind }-c p a}(A) \leq \operatorname{Adv}_{S E}^{\text {ind }-c p a}(B)$
- 2) $\quad \operatorname{Adv}_{E t M}^{\text {int }}$ ctrt $(A) \leq \operatorname{Adv}_{M A C}^{\text {suf }-c m a}(F)$
and the statement of the theorem will follow by using the theorem we proved before: [IND-CPA \wedge INT-CTXT \Rightarrow IND-CCA].

Adversary $B^{T_{\kappa_{e}}(L \mathcal{R}(;, ; b))}$
$K_{m} \stackrel{\Im}{ } \mathcal{K}_{n}$
For $i=1, \ldots, q$ do
When A makes a query ($M_{i, 0}, M_{i, 1}$) to its left-or-right encryption oracle do $C_{i} \leftarrow \mathcal{E}_{K_{e}}\left(\mathcal{L R}\left(M_{i, 0}, M_{i, 1}, b\right)\right) ; \tau_{i} \leftarrow \mathcal{T}_{K_{m}}\left(C_{i}\right) ; A \Leftarrow C_{i} \| \tau_{i}$
$A \Rightarrow b^{\prime}$
Return b
2) Adversary $F^{\boldsymbol{\tau}_{K_{m}}(\cdot), \nu_{K_{m}}(\cdot, \cdot)}$

$$
K_{e} \stackrel{\mathcal{K}_{e}}{ }
$$

For $i=1, \ldots, q_{e}+q_{d}$ do
When A makes a query M_{i} to its encryption oracle do $C_{i}^{\prime} \leftarrow \mathcal{E}_{K_{e}}\left(M_{i}\right) ; \tau_{i} \leftarrow \mathcal{T}_{K_{m}}\left(C_{i}^{\prime}\right) ; A \Leftarrow C_{i}^{\prime} \| \tau_{i}$
When A makes a query C_{i} to its verification oracle do Parse C_{i} as $C_{i}^{\prime} \| \tau_{i}^{\prime} ; v_{i} \leftarrow \mathcal{V}_{K_{m}}\left(C_{i}^{\prime}, \tau_{i}^{\prime}\right) ; A \Leftarrow v_{i}$

- It's possible to construct a secure (IND-CPA and INT-CTXT) symmetric encryption scheme without using a generic composition.
- Example: OCB

