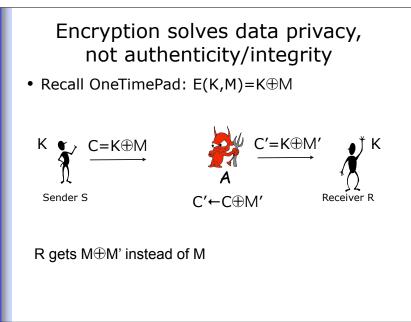
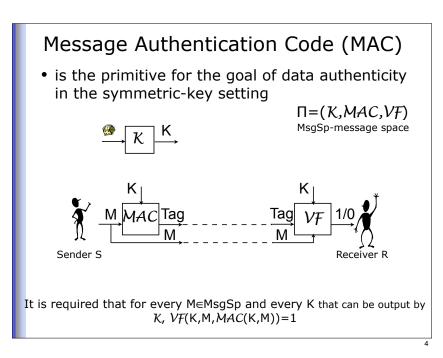
CS 6260 Applied Cryptography

Message Authentication Codes (MACs).

New cryptographic goals

- Data privacy is not the only important cryptographic goal
- It is also important that a receiver is assured that the data it receives has come from the sender and has not been modified on the way (and detect if it is not the case)
- The goals are data authenticity and integrity





Message Authentication Code (MAC)

- If the key-generation algorithm simply picks a random string from some KeySp, then KeySp describes ${\cal K}$
- If the MAC algorithm is deterministic, then the verification algorithm VF does not have to be defined as it simply re-computes the MAC by invoking the MAC algorithm on the given message M and accepts iff the result is equal to its input TAG.

Towards a security definition for MACs

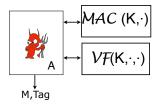
- We imagine that an adversary can see some number of message plus tag pairs
- As usual, it is necessary but not sufficient to require that no adversary can compute the secret key
- Right now we will not be concerned with *replay attacks*
- We don't want an adversary to be able to compute a new message and a tag such that the receiver accepts (outputs 1).



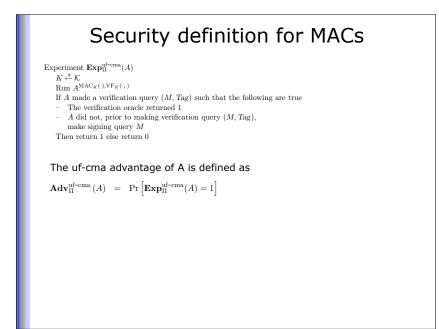
Fix $\Pi = (K, MAC, VF)$

Run K to get K

For an adversary A consider an experiment $\mathbf{Exp}_{\Pi}^{\text{uf-cma}}(A)$



Return 1 iff VF(K,M,Tag)=1 and M was not queried to the MAC oracle The uf-cma advantage of A is defined as $\mathbf{Adv}_{\Pi}^{\mathrm{uf-cma}}(A) = \Pr \left[\mathbf{Exp}_{\Pi}^{\mathrm{uf-cma}}(A) = 1 \right]$





Note

- We broke the MAC schemes without breaking the underlying function families (they are secure PRFs).
- The weaknesses were in the schemes, not the tools

A PRF as a MAC

Fix a function family $F: \text{Keys} \times D \to \{0,1\}^{\tau}$

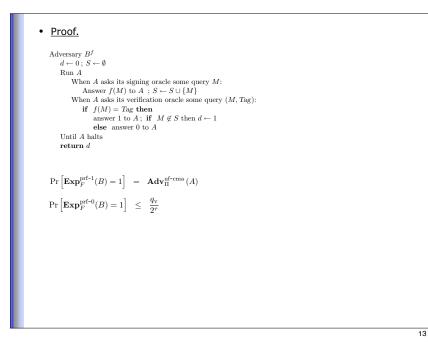
Consider a MAC $\Pi = (\mathcal{K}, MAC)$

<u>Theorem</u>. Let A be an adversary attacking Π making $q_{\rm S}$ MAC oracle queries of total length $\mu_s, \, q_{\rm V}$ verification oracle queries of total length μ_v and running time t. Then there exists an adversary B attacking F as a PRF such that

 $\mathbf{Adv}_{\Pi}^{\mathrm{uf-cma}}(A) \leq \mathbf{Adv}_{F}^{\mathrm{prf}}(B) + \frac{q_{\mathrm{v}}}{2\tau}$

and B makes $q_s + q_v$ queries and runs the time *t*.

10

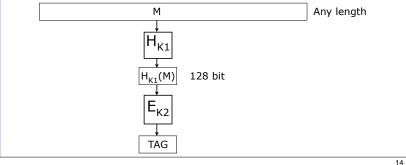


- What H will be good?
- <u>Definition</u>. [universal function family] Let H: KeySp(H)×Dom(H)→Ran(H) be a function family. It is called universal if
- $\forall X, Y \in Dom(H) \text{ s.t. } X \neq Y: \Pr[H_K(X) = H_K(Y)] = 1/|Ran(H)|$
- <u>"Matrix" Construction</u>. Let KeySp(H) be a set of all $n \times m$ matrices, where each element can be either

0 or 1. Let $Dom(H) = \{0,1\}^m$, $Ran(H) = \{0,1\}^n$. Define $H_K(X) = K \cdot X$ (where addition is mod 2)

• <u>Claim</u>. The above "matrix" function family is universal.

- Any PRF makes a good MAC
- Are we done?
- Efficient PRFs (e.g. block ciphers) has short fixed input length
- We want it to work for arbitrary-length messages
- What if we hash a message first before applying the block cipher:



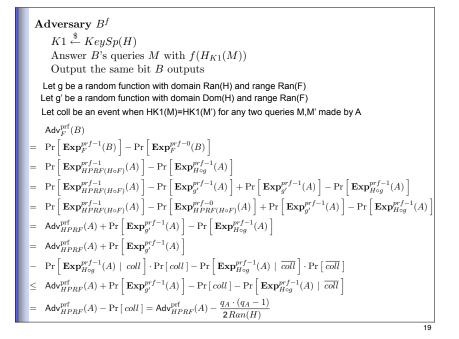
- The problem with the matrix construction is that the key is big.
- There are other efficient constructions of universal hash functions
- But will combining a universal hash and a PRF will really give us a secure MAC?
- Yes. And let's prove it.

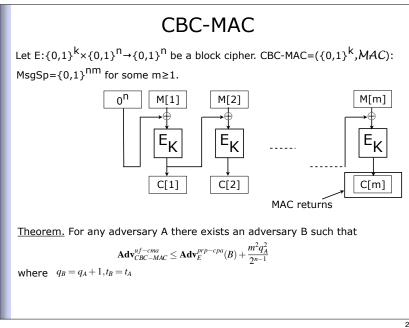
"Hash-and-PRF" MAC

- <u>Construction</u>. Let H: KeySp(H)×Dom(H)→Ran(H) and
 F: KeySp(F)×Ran(H)→Ran(F) be function families.
 Define a MAC HPRF=(K,MAC,VF) with MsgSp=Dom(H) as follows:
 - K: K1 ← KeySp(H), K2 ← KeySp(F), Return K1||K2
 - MAC(K1||K2,M): Tag←F_{K2}(H_{K1}(M)), Return Tag
 - VF(K1||K2,M,Tag): If Tag=F_{K2}(H_{K1}(M)) then return 1, otherwise return 0

- <u>Theorem</u>. If F is PRF and H is universal, then HPRF is a secure MAC.
- <u>Lemma</u>. If F is PRF and H is universal then HPRF is PRF.
- <u>Proof of the Theorem</u>. Follows from the Lemma and the fact that any PRF is a secure MAC.
- <u>Proof of the Lemma</u>. We will prove that for any A there exists B with $t_B = O(t_A)$, $q_B = q_B s.t.$

 $\mathbf{Adv}_{HPRF}^{prf}(A) \le \mathbf{Adv}_{F}^{prf}(B) + \frac{q_A(q_A - 1)}{2 \cdot |Ran(H)|}$





17

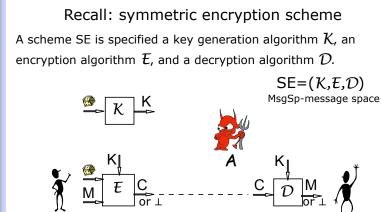
18

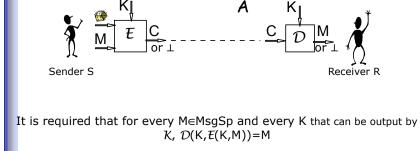
Can we use a hash function as a building block?

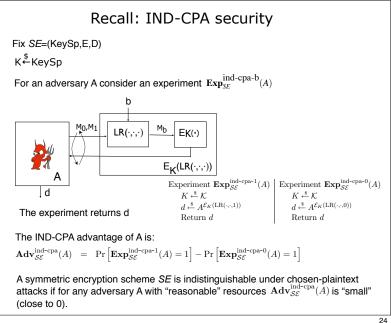
- SHA1: $\{0,1\}^{<2^{64}} \rightarrow \{0,1\}^{160}$
- Collision-resistant: hard to fund M,M' s.t. SHA1(M)=SHA1(M')
- Is it a good idea to use SHA1 as a MAC?
- What about:
 - MAC_k(M)=SHA1(M||K)?
 - MAC_k(M)=SHA1(K||M)?
 - MAC_k(M)=SHA1(K||M||K)?
- · Cannot prove security for these constructions.
- Secure construction: HMAC
 - HMAC_k(M)=SHA1(K⊕c||SHA1(K⊕d||M)), where c,d are some constants

Can we get it all?

- We know how to achieve data privacy (IND-CPA security) and data authenticity/integrity (UF-CMA security) separately.
- Can we achieve the both goals at the same time (can we send messages securely s.t. a sender is assured in their authenticity/integrity)?
- Can we use the existing primitives: encryption schemes and MACs?

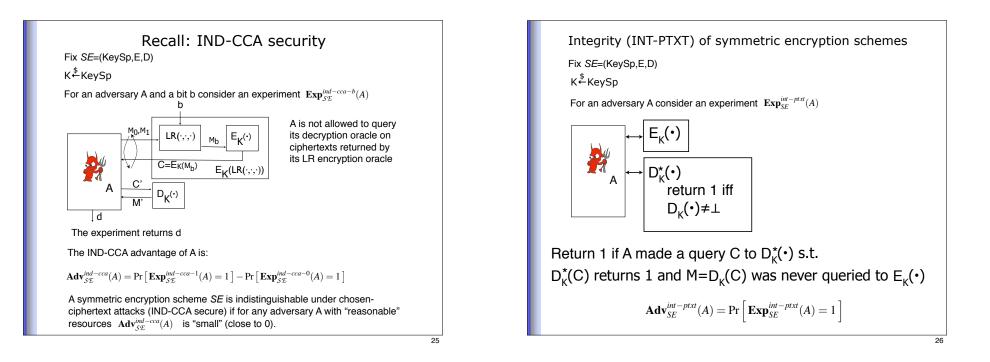






21

22



- <u>Claim</u>. [INT-CTXT \Rightarrow INT-PTXT]
- <u>Theorem</u>.[IND-CPA \land INT-CTXT \Rightarrow IND-CCA] For any SE and an adversary A there exist adversaries A_c , A_p s.t.

 $\mathbf{Adv}_{SE}^{ind-cca}(A) \leq 2 \cdot \mathbf{Adv}_{SE}^{int-ctxt}(A_c) + \mathbf{Adv}_{SE}^{ind-cpa}(A_p)$

s.t. the adversaries' resources are about the same

• <u>Proof</u>. Let E denote the event that A makes at least one valid decryption oracle query C, i.e. $D_{\kappa}(C) \neq \bot$

Adversary
$$A_c^{\mathcal{E}_K(\cdot), \mathcal{D}_K^*(\cdot)}$$

 $b' \stackrel{s}{\leftarrow} \{0, 1\}$
When A makes a query $M_{i,0}, M_{i,1}$
to its left-or-right encryption oracle do
 $A \Leftarrow \mathcal{E}_K(M_{i,b'}).$
When A makes a query C_i
to its decryption oracle do
 $v \leftarrow \mathcal{D}_K^*(C_i)$
If $v = 0$,
then $A \Leftarrow \bot$,
else stop.
 $\Pr[b' = b \land E] \leq \Pr[E]$
 $= \Pr_c[A_c \text{ succeeds}]$
 $= \mathbf{Adv}_{SE}^{im-ctst}(A_c)$

Adversary
$$A_p^{\mathcal{E}_K(\mathcal{LR}(\cdot,\cdot,b))}$$

When A makes a query $M_{i,0}, M_{i,1}$
to its left-or-right encryption oracle do
 $A \leftarrow \mathcal{E}_K(\mathcal{LR}(M_{i,0}, M_{i,1}, b))$
When A makes a query C_i
to its decryption oracle do
 $A \leftarrow \bot$
 $A \Rightarrow b'$
Return b'
Pr $\begin{bmatrix} b' = b \land \neg E \end{bmatrix} \leq \Pr_p \begin{bmatrix} b' = b \end{bmatrix}$
 $= \frac{1}{2} \cdot \mathbf{Adv}_{SE}^{int-cpa}(A_p) + \frac{1}{2}$

 $\frac{1}{2} \cdot \mathbf{Adv}_{SE}^{int-cca}(A) + \frac{1}{2}$ $= \Pr \left[b' = b \right]$ $= \Pr \left[b' = b \land E \right] + \Pr \left[b' = b \land \neg E \right]$ $\leq \frac{1}{2} \cdot \mathbf{Adv}_{SE}^{int-cpa}(A_p) + \mathbf{Adv}_{SE}^{int-ctxt}(A_c) + \frac{1}{2}$