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Message Authentication Codes (MACs).

New cryptographic goals

• Data privacy is not the only important 
cryptographic goal

• It is also important that a receiver is assured 
that the data it receives has come from the 
sender and has not been modified on the way 
(and detect if it is not the case) 

• The goals are data authenticity and integrity 

Encryption solves data privacy,      
not authenticity/integrity

• Recall OneTimePad: E(K,M)=K⊕M
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R gets M⊕M’ instead of M

Message Authentication Code (MAC)

• is the primitive for the goal of data authenticity 
in the symmetric-key setting
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Message Authentication Code (MAC)

• If the key-generation algorithm simply picks a 
random string from some KeySp, then KeySp 
describes K

• If the MAC algorithm is deterministic, then the  
verification algorithm VF does not have to be 
defined as it simply re-computes the MAC by 
invoking the MAC algorithm on the given 
message M and accepts iff the result is equal to 
its input TAG.

Towards a security definition for MACs 

• We imagine that an adversary can see some 
number of message plus tag pairs

• As usual, it is necessary but not sufficient to 
require that no adversary can compute the 
secret key

• Right now we will not be concerned with replay 
attacks

• We don’t want an adversary to be able to 
compute a new message and a tag such that 
the receiver accepts (outputs 1).

Security definition for MACs

A

Fix Π=(K,MAC,VF)

Run K to get K
For an adversary A consider an experiment 

MAC (K,⋅)

VF(K,⋅,⋅)
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Figure 6.3: The model for a message authentication code. Adversary A has access
to a MAC-generation oracle and a MAC-verification oracle. The adversary wants to
get the MAC-verification oracle to accept some (M, Tag) for which it didn’t earlier
ask the MAC-generation oracle for M .

Sender, Verifier, and Adversary—gets reduced to just the adversry, running with
her oracles. The Sender and Verifier have vanished.

Definition 6.2 [MAC Security] Let Π = (K, MAC, VF) be a message authenti-
cation code, and let A be an adversary. We consider the following experiment:

Experiment Expuf-cma
Π (A)

K $←K
Run AMACK(·),VFK(·,·)
If A made a verification query (M, Tag) such that the following are true
– The verification oracle returned 1
– A did not, prior to making verification query (M, Tag),

make signing query M
Then return 1 else return 0

The uf-cma advantage of A is defined as

Advuf-cma
Π (A) = Pr

[
Expuf-cma

Π (A) = 1
]

.

Let us discuss the above definition. Fix a MAC scheme Π. Then we associate to
any adversary A its “advantage,” or “success probability.” We denote this value as
Advuf-cma

Π (A). It’s just the chance that A manages to forge. The probability is
over the choice of key K, any probabilistic choices that MAC might make, and the
probabilistic choices, if any, that the adversary A makes.

As usual, the advantage that can be achieved depends both on the adversary
strategy and the resources it uses. Informally, Π is secure if the advantage of a
practical adversary is low.

M,Tag

Return 1 iff VF(K,M,Tag)=1 and M was not queried to the MAC oracle
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Examples

12 MESSAGE AUTHENTICATION

As usual, there is a certain amount of arbitrariness as to which resources we
measure. Certainly it is important to separate the oracle queries (qs and qv) from
the time. In practice, signing queries correspond to messages sent by the legitimate
sender, and obtaining these is probably more difficult than just computing on one’s
own. Verification queries correspond to messages the adversary hopes the Verifier
will accept, so finding out if it does accept these queries again requires interaction.
Some system architectures may effectively limit qs and qv. No system architecture
can limit t— that is limited primarilly by the adversary’s budget.

We emphasize that there are contexts in which you are happy with a MAC that
makes forgery impractical when qv = 1 and qs = 0 (an “impersonation attack”) and
there are contexts in which you are happy when forgery is imporactical when qv = 1
and qs = 1 (a “substitution attack”). But it is perhaps more common that you’d
like for forgery to be impractical even when qs is large, like 250, and when qv is large,
too.

We might talk of the total length of an adversary’s MAC-generation oracle
queries, which is the sum of the lengths of all messages it queries to this oracle.
When we say this value is at most µs we mean it is so across all possible coins of
the adversary and all possible answers returned by the oracle. We might talk of the
total length of an adversary’s MAC-verification oracle queries, which is the sum of
the lengths of all messages in the queries its makes to its MAC-verification oracle.
(Each such query is a pair, but we count only the length of the message). The same
conventions apply.

Naturally the key K is not directly given to the adversary, and neither are any
random choices or counter used by the MAC-generation algorithm. The adversary
sees these things only to the extent that they are reflected in the answers to her
oracle queries.

6.5 Examples

Let us examine some example message authentication codes and use the definition to
assess their strengths and weaknesses. We fix a PRF F : {0, 1}k ×{0, 1}! → {0, 1}L.
Our first scheme Π1 = (K, MAC) is a deterministic, stateless MAC, so that we
specify only two algorithms, the third being the canonical associated verification
algorithm discussed above. The key-generation algorithm simply picks at random a
k-bit key K and returns it, while the MAC-generation algorithm works as follows:

algorithm MACK(M)
if (|M | mod ! #= 0 or |M | = 0) then return ⊥
Break M into ! bit blocks M = M [1] . . .M [n]
for i = 1, . . . , n do yi ← FK(M [i])
Tag ← y1 ⊕ · · · ⊕ yn

return Tag

Now let us try to assess the security of this message authentication code.
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It is easy to construct     s.t. 
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Suppose the adversary wants to forge the tag of a certain given message M .
A priori it is unclear this can be done. The adversary is not in possession of the
secret key K, so cannot compute FK and hence will have a hard time computing
Tag . However, remember that the notion of security we have defined says that the
adversary is successful as long as it can produce a correct tag for some message, not
necessarily a given one. We now note that even without a chosen-message attack
(in fact without seeing any examples of correctly tagged data) the adversary can do
this. It can choose a message M consisting of two equal blocks, say M = x‖x where
x is some !-bit string, set Tag ← 0L, and make verification query (M, Tag). Notice
that VFK(M, Tag) = 1 because FK(x) ⊕ FK(x) = 0L = Tag . So the adversary is
successful. In more detail, the adversary is:

Adversary AMACK(·),VFK(·,·)
1

Let x be some !-bit string
M ← x ‖ x
Tag ← 0L

d ← VFK(M, Tag)

Then Advuf-cma
Π1

(A1) = 1. Furthermore A1 makes no signing oracle queries, uses
t = O(!+L) time, and its verification query has length 2!-bits, so it is very practical.

There are many other attacks. For example we note that

Tag = FK(M [1]) ⊕ FK(M [2])

is not only the tag of M [1]M [2] but also the tag of M [2]M [1]. So it is possible, given
the tag of a message, to forge the tag of a new message formed by permuting the
blocks of the old message. We leave it to the reader to specify the corresponding
adversary and compute its advantage.

Let us now try to strengthen the scheme to avoid these attacks. Instead of
applying FK to a data block, we will first prefix the data block with its index. To
do this we pick some parameter m with 1 ≤ m ≤ ! − 1, and write the index as an
m-bit string. The MAC-generation algorithm of the deterministic, stateless MAC
Π1 = (K, MAC) is as follows:

algorithm MACK(M)
l ← ! − m
if (|M | mod l &= 0 or |M | = 0 or |M |/l ≥ 2m) then return ⊥
Break M into l bit blocks M = M [1] . . .M [n]
for i = 1, . . . , n do yi ← FK([i]m ‖ M [i])
Tag ← y1 ⊕ · · · ⊕ yn

return Tag

As before, the verification algorithm is the canonical one that simply recomputes
the tag using MAC and checks whether it is correct.

As the code indicates, we divide M into blocks, but the size of each block is
smaller than in our previous scheme: it is now only l = ! − m bits. Then we prefix

A1

1
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the i-th message block with the value i itself, the block index, written in binary as a
string of length exactly m bits. It is to this padded block that we apply FK before
taking the XOR.

Note that encoding of the block index i as an m-bit string is only possible if
i < 2m. This means that we cannot authenticate a message M having more 2m

blocks. This explains the conditions under which the MAC-generation algorithm
returns ⊥. However this is hardly a restriction in practice since a reasonable value
of m, like m = 32, is large enough that typical messages fall in the message space.

Anyway, the question we are really concerned with is the security. Has this
improved with respect to Π1? Begin by noticing that the attacks we found on Π1

no longer work. For example if x is an !−m bit string and we let M = x‖x then its
tag is not likely to be 0L. (This would happen only if FK([1]m ‖ x) = FK([2]m ‖ x)
which is unlikely if F is a good PRF and impossible if F is a block cipher, since
every instance of a block cipher is a permutation.) Similar arguments show that the
second attack discussed above, namely that based on permuting of message blocks,
also has low success against the new scheme. Why? In the new scheme, if M [1], M [2]
are strings of length ! − m, then

MACK(M [1]M [2]) = FK([1]m ‖ M [1]) ⊕ FK([2]m ‖ M [2])
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• We broke the MAC schemes without breaking 
the underlying function families (they are 
secure PRFs). 

• The weaknesses were in the schemes, not the 
tools

A PRF as a MAC
Fix a function family

Consider a MAC

Theorem. Let A be an adversary attacking ∏ making     MAC oracle 
queries of total length          verification oracle queries of total length    
and running time t. Then there exists an adversary B attacking F as a PRF 
such that

 and B makes          queries and runs the time t.
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Now look how A2 defined Tag and do the computation; due to cancellations we get

Tag = Tag1 ⊕ Tag2 ⊕ Tag3

= FK([1]m ‖ b1) ⊕ FK([2]m ‖ b2) .

This is indeed the correct tag of b1b2, meaning the value Tag ′ that VFK(b1b2, Tag)
would compute, so the latter algorithm returns 1, as claimed. In summary we have
shown that this scheme is insecure.

It turns out that a slight modification of the above, based on use of a counter or
random number chosen by the MAC algorithm, actually yields a secure scheme. For
the moment however we want to stress a feature of the above attacks. Namely that
these attacks did not cryptanalyze the PRF F . The cryptanalysis of the message
authentication schemes did not care anything about the structure of F ; whether it
was DES, AES, or anything else. They found weaknesses in the message authenti-
cation schemes themselves. In particular, the attacks work just as well when FK is
a random function, or a “perfect” cipher. This illustrates again the point we have
been making, about the distinction between a tool (here the PRF) and its usage. We
need to make better usage of the tool, and in fact to tie the security of the scheme
to that of the underlying tool in such a way that attacks like those illustrated here
are provably impossible under the assumption that the tool is secure.

6.6 The PRF-as-a-MAC paradigm

Pseudorandom functions make good MACs, and constructing a MAC in this way
is an excellent approach. Here we show why PRFs are good MACs, and determine
the concrete security of the underlying reduction. The following shows that the
reduction is almost tight—security hardly degrades at all.

Let F : Keys × D → {0, 1}τ be a family of functions. We define the associated
message authentication code Π = (K, MAC) via:

algorithm K
K $← Keys
return K

algorithm MACK(M)
if (M &∈ D) then return ⊥
Tag ← FK(M)
Return Tag

Since this is a deterministic stateless MAC, we have not specified a verification
algorithm. It is understood to be the canonical one discussed above.

Note that when we think of a PRF as a MAC it is important that the domain of
the PRF be whatever one wants as the domain of the MAC. So such a PRF probably
won’t be realized as a block cipher. It may have to be realized by a PRF that allows
for inputs of many different lengths, since you might want to MAC messages of many
different lenghts. As yet we haven’t demonstrated that we can make such PRFs.
But we will. Let us first relate the security of the above MAC to that of the PRF.
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Proposition 6.3 Let F : Keys × D → {0, 1}τ be a family of functions and let
Π = (K, MAC) be the associated message authentication code as defined above. Let
A by any adversary attacking Π, making qs MAC-generation queries of total length
µs, qv MAC-verification queries of total length µv, and having running time t. Then
there exists an adversary B attacking F such that

Advuf-cma
Π (A) ≤ Advprf

F (B) +
qv

2τ
. (6.1)

Furthermore B makes qs + qv oracle queries of total length µs + µv and has running
time t.

Proof: Remember that B is given an oracle for a function f : D → {0, 1}τ . It will
run A, providing it an environment in which A’s oracle queries are answered by B.

Adversary Bf

d ← 0 ; S ← ∅
Run A

When A asks its signing oracle some query M :
Answer f(M) to A ; S ← S ∪ {M}

When A asks its verification oracle some query (M, Tag):
if f(M) = Tag then

answer 1 to A ; if M '∈ S then d ← 1
else answer 0 to A

Until A halts
return d

We now proceed to the analysis. We claim that

Pr
[
Expprf-1

F (B) = 1
]

= Advuf-cma
Π (A) (6.2)

Pr
[
Expprf-0

F (B) = 1
]

≤ qv

2τ
. (6.3)

Subtracting, we get Equation (6.1). Let us now justify the two equations above.

In the first case f is an instance of F , so that the simulated environment that B
is providing for A is exactly that of experiment Expuf-cma

Π (A). Since B returns 1
exactly when A makes a successful verification query, we have Equation (6.2).

In the second case, A is running in an environment that is alien to it, namely one
where a random function is being used to compute MACs. We have no idea what
A will do in this environment, but no matter what, we know that the probability
that any particular verification query (M, Tag) with M '∈ S will be answered by 1
is at most 2−τ , because that is the probability that Tag = f(M). Since there are at
most qv verification queries, Equation (6.3) follows.
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µs, qv MAC-verification queries of total length µv, and having running time t. Then
there exists an adversary B attacking F such that

Advuf-cma
Π (A) ≤ Advprf

F (B) +
qv

2τ
. (6.1)

Furthermore B makes qs + qv oracle queries of total length µs + µv and has running
time t.

Proof: Remember that B is given an oracle for a function f : D → {0, 1}τ . It will
run A, providing it an environment in which A’s oracle queries are answered by B.

Adversary Bf

d ← 0 ; S ← ∅
Run A

When A asks its signing oracle some query M :
Answer f(M) to A ; S ← S ∪ {M}

When A asks its verification oracle some query (M, Tag):
if f(M) = Tag then

answer 1 to A ; if M '∈ S then d ← 1
else answer 0 to A

Until A halts
return d

We now proceed to the analysis. We claim that

Pr
[
Expprf-1

F (B) = 1
]

= Advuf-cma
Π (A) (6.2)

Pr
[
Expprf-0

F (B) = 1
]

≤ qv

2τ
. (6.3)

Subtracting, we get Equation (6.1). Let us now justify the two equations above.

In the first case f is an instance of F , so that the simulated environment that B
is providing for A is exactly that of experiment Expuf-cma

Π (A). Since B returns 1
exactly when A makes a successful verification query, we have Equation (6.2).

In the second case, A is running in an environment that is alien to it, namely one
where a random function is being used to compute MACs. We have no idea what
A will do in this environment, but no matter what, we know that the probability
that any particular verification query (M, Tag) with M '∈ S will be answered by 1
is at most 2−τ , because that is the probability that Tag = f(M). Since there are at
most qv verification queries, Equation (6.3) follows.

• Any PRF makes a good MAC

• Are we done?

• Efficient PRFs (e.g. block ciphers) has short fixed input 
length

• We want it to work for arbitrary-length messages

• What if we hash a message first before applying the block 
cipher:

HK1(M)

EK2

TAG

M

HK1

Any length

128 bit

What H will be good?
• Definition. [universal function family]                    

Let H: KeySp(H)×Dom(H)→Ran(H) be a function 
family. It is called universal if 

•

• “Matrix” Construction.  Let KeySp(H) be a set of all 
n×m matrices, where each element can be either    

0 or 1. Let Dom(H)={0,1}m, Ran(H)={0,1}n.        
Define HK(X)=K⋅X (where addition is mod 2)

• Claim.  The above “matrix” function family is 
universal.                       

∀ X,Y∈Dom(H) s.t. X≠Y: Pr[HK(X)=HK(Y)]=1/|Ran(H)|
K

• The problem with the matrix construction is that 
the key is big.

• There are other efficient constructions of 
universal hash functions

• But will combining a universal hash and a PRF 
will really give us a secure MAC?

• Yes. And let’s prove it.
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• Construction. Let H: KeySp(H)×Dom(H)→Ran(H) and                
F: KeySp(F)×Ran(H)→Ran(F) be function families.                    
Define a MAC HPRF=(K,MAC,VF) with MsgSp=Dom(H) as follows:
• K: K1←KeySp(H), K2←KeySp(F), Return K1||K2

• MAC(K1||K2,M): Tag←FK2(HK1(M)), Return Tag

• VF(K1||K2,M,Tag): If Tag=FK2(HK1(M)) then return 1, 
otherwise return 0

“Hash-and-PRF” MAC

$$

• Theorem. If F is PRF and H is universal, then 
HPRF is a secure MAC.

• Lemma. If F is PRF and H is universal then HPRF 
is PRF.

• Proof of the Theorem. Follows from the Lemma 
and the fact that any PRF is a secure MAC.

•  Proof of the Lemma. We will prove that for any 
A there exists B with tB=O(tA), qB=qB s.t. 

Adv
pr f
HPRF(A)≤ Advpr fF (B)+

qA(qA−1)
2 · |Ran(H)|

1

Deterministic and other Encryption Schemes that Leak
Some Information for a Reason

October 4, 2005

1 Introduction

Adversary Bf

K1 $← KeySp(H)
Answer B’s queries M with f(HK1(M))
Output the same bit B outputs

Cryptographers are perfectionists in that they define and target for very strong security notions.
For example, semantic security of an encryption scheme ensures that during its use no information
about plaintexts is leaked whatsoever. However, functionality of some real-life applications may
require some information to be revealed in a computational sense. In the absence of appropriate
achievable security definitions finding the right compromise between security and functionality
becomes a challenging problem. Unfortunately in such cases developers often prefer an easy way
and tend toward ad-hoc schemes and unknowingly compromise security much more then necessary.

The main goal of this work is to help practitioners by developing appropriate encryption schemes
security definitions for the cases where the existing definitions are too strong in the sense they are

1
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Solutions to Homework 2
Lecturer: Sasha Boldyreva

Advprf
F (B)

= Pr
[
Expprf−1

F (B)
]
− Pr

[
Expprf−0

F (B)
]

= Pr
[
Expprf−1

HPRF (H◦F )(A)
]
− Pr

[
Expprf−1

H◦g (A)
]

= Pr
[
Expprf−1

HPRF (H◦F )(A)
]
− Pr

[
Expprf−1

g′ (A)
]

+ Pr
[
Expprf−1

g′ (A)
]
− Pr

[
Expprf−1

H◦g (A)
]

= Pr
[
Expprf−1

HPRF (H◦F )(A)
]
− Pr

[
Expprf−0

HPRF (H◦F )(A)
]

+ Pr
[
Expprf−1

g′ (A)
]
− Pr

[
Expprf−1

H◦g (A)
]

= Advprf
HPRF (A) + Pr

[
Expprf−1

g′ (A)
]
− Pr

[
Expprf−1

H◦g (A)
]

= Advprf
HPRF (A) + Pr

[
Expprf−1

g′ (A)
]

− Pr
[
Expprf−1

H◦g (A) | coll
]
· Pr [ coll ]− Pr

[
Expprf−1

H◦g (A) | coll
]
· Pr

[
coll

]
≤ Advprf

HPRF (A) + Pr
[
Expprf−1

g′ (A)
]
− Pr [ coll ]− Pr

[
Expprf−1

H◦g (A) | coll
]

= Advprf
HPRF (A)− Pr [ coll ] = Advprf

HPRF (A)− qA · (qA − 1)
Ran(H)

Problem 2.1, 20 points. Let F : {0, 1}k × {0, 1}m → {0, 1}n be a secure PRF.
Consider the following function families

1. F1: {0, 1}k×{0, 1}2m → {0, 1}2n specified for all x1, x2 ∈ {0, 1}m and K ∈ {0, 1}k

by F1(K, x1‖x2) = F (K, x1)‖F (K, x2)

For each of the four function families state whether or not is is a secure PRF.
If yes, provide a reduction proof. If no, provide an attack.

F1 is not PRF under CPA. Here is an adversary that attacks F1:

Adversary Ag
1

Pick any x ∈ {0, 1}m

If g(x||x) parses as y||y for y ∈ {0, 1}n

Then return 1, else return 0 EndIf

We now analyze A1.

Adv
prf
F1

(A1) = Pr
[
Exp

prf1
F1

(A1) = 1
]
− Pr

[
Exp

prf-0
F1

(A1) = 1
]

= 1− 1

2n

Let g be a random function with domain Ran(H) and range Ran(F) 
Let g’ be a random function with domain Dom(H) and range Ran(F) 

Let coll be an event when HK1(M)=HK1(M’) for any two queries M,M’ made by A

2

CBC-MAC

M[1]

EK

C[1]

M[2]

EK

C[2]

M[m]

EK

C[m]

Let E:{0,1}k×{0,1}n→{0,1}n be a block cipher. CBC-MAC=({0,1}k,MAC):

0n

⊕ ⊕ ⊕

Theorem. For any adversary A there exists an adversary B such that

 

where  

MsgSp={0,1}nm for some m≥1.

Adv
u f−cma
CBC−MAC ≤ Advprp−cpaE (B)+

m2q2A
2n−1

1

qB = qA+1, tB = tA

1

MAC returns
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Can we use a hash function as a building block?

• SHA1: {0,1}<    →{0,1}160 

• Collision-resistant: hard to fund M,M’ s.t. SHA1(M)=SHA1(M’)

• Is it a good idea to use SHA1 as a MAC?

• What about:

• MACK(M)=SHA1(M||K)?

• MACK(M)=SHA1(K||M)?

• MACK(M)=SHA1(K||M||K)?

• Cannot prove security for these constructions.

• Secure construction: HMAC

• HMACK(M)=SHA1(K⊕c||SHA1(K⊕d||M)), where c,d are some 

constants

264

Can we get it all?

• We know how to achieve data privacy (IND-CPA 
security) and data authenticity/integrity (UF-
CMA security) separately.

• Can we achieve the both goals at the same time 
(can we send messages securely s.t. a sender is 
assured in their authenticity/integrity)?

• Can we use the existing primitives: encryption 
schemes and MACs? 

Recall: symmetric encryption scheme

A scheme SE is specified a key generation algorithm K, an 

encryption algorithm E, and a decryption algorithm D.

Sender S

A

KK

E

K

CM D

K

C M

SE=(K,E,D)  

It is required that for every M∈MsgSp and every K that can be output by 
K, D(K,E(K,M))=M

MsgSp-message space

Receiver R

or ⊥or ⊥

Recall: IND-CPA security

A
d

Fix SE=(KeySp,E,D)

K←KeySp
$

M0,M1 LR(⋅,⋅,⋅) Mb EK(•)

A symmetric encryption scheme SE is indistinguishable under chosen-plaintext 
attacks if for any adversary A with “reasonable” resources                        is “small” 
(close to 0).

14 SYMMETRIC ENCRYPTION

The oracle used above is specified in Fig. 4.6. The IND-CPA advantage of A is
defined as

Advind-cpa
SE (A) = Pr

[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]

.

As the above indicates, the choice of which world we are in is made just once, at
the beginning, before the adversary starts to interact with the oracle. In world 0,
all message pairs sent to the oracle are answered by the oracle encrypting the left
message in the pair, while in world 1, all message pairs are answered by the oracle
encrypting the right message in the pair. The choice of which does not flip-flop from
oracle query to oracle query.

If Advind-cpa
SE (A) is small (meaning close to zero), it means that A is outputting 1

about as often in world 0 as in world 1, meaning it is not doing a good job of telling
which world it is in. If this quantity is large (meaning close to one—or at least far
from zero) then the adversary A is doing well, meaning our scheme SE is not secure,
at least to the extent that we regard A as “reasonable.”

Informally, for symmetric encryption scheme SE to be secure against chosen
plaintext attack, the IND-CPA advantage of an adversary must be small, no matter
what strategy the adversary tries. However, we have to be realistic in our expec-
tations, understanding that the advantage may grow as the adversary invests more
effort in its attack. Security is a measure of how large the advantage of the adversary
might when compared against the adversary’s resources.

We consider an encryption scheme to be “secure against chosen-plaintext at-
tack” if an adversary restricted to using “practical” amount of resources (computing
time, number of queries) cannot obtain “significant” advantage. The technical no-
tion is called left-or-right indistinguishability under chosen-plaintext attack, denoted
IND-CPA.

We discuss some important conventions regarding the resources of adversary A.
The running time of an adversary A is the worst case execution time of A over all
possible coins of A and all conceivable oracle return values (including return values
that could never arise in the experiments used to define the advantage). Oracle
queries are understood to return a value in unit time, but it takes the adversary
one unit of time to read any bit that it chooses to read. By convention, the running
time of A also includes the size of the code of the adversary A, in some fixed RAM
model of computation. This convention for measuring time complexity is the same
as used in other parts of these notes, for all kinds of adversaries.

Other resource conventions are specific to the IND-CPA notion. When the ad-
versary asks its left-or-right encryption oracle a query (M0, M1) we say that length
of this query is max(|M0|, |M1|). (This will equal |M0| for any reasonable adversary
since an oracle query with messages of different lengths results in the adversary
being returned ⊥, so we can assume no reasonable adversary makes such a query.)
The total length of queries is the sum of the length of each query. We can measure
query lengths in bits or in blocks, with block having some understood number of
bits n.

b
For an adversary A consider an experiment Expind-cpa-bSE

(A)

1
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from zero) then the adversary A is doing well, meaning our scheme SE is not secure,
at least to the extent that we regard A as “reasonable.”
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plaintext attack, the IND-CPA advantage of an adversary must be small, no matter
what strategy the adversary tries. However, we have to be realistic in our expec-
tations, understanding that the advantage may grow as the adversary invests more
effort in its attack. Security is a measure of how large the advantage of the adversary
might when compared against the adversary’s resources.

We consider an encryption scheme to be “secure against chosen-plaintext at-
tack” if an adversary restricted to using “practical” amount of resources (computing
time, number of queries) cannot obtain “significant” advantage. The technical no-
tion is called left-or-right indistinguishability under chosen-plaintext attack, denoted
IND-CPA.

We discuss some important conventions regarding the resources of adversary A.
The running time of an adversary A is the worst case execution time of A over all
possible coins of A and all conceivable oracle return values (including return values
that could never arise in the experiments used to define the advantage). Oracle
queries are understood to return a value in unit time, but it takes the adversary
one unit of time to read any bit that it chooses to read. By convention, the running
time of A also includes the size of the code of the adversary A, in some fixed RAM
model of computation. This convention for measuring time complexity is the same
as used in other parts of these notes, for all kinds of adversaries.

Other resource conventions are specific to the IND-CPA notion. When the ad-
versary asks its left-or-right encryption oracle a query (M0, M1) we say that length
of this query is max(|M0|, |M1|). (This will equal |M0| for any reasonable adversary
since an oracle query with messages of different lengths results in the adversary
being returned ⊥, so we can assume no reasonable adversary makes such a query.)
The total length of queries is the sum of the length of each query. We can measure
query lengths in bits or in blocks, with block having some understood number of
bits n.

The IND-CPA advantage of A is:
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C $← EK(M0), and returns C as the answer.

World 1: The oracle provided to the adversary is EK(LR(·, ·, 1)). So, whenever
the adversary makes a query (M0, M1) with |M0| = |M1| to its oracle, the oracle
computes C $← EK(M1), and returns C as the answer.

We also call the first world (or oracle) the “left” world (or oracle), and the second
world (or oracle) the “right” world (or oracle). The problem for the adversary is,
after talking to its oracle for some time, to tell which of the two oracles it was given.
Before we pin this down, let us further clarify exactly how the oracle operates.

Think of the oracle as a subroutine to which A has access. Adversary A can
make an oracle query (M0, M1) by calling the subroutine with arguments (M0, M1).
In one step, the answer is then returned. Adversary A has no control on how the
answer is computed, nor can A see the inner workings of the subroutine, which will
typically depend on secret information that A is not provided. Adversary A has
only an interface to the subroutine—the ability to call it as a black-box, and get
back an answer.

First assume the given symmetric encryption scheme SE is stateless. The oracle,
in either world, is probabilistic, because it calls the encryption algorithm. Recall
that this algorithm is probabilistic. Above, when we say C $← EK(Mb), it is implicit
that the oracle picks its own random coins and uses them to compute ciphertext C.

The random choices of the encryption function are somewhat “under the rug”
here, not being explicitly represented in the notation. But these random bits should
not be forgotten. They are central to the meaningfulness of the notion and the
security of the schemes.

If the given symmetric encryption scheme SE is stateful, the oracles, in either
world, become stateful, too. (Think of a subroutine that maintains a “static” vari-
able across successive calls.) An oracle begins with a state value initialized to a
value specified by the encryption scheme. For example, in CTRC mode, the state
is an integer ctr that is initialized to 0. Now, each time the oracle is invoked, it
computes EK(Mb) according to the specification of algorithm E . The algorithm may,
as a side-effect, update the state, and upon the next invocation of the oracle, the
new state value will be used.

The following definition associates to a symmetric encryption scheme SE and an
adversary A a pair of experiments, one capturing each of the worlds described above.
The adversary’s advantage, which measures its success in breaking the scheme, is
the difference in probabilities of the two experiments returning the bit one.

Definition 4.8 Let SE = (K, E ,D) be a symmetric encryption scheme, and let A
be an algorithm that has access to an oracle. We consider the following experiments:

Experiment Expind-cpa-1
SE (A)

K $←K
d $← AEK(LR(·,·,1))
Return d

Experiment Expind-cpa-0
SE (A)

K $←K
d $← AEK(LR(·,·,0))
Return d

EK(LR(⋅,⋅,⋅))

The experiment returns d 
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Recall: IND-CCA security

EK(LR(⋅,⋅,⋅))

A

d

Fix SE=(KeySp,E,D)

K←KeySp
$

M0,M1
Mb

LR(⋅,⋅,⋅)

b
For an adversary A and a bit b consider an experiment 

A symmetric encryption scheme SE is indistinguishable under chosen-
ciphertext attacks (IND-CCA secure) if for any adversary A with “reasonable” 
resources                          is “small” (close to 0).

The IND-CCA advantage of A is:

The experiment returns d 

EK(•)

C=EK(Mb)

Expind−cca−bSE (A)

1

DK(•)
C’

M’

Adv
ind−cca
SE (A)

1

Advind−ccaSE (A) = Pr
[
Expind−cca−1SE (A) = 1

]−Pr[Expind−cca−0SE (A) = 1
]

1

A is not allowed to query 
its decryption oracle on 
ciphertexts returned by 
its LR encryption oracle

Integrity (INT-PTXT) of symmetric encryption schemes 

A

EK(•)

DK(•)

Fix SE=(KeySp,E,D)

K←KeySp
$

For an adversary A consider an experiment 

*
return 1 iff 
DK(•)≠⊥

Exp
int−ptxt
SE (A)

1

Return 1 if A made a query C to DK(•) s.t.                
DK(C) returns 1 and M=DK(C) was never queried to EK(•)

*
*

Adv
int−ptxt
SE (A) = Pr

[
Exp

int−ptxt
SE (A) = 1

]

1

Integrity (INT-CTXT) of symmetric encryption schemes 

A

EK(•)

DK(•)

Fix SE=(KeySp,E,D)

K←KeySp
$

For an adversary A consider an experiment 

*
return 1 iff 
DK(•)≠⊥

Return 1 if A made a query C to DK(•) s.t.          
DK(C) returns 1 and C was never a response of EK(•).

*
*

Advint−ctxt
SE

(A) = Pr
[
Expint−ctxt

SE
(A) = 1

]

1

Expint−ctxt
SE

(A)

1

• Claim. [INT-CTXT ⇒ INT-PTXT]

• Theorem.[IND-CPA ∧ INT-CTXT ⇒ IND-CCA] For 
any SE and an adversary A there exist 
adversaries Ac, Ap s.t. 

  s.t. the adversaries’ resources are about the same

• Proof. Let E denote the event that A makes at 
least one valid decryption oracle query C, i.e.  
DK(C)≠⊥

Adv
ind−cca
SE (A)≤ 2 ·Advint−ctxtSE (Ac)+Advind−cpaSE (Ap)

1
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b
′ $← {0,1}

1

= Advint−ctxt
SE

(Ac)

1

=
1

2
·Advint−cpaSE (Ap)+

1

2

1

≤ 1
2

·Advint−cpaSE (Ap)+Advint−ctxtSE (Ac)+
1

2

1

1

2
·Advint−cca

SE
(A)+

1

2

1
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