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Applied Cryptography

Message Authentication Codes (MACs).

New cryptographic goals
* Data privacy is not the only important
cryptographic goal

¢ It is also important that a receiver is assured
that the data it receives has come from the
sender and has not been modified on the way
(and detect if it is not the case)

* The goals are data authenticity and integrity

Encryption solves data privacy,
not authenticity/integrity

¢ Recall OneTimePad: E(K,M)=K®M

K gﬁ, C=K®M # C'=K®M’ /XK

A

Sender S C'—CeM’ Receiver R

R gets M®M’ instead of M

Message Authentication Code (MAC)

¢ is the primitive for the goal of data authenticity

in the symmetric-key setting
N=(X,MAC,VF)

@ K MsgSp-message space
=X

Sender S Receiver R

It is required that for every MeMsgSp and every K that can be output by
K, VE(K,M,MAC(K,M))=1 4




Message Authentication Code (MAC)

* If the key-generation algorithm simply picks a
random string from some KeySp, then KeySp
describes K

If the MAC algorithm is deterministic, then the
verification algorithm VF does not have to be
defined as it simply re-computes the MAC by
invoking the MAC algorithm on the given
message M and accepts iff the result is equal to
its input TAG.

Towards a security definition for MACs

¢ We imagine that an adversary can see some
number of message plus tag pairs

* As usual, it is necessary but not sufficient to
require that no adversary can compute the
secret key

* Right now we will not be concerned with replay
attacks

* We don't want an adversary to be able to
compute a new message and a tag such that
the receiver accepts (outputs 1).

Security definition for MACs
Fix M=(K,MAC,VF)
Run K to get K

For an adversary A consider an experiment Expj{"*(4)

free]
# le—»| VF(K”)

A

M, Tag

Return 1 iff VF(K,M,Tag)=1 and M was not queried to the MAC oracle
The uf-cma advantage of A is defined as

Advim (4) = Pr[Expi(4) = 1]

Security definition for MACs

Experiment Expjf ()
K&K
Run AMAC (i)
If A made cation query (M, Tag) such that the following are true
The n oracle returned 1
A did not, prior to making verification query (M, Tag),
make signing query M

Then return 1 else return 0

The uf-cma advantage of A is defined as

Adviems (1) = Pr [Exp;.]f—un.\m) — 1]




Examples

We fix a PRF F: {0,1}%x {0,1}" — {0,1}*
1 = (K,MAC)

algorithm MACy (M)
if (M| mod ¢ £ 0 or [M] =0) then return L
Break M into £ bit blocks M = M(1].... Mn]
for i=1,....ndoy  Fie(Mi])
Tag — @ Gy
return Tag

Itis easy to construct A;s.t. Advi ™™ (4;) = 1

Examples
We fix a PRF F: {0,1}% x {0,1}¢ — {0,1}*

I, = (K, MAC)

algorithm MACx (M)
l—t—m
i (|M]mod ! £ 0 or [M] =0 or [M|/l >2") then return L
Break M into [ bit blocks M = M(1].... M[n]
for \n do y; — Fie([il,, | Mli])
Tag —y @ -~ B yn
return Tag

Adversary Ay Cx0)

Let ay. by be distinct, £ — m bit strings
Let az, by be distinet € —m bit strings

Tag, — MACj(a1az) : Tagy — MACk (arby) ; Tagy — MACk (byaz)
Tag — Tagy © Tagy ® Tagy

d Vi (biby, Tag)

Advi (4y) = 1
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Note

* We broke the MAC schemes without breaking
the underlying function families (they are
secure PRFs).

* The weaknesses were in the schemes, not the
tools
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A PRF as a MAC

Fix a function family F: Keys x D — {0,1}7
Consider a MAC II = (K, MAC)
algorithm K | algorithm MAC (M)

K < Keys if (M ¢ D) then return L

return K Tag — Fic(M)
Return Tag

Theorem. Let A be an adversary attacking TT making gs MAC oracle
queries of total length /4s, v verification oracle queries of total length fi,

and running time t. Then there exists an adversary B attacking F as a PRF
such that

AV () < Aavl(B) + oY

and B makes ¢s +¢v queries and runs the time t.
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¢ Proof.

Adversary B/
d—0;S<0
Run A

When A asks its signing oracle some query M

5 — SU{M}
rification oracle some query (M, Tag)
then
answer 1 to if M ¢S thend 1
else answer 0 to A
Until A halts
return d
Pr[Bxpp ™ (B) = 1] = Advi (4)

Pr[Exp‘;"“(B):l] < ;%

.

Any PRF makes a good MAC

Are we done?

Efficient PRFs (e.g. block ciphers) has short fixed input
length

We want it to work for arbitrary-length messages

.

What if we hash a message first before applying the block
cipher:

‘ Any length

128 bit

What H will be good?

Definition. [universal function family]
Let H: KeySp(H)xDom(H)—Ran(H) be a function
family. It is called universal if

V X,YeDom(H) s.t. X+Y: PKr[HK(X):HK(Y)]=1/\Ran(H)|

“Matrix” Construction. Let KeySp(H) be a set of all
nxm matrices, where each element can be either
0 or 1. Let Dom(H)={0,1}", Ran(H)={0,1}".
Define Hy(X)=K-X (where addition is mod 2)

Claim. The above “matrix” function family is
universal.

* The problem with the matrix construction is that
the key is big.

* There are other efficient constructions of
universal hash functions

* But will combining a universal hash and a PRF
will really give us a secure MAC?

* Yes. And let’s prove it.
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“Hash-and-PRF” MAC
* Construction. Let H: KeySp(H)xDom(H)—Ran(H) and
F: KeySp(F)xRan(H)—Ran(F) be function families.
Define a MAC HPRF=(K,MAC,VF) with MsgSp=Dom(H) as follows:
« K: K1&KeySp(H), K2€KeySp(F), Return K1||K2
o MAC(K1||K2,M): Tag+F,(Hy (M), Return Tag

o VF(K1||K2,M,Tag): If Tag=F,(Hy (M) then return 1,
otherwise return 0
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e Theorem. If F is PRF and H is universal, then
HPRF is a secure MAC.

e Lemma. If F is PRF and H is universal then HPRF
is PRF.

¢ Proof of the Theorem. Follows from the Lemma
and the fact that any PRF is a secure MAC.

¢ Proof of the Lemma. We will prove that for any
A there exists B with t;=0(t,), gz=ggs.t.

9a(ga—1)

AdviTe(A) < Advl (B) 4 AL
Viiier (A) < AdvE( )+2,‘Ran(H)|
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Adversary Bf
K1 & KeySp(H)
Answer B’s queries M with f(Hg1(M))
Output the same bit B outputs
Let g be a random function with domain Ran(H) and range Ran(F)
Let g' be a random function with domain Dom(H) and range Ran(F)
Let coll be an event when HK1(M)=HK1(M’) for any two queries M,M’ made by A
AR (B)
- P [Exp;’f"w)] —Pr [Exp;'f"’w)]
= Pr[Expy o ()] - Pr [ Bxpfl () ]
- Pr [Expﬁ,ﬁjf‘,_w,_)(_.t)} —Pr [Expfj,’/"(A)] +Pr [Expf‘;/"(A)] —Pr [Expi;o/;‘(A)}
= P [ Bxply o) (4) | = Pr [ Bxpl Ll o (4) ] + Pr [ Bxpl /() | Pr [ Bxolyl, (4) ]
= AdV e (4) + Pr [ Expl 7 (4) |~ Pr [ Explil " (4)]
= AV e(4) + Pr [ Expl /7 (4) |
~Pr [Exp;,g{;‘(A) | mzz} “Pr(coll] - Pr [Exp;;{;‘(A) | m] - Pr[coll]

prf. rf— . —
< AL p(A) + Pr [Expf:,/ ‘(_4)] — Pr[coll] - Pr [Expi,!q 4y | 4'071]

ort ) i aa-(@a—1) 9
= A 4) P coll] = Ad () - L) 1

CBC-MAC

Let E:{0,13¥x{0,13"={0,1}" be a block cipher. CBC-MAC=({0,1}¥,MAC):
MsgSp:{O,l}nm for some m=>1.

[o" J[mM1] [me21]
) /(

MAC returns

Theorem. For any adversary A there exists an adversary B such that
mqy

AV < AdVET(B) +

where s=qa+1.t5=11
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Can we use a hash function as a building block?

* SHAL: {0,1}<>* ={0,1}160

Collision-resistant: hard to fund M,M’ s.t. SHA1(M)=SHA1(M’)

Is it a good idea to use SHA1 as a MAC?
¢ What about:

« MACy(M)=SHAL(M]|[K)?
« MACy(M)=SHAL(K||M)?

« MACy(M)=SHAL(K|[M]|K)?

Cannot prove security for these constructions.

Secure construction: HMAC

« HMACy(M)=SHA1(K®c||SHA1(K®d||M)), where c,d are some
constants

Can we get it all?

We know how to achieve data privacy (IND-CPA
security) and data authenticity/integrity (UF-
CMA security) separately.

Can we achieve the both goals at the same time
(can we send messages securely s.t. a sender is
assured in their authenticity/integrity)?

Can we use the existing primitives: encryption
schemes and MACs?

Recall: symmetric encryption scheme
A scheme SE is specified a key generation algorithm K, an
encryption algorithm E, and a decryption algorithm D.
SE=(K,E,D)

MsgSp-message space

=
S
h
&

Sender S Receiver R

It is required that for every MeMsgSp and every K that can be output by
K, D(K,E(K,M))=M

Recall: IND-CPA security

Fix SE=(KeySp,E,D)

K}*KeySp
For an adversary A consider an experiment Expl;;d{pa'b(A)
b
I
I
oM Fige |- [ ke
#
L g
A ER(LR(,)
Experiment Explig” ™ (4) | Experiment Explie™ " (4)
[d K&K K&K
. d & AEx(LRCD) d & AEK(LRC0)
The experiment returns d Return d Return d
The IND-CPA advantage of Ais:
Advidem(4) = pr [Exp;?g"“"“’(_A) - 1] —Pr [Exp;?;f"“"““(A) - 1]

A symmetric encryption scheme SE is indistinguishable under chosen-plaintext
ind

attacks if for any adversary A with “reasonable” resources Adviss ™ (A) is “small”
(close to 0).
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Recall: IND-CCA security
Fix SE=(KeySp,E,D)

K& Keysp
For an adversary Aand a tt:)it b consider an experiment Expg"z’ ccab(p)
|
VoM Ais not allowed to query
O | IR() its decryption oracle on
() ciphertexts returned by
— — its LR encryption oracle
# VOB e Re)

Id
The experiment returns d

The IND-CCA advantage of A is:
Adv_’s’",f cca(g) = Pr{Exp’;fz cca-l(p) = 1] *PT{EXP';;_/ cca0(p) = 1]

A symmetric encryption scheme SE is indistinguishable under chosen-
ciphertext attacks (IND-CCA secure) if for any adversary A with “reasonable”
resources Advg’g’““(A) is “small” (close to 0). 2 5

Integrity (INT-PTXT) of symmetric encryption schemes
Fix SE=(KeySp,E,D)
k& keysp

For an adversary A consider an experiment Expg; "(4)

B

# —I D(*)

A
return 1 iff
D ()#L

Return 1 if A made a query C to Di(*) s.t.
D;(C) returns 1 and M=D,(C) was never queried to E,(*)

AdviE " (4) = Pr [ Exply " (4) = 1] 26

Integrity (INT-CTXT) of symmetric encryption schemes
Fix SE=(KeySp,E,D)
K& KeySp

For an adversary A consider an experiment  Exp{; “"(A)

L E(

# —I D(*)

A .
return 1 iff
D ()*L

Return 1 if A made a query C to Di(*) s.t.
D;(C) returns 1 and C was never a response of E,(*).

AV (A) = Pr[Expll "7 (4) = 1]
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* Claim. [INT-CTXT = INT-PTXT]

* Theorem.[IND-CPA A INT-CTXT = IND-CCA] For
any SE and an adversary A there exist
adversaries A, Ap s.t.

AdVIa(A) < 20 AdvIE(A) + Advie P(A,)
s.t. the adversaries’ resources are about the same

* Proof. Let E denote the event that A makes at
least one valid decryption oracle query C, i.e.
D (C)#L

28




Adversary AfK(')’DR(')
b & {0,1}
When A makes a query M; o, M;
to its left-or-right encryption oracle do
A<= Ex(M;y).
When A makes a query C;
to its decryption oracle do
v« Dy (Ci)
If v=0,
then A < L,
else stop.

Pr[b=b A E] < Pr[E]
= Pr.[ A succeeds]

= Advig " (A)
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Ex(LR(-,-\b
Adversary APK( (b))
When A makes a query M; o, M;,
to its left-or-right encryption oracle do
A <= Eg(LR(Mi0, Mi1,b))
When A makes a query C;
to its decryption oracle do
Ael
A=V
Return b’

Prit/=bA-E] < Pr,[t =0]

1 int— 1
= 5 AV (4,) + 5
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: 1
3 AdVEE““(A) 45

= Pr[¥ =0]
= Pr[b'=b A E]+Pr[l=bA -E]

. : 1
< % AdVEL T (A,) + AdVEE (A + 5
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