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Asymmetric encryption schemes
A scheme AE is specified a key generation algorithm K, an 

encryption algorithm E, and a decryption algorithm D.
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AE=(K,E,D)  

It is required that for every (pk,sk) that can be output by K and 
every M∈MsgSp(pk), if C=E(pk,M) then D(sk,C)=M

MsgSp(pk)-message space

Receiver R

or ⊥or ⊥

• A sender must know the receiver’s public key, and must be 
assured that this public key is authentic (really belongs to the 
receiver). This is ensured be the PKI processes, which are not 
part of encryption.

• Unlike in a symmetric encryption, the asymmetric encryption 
algorithm is never stateful. 

• Messages will often be group elements, encoded as bitstrings 
whenever necessary. 
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Indistinguishability under chosen-plaintext attacks

A
b’

Fix AE=(K,E,D) (pk,sk)←K
$

M0,M1 MbLR(⋅,⋅,⋅)

b
For an adversary A and a bit b consider an experiment 

An asymmetric encryption scheme AE is indistinguishable under chosen-
plaintext attacks (IND-CPA secure) if for any adversary A with “reasonable” 
resources                          is “small” (close to 0).

The IND-CPA advantage of A is:

The experiment returns b’ 

Epk(•)

C=Epk(Mb)
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We call the first world (or oracle) the “left” world (or oracle), and we call the second
world (or oracle) the “right” world (or oracle). The problem for the adversary is,
after talking to its oracle for some time, to tell which of the two oracles it was given.

The adversary queries makes some number of queries to its oracle, and then
outputs a bit. This bit has some probability of equaling one. The probability is
over the choice of the keys (pk, sk) as made by the key-generation algorithm, any
random choices made by the oracle, and any other random choices made by the
adversary in its computation. We look at this probability in each of the two worlds
as the basis for the definition.

We suggest that the reader return to the chapter on symmetric encryption to
refresh his or her mind about this model. In particular remember that the encryption
function is randomized, and the oracle implementing it is thus randomized too.
Each time the oracle computes a ciphertext, it does so by running the encryption
algorithm with fresh coins.

Definition 8.2 Let AE = (K, E ,D) be an asymmetric encryption scheme, let b ∈
{0, 1}, and let A be an algorithm that has access to an oracle and returns a bit. We
consider the following experiment:

Experiment Expind-cpa-b
AE (A)

(pk, sk) $←K
b′ ← AEpk(LR(·,·,b))
Return b′

The ind-cpa-advantage of A is defined as

Advind-cpa
AE (A) = Pr

[
Expind-cpa-1

AE (A) = 1
]
− Pr

[
Expind-cpa-0

AE (A) = 1
]

.

As usual, the time-complexity mentioned above is the worst case total execution
time of the entire experiment. This means the adversary complexity, defined as
the worst case execution time of A plus the size of the code of the adversary A, in
some fixed RAM model of computation (worst case means the maximum over A’s
coins or the answers returned in response to A’s oracle queries), plus the time for
other operations in the experiment, including the time for key generation and the
computation of answers to oracle queries via execution of the encryption algorithm.

Another convention we make is that the length of a query M0, M1 to a left-or-
right encryption oracle is defined as |M0|. (We can assume without loss of generality
that this equals |M1| since otherwise the oracle returns ⊥ and so the query would
be useless.) The total message length, which is the sum of the lengths of all oracle
queries, is another parameter of interest. We say that the total message length is
at most µ if it is so in the worst case, meaning across all coin tosses and answers to
oracle queries in the experiment.

We consider an encryption scheme to be “secure against chosen-plaintext attack”
if a “reasonable” adversary cannot obtain “significant” advantage, where reasonable
reflects its resource usage. The technical notion is called indistinguishability under
chosen-ciphertext attack, denoted IND-CPA.
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IND-CPA is not always enough

Bleichenbacher’s attack on a previous version of SSL:
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“invalid ciphertext!”

C''
“invalid ciphertext!”

C=E
pk (Alice's session key)

      OKC'''
          OK

C'''''''''
  “invalid ciphertext!”

pk

Alice's session key

Indistinguishability under chosen-ciphertext attacks

Fix AE=(K,E,D) (pk,sk)←K
$

For an adversary A and a bit b consider an experiment 

An asymmetric encryption scheme AE is indistinguishable under chosen-
ciphertext attacks (IND-CCA secure) if for any adversary A with “reasonable” 
resources                          is “small” (close to 0).

The IND-CCA advantage of A is:
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the game.
This is a very strong form of chosen-ciphertext attack: the adversary can invoke

the decryption oracle on any point other than the challenge. Again, one’s first
reaction might be that it is in fact ridiculously strong. How in any setting where
I have some sort of decryption oracle access is it possible that I could not ask the
query of my choice, yet be able to ask absolutely any other query? Indeed it is
hard to imagine such a setting. Yet, this is the “right” attack model to consider for
several reasons. One is that in proving the security of authenticated key exchange
protocols that use asymmetric encryption as discussed above, it is exactly security
under such an attack that is required of the asymmetric encryption scheme. The
other reasons is perhaps more fundamental. We have seen many times that it is
difficult to anticipate the kinds of attacks that can arise. It is better to have an
attack model that is clear and well defined even if perhaps stronger than needed,
than to not have a clear model or have one that may later be found to be too weak.

We have already seen that inability to decrypt a challenge ciphertext is not
evidence of security of a scheme, since one must also consider loss of partial in-
formation. In finalizing a notion of security against chosen-ciphertext attack one
must take this into account too. This, however, we already know how to do, via
left-or-right encryption oracles.

Definition 8.3 Let AE = (K, E ,D) be an asymmetric encryption scheme, let b ∈
{0, 1}, and let A be an algorithm that has access to two oracles and returns a bit.
We consider the following experiment:

Experiment Expind-cca-bAE (A)
(pk, sk) $←K
b′ ← AEpk(LR(·,·,b)),Dsk(·)
If A queried Dsk(·) on a ciphertext previously returned by EK(LR(·, ·, b))

then return 0
else Return b′

The ind-cca-advantage of A is defined as

Advind-cca
AE (A) = Pr

[
Expind-cca-1

AE (A) = 1
]
− Pr

[
Expind-cca-0

AE (A) = 1
]

.

The conventions with regard to resource measures are the same as those used in the
case of chosen-plaintext attacks.

We consider an encryption scheme to be “secure against chosen-ciphertext at-
tack” if a “reasonable” adversary cannot obtain “significant” advantage, where rea-
sonable reflects its resource usage. The technical notion is called indistinguishability
under chosen-ciphertext attack, denoted IND-CCA.

8.3 One encryption query or many?

The adversary in our definitions is allowed to make many queries to its lr-encryption
oracle. We gave it this power because it might be possible to expose weaknesses in
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• IND-CCA ⇒ IND-CPA

• In the literature you can meet the definitions where an 
adversary makes a single query to the LR encryption oracle.

• Theorem 1. Let AE=(K,E,D) be an asymmetric encryption 
scheme. Let B be an ind-cpa adversary who makes at most q 
queries to its LR encryption oracle. Then there exists an ind-
cpa adversary A with the same running time making at most 
1 query to its LR encryption oracle and such that 

•

• Theorem 2. Let B be an ind-cca adversary who makes at most 
q queries to its LR encryption oracle. Then there exists an 
ind-cca adversary A making at most one query to its LR 
encryption oracle, the same number of decryption queries and 
having the same running time such that 
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the encryption scheme via an attack involving observing the encryptions of many
related messages, chosen adaptively as a function of ciphertexts of previous messages.
Indeed, it may be possible to achieve a higher advantage with more queries, but we
show here that the gain is limited. Namely, an adversary making qe lr-encryption
oracle queries cannot achieve an advantage greater than qe times that of an adversary
making just one lr-encryption oracle query and having other resources comparable
to that of the original adversary. This is true both under chosen-plaintext and
chosen-ciphertext attack, as indicated in the following.

Theorem 8.4 Let AE = (K, E ,D) be an asymmetric encryption scheme. Let B be
an ind-cpa adversary who makes at most qe queries to its left-or-right encryption
oracle. Then there exists an ind-cpa adversary A making at most one query to its
left-or-right encryption oracle and such that

Advind-cpa
AE (B) ≤ qe · Advind-cpa

AE (A) . (8.1)

Furthermore, the running time of A is that of B. Similarly, let B be an ind-cca
adversary who makes at most qe queries to its left-or-right encryption oracle. Then
there exists an ind-cca adversary A making at most one query to its left-or-right
encryption oracle and such that

Advind-cca
AE (B) ≤ qe · Advind-cca

AE (A) . (8.2)

Furthermore, the number of decryption oracle queries made by A is the same as
made by B, and the running time of A is that of B.

In a qualitative sense, this theorem can be interpreted as saying that an asymmetric
encryption scheme secure against adversaries making just one lr-encryption query
is also secure against adversaries making many lr-encryption queries. This will
simplify later analyses by allowing us to focus on adversaries that make only one
lr-encryption query.

An important element making this result possible is that in an asymmetric en-
cryption scheme, an adversary can itself encrypt any message it wants, because it
has the public (encryption) key. In the symmetric setting, the adversary cannot
directly encrypt a message, but may only do so via an oracle that holds the key. An
analogue of the above is true in the symmetric setting, but requires that the adver-
sary be provided not only with an lr-encryption oracle but also with an encryption
oracle.

Proof of Theorem 8.4: The statement corresponding to Equation (8.1) follows
from the statement corresponding to Equation (8.2) by considering an ind-cca ad-
versary who makes no queries to its decryption oracle, so we need only prove the
statement corresponding to Equation (8.2).

We will use what’s called a “hybrid argument”. We will associate to B a sequence
of experiments

Exp0
AE(B) , Exp1

AE(B) , . . . , Expq
AE(B) (8.3)
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The proof uses a hybrid argument.
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In other words, the first and last experiments in our sequence will correspond to the
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tells us that

Advind-cca
AE (B) = P (q) − P (0) .
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Now comes a trick. We consider the sum
q−1∑
i=1

[P (i) − P (i)] .

Its value, of course, is 0. Hence, from the above,

Advind-cca
AE (B) = P (q) − P (0)

= P (q) +
q−1∑
i=1

[P (i) − P (i)] − P (0)

=
q∑

i=1

P (i) −
q−1∑
i=0

P (i) .

We will now construct ind-cca-adversary A so that

Pr
[
Expind-cca-1

AE (A) = 1
]

=
1
q
·

q∑
i=1

P (i) (8.6)

Pr
[
Expind-cca-0

AE (A) = 1
]

=
1
q
·

q−1∑
i=0

P (i) . (8.7)

Then, from the above we would have

Advind-cca
AE (A) =

1
q
· Advind-cca

AE (B) .

Re-arranging terms, we get Equation (8.2).

We now specify the “hybrid” experiments of Equation (8.3) in such a way that
Equations (8.4) and (8.5) are true and we are able to construct adversary A such
that Equations (8.6) and (8.7) are true.

We associate to any i ∈ {0, . . . , q} an oracle and an experiment, as indicated in
Fig. 8.1. The oracle associated to i is stateful, maintaining a counter j that is
initialized to 0 by the overlying experiment and is incremented by the oracle each
time the latter is invoked.

Now, observe that oracles HE 0
pk(·, ·) and Epk(LR(·, ·, 0)) are equivalent, meaning

that on any inputs, their responses are identically distributed. Similarly, oracles
HE q

pk(·, ·) and Epk(LR(·, ·, 1)) are equivalent. Hence, Equations (8.4) and (8.5) are
true.

Adversary A is specified in Fig. 8.1. It begins by initializing a counter j to 0, and
picking I at random from {1, . . . , q}. It then defines a subroutine OE . Finally
A executes B, replacing the B’s lr-encryption oracle with the subroutine OE , and
providing B a decryption oracle via A’s own access to a decryption oracle.

We highlight that A’s operation depends on the fact that it was provided the public
encryption key as an input. This enables it to compute encryptions under this key

10 ASYMMETRIC ENCRYPTION

Now comes a trick. We consider the sum
q−1∑
i=1

[P (i) − P (i)] .

Its value, of course, is 0. Hence, from the above,

Advind-cca
AE (B) = P (q) − P (0)

= P (q) +
q−1∑
i=1

[P (i) − P (i)] − P (0)

=
q∑

i=1

P (i) −
q−1∑
i=0

P (i) .

We will now construct ind-cca-adversary A so that

Pr
[
Expind-cca-1

AE (A) = 1
]

=
1
q
·

q∑
i=1

P (i) (8.6)

Pr
[
Expind-cca-0

AE (A) = 1
]

=
1
q
·

q−1∑
i=0

P (i) . (8.7)

Then, from the above we would have

Advind-cca
AE (A) =

1
q
· Advind-cca

AE (B) .

Re-arranging terms, we get Equation (8.2).

We now specify the “hybrid” experiments of Equation (8.3) in such a way that
Equations (8.4) and (8.5) are true and we are able to construct adversary A such
that Equations (8.6) and (8.7) are true.

We associate to any i ∈ {0, . . . , q} an oracle and an experiment, as indicated in
Fig. 8.1. The oracle associated to i is stateful, maintaining a counter j that is
initialized to 0 by the overlying experiment and is incremented by the oracle each
time the latter is invoked.

Now, observe that oracles HE 0
pk(·, ·) and Epk(LR(·, ·, 0)) are equivalent, meaning

that on any inputs, their responses are identically distributed. Similarly, oracles
HE q

pk(·, ·) and Epk(LR(·, ·, 1)) are equivalent. Hence, Equations (8.4) and (8.5) are
true.

Adversary A is specified in Fig. 8.1. It begins by initializing a counter j to 0, and
picking I at random from {1, . . . , q}. It then defines a subroutine OE . Finally
A executes B, replacing the B’s lr-encryption oracle with the subroutine OE , and
providing B a decryption oracle via A’s own access to a decryption oracle.

We highlight that A’s operation depends on the fact that it was provided the public
encryption key as an input. This enables it to compute encryptions under this key

We will construct ind-cca-adversary A so that

and thus

10 ASYMMETRIC ENCRYPTION

Now comes a trick. We consider the sum
q−1∑
i=1

[P (i) − P (i)] .

Its value, of course, is 0. Hence, from the above,

Advind-cca
AE (B) = P (q) − P (0)

= P (q) +
q−1∑
i=1

[P (i) − P (i)] − P (0)

=
q∑

i=1

P (i) −
q−1∑
i=0

P (i) .

We will now construct ind-cca-adversary A so that

Pr
[
Expind-cca-1

AE (A) = 1
]

=
1
q
·

q∑
i=1

P (i) (8.6)

Pr
[
Expind-cca-0

AE (A) = 1
]

=
1
q
·

q−1∑
i=0

P (i) . (8.7)

Then, from the above we would have

Advind-cca
AE (A) =

1
q
· Advind-cca

AE (B) .

Re-arranging terms, we get Equation (8.2).

We now specify the “hybrid” experiments of Equation (8.3) in such a way that
Equations (8.4) and (8.5) are true and we are able to construct adversary A such
that Equations (8.6) and (8.7) are true.

We associate to any i ∈ {0, . . . , q} an oracle and an experiment, as indicated in
Fig. 8.1. The oracle associated to i is stateful, maintaining a counter j that is
initialized to 0 by the overlying experiment and is incremented by the oracle each
time the latter is invoked.

Now, observe that oracles HE 0
pk(·, ·) and Epk(LR(·, ·, 0)) are equivalent, meaning

that on any inputs, their responses are identically distributed. Similarly, oracles
HE q

pk(·, ·) and Epk(LR(·, ·, 1)) are equivalent. Hence, Equations (8.4) and (8.5) are
true.

Adversary A is specified in Fig. 8.1. It begins by initializing a counter j to 0, and
picking I at random from {1, . . . , q}. It then defines a subroutine OE . Finally
A executes B, replacing the B’s lr-encryption oracle with the subroutine OE , and
providing B a decryption oracle via A’s own access to a decryption oracle.

We highlight that A’s operation depends on the fact that it was provided the public
encryption key as an input. This enables it to compute encryptions under this key

10 ASYMMETRIC ENCRYPTION

Now comes a trick. We consider the sum
q−1∑
i=1

[P (i) − P (i)] .

Its value, of course, is 0. Hence, from the above,

Advind-cca
AE (B) = P (q) − P (0)

= P (q) +
q−1∑
i=1

[P (i) − P (i)] − P (0)

=
q∑

i=1

P (i) −
q−1∑
i=0

P (i) .

We will now construct ind-cca-adversary A so that

Pr
[
Expind-cca-1

AE (A) = 1
]

=
1
q
·

q∑
i=1

P (i) (8.6)

Pr
[
Expind-cca-0

AE (A) = 1
]

=
1
q
·

q−1∑
i=0

P (i) . (8.7)

Then, from the above we would have

Advind-cca
AE (A) =

1
q
· Advind-cca

AE (B) .

Re-arranging terms, we get Equation (8.2).

We now specify the “hybrid” experiments of Equation (8.3) in such a way that
Equations (8.4) and (8.5) are true and we are able to construct adversary A such
that Equations (8.6) and (8.7) are true.

We associate to any i ∈ {0, . . . , q} an oracle and an experiment, as indicated in
Fig. 8.1. The oracle associated to i is stateful, maintaining a counter j that is
initialized to 0 by the overlying experiment and is incremented by the oracle each
time the latter is invoked.

Now, observe that oracles HE 0
pk(·, ·) and Epk(LR(·, ·, 0)) are equivalent, meaning

that on any inputs, their responses are identically distributed. Similarly, oracles
HE q

pk(·, ·) and Epk(LR(·, ·, 1)) are equivalent. Hence, Equations (8.4) and (8.5) are
true.

Adversary A is specified in Fig. 8.1. It begins by initializing a counter j to 0, and
picking I at random from {1, . . . , q}. It then defines a subroutine OE . Finally
A executes B, replacing the B’s lr-encryption oracle with the subroutine OE , and
providing B a decryption oracle via A’s own access to a decryption oracle.

We highlight that A’s operation depends on the fact that it was provided the public
encryption key as an input. This enables it to compute encryptions under this key

Bellare and Rogaway 9

Oracle HE i
pk(M0, M1)

j ← j + 1
If j ≤ i

then C $← Epk(M1)
else C $← Epk(M0)

EndIf
Return C

Experiment ExpiAE(B)
(pk, sk) $←K
d ← BHE i

pk(·,·),Dsk(·)(pk)
Return d

Adversary AEpk(LR(·,·,b)),Dsk(·)(pk)
j ← 0 ; I $← {1, . . . , q}
Subroutine OE(M0, M1)

j ← j + 1
If j < I then C $← Epk(M1) EndIf
If j = I then C $← Epk(LR(M0, M1, b)) EndIf
If j > I then C $← Epk(M0) EndIf
Return C

End Subroutine
d $← BOE(·,·),Dsk(·)(pk)
Return d

Figure 8.1: Hybrid oracles and experiments related to the construction of ind-cca
adversary A in the proof of Theorem 8.4.

such that, if we let

P (i) = Pr
[
Expi

AE(B) = 1
]

for i ∈ {0, 1, . . . , q}, then it will be the case that

P (0) = Pr
[
Expind-cca-0

AE (B) = 1
]

(8.4)

P (q) = Pr
[
Expind-cca-1

AE (B) = 1
]

. (8.5)

In other words, the first and last experiments in our sequence will correspond to the
world 0 and world 1 experiments, respectively, in Definition 8.2. If so, Definition 8.2
tells us that

Advind-cca
AE (B) = P (q) − P (0) .

Bellare and Rogaway 9

Oracle HE i
pk(M0, M1)

j ← j + 1
If j ≤ i

then C $← Epk(M1)
else C $← Epk(M0)

EndIf
Return C

Experiment ExpiAE(B)
(pk, sk) $←K
d ← BHE i

pk(·,·),Dsk(·)(pk)
Return d

Adversary AEpk(LR(·,·,b)),Dsk(·)(pk)
j ← 0 ; I $← {1, . . . , q}
Subroutine OE(M0, M1)

j ← j + 1
If j < I then C $← Epk(M1) EndIf
If j = I then C $← Epk(LR(M0, M1, b)) EndIf
If j > I then C $← Epk(M0) EndIf
Return C

End Subroutine
d $← BOE(·,·),Dsk(·)(pk)
Return d

Figure 8.1: Hybrid oracles and experiments related to the construction of ind-cca
adversary A in the proof of Theorem 8.4.

such that, if we let

P (i) = Pr
[
Expi

AE(B) = 1
]

for i ∈ {0, 1, . . . , q}, then it will be the case that

P (0) = Pr
[
Expind-cca-0

AE (B) = 1
]

(8.4)

P (q) = Pr
[
Expind-cca-1

AE (B) = 1
]

. (8.5)

In other words, the first and last experiments in our sequence will correspond to the
world 0 and world 1 experiments, respectively, in Definition 8.2. If so, Definition 8.2
tells us that

Advind-cca
AE (B) = P (q) − P (0) .

Note that               ≡                      and                ≡

and therefore 

10 ASYMMETRIC ENCRYPTION

Now comes a trick. We consider the sum
q−1∑
i=1

[P (i) − P (i)] .

Its value, of course, is 0. Hence, from the above,

Advind-cca
AE (B) = P (q) − P (0)

= P (q) +
q−1∑
i=1

[P (i) − P (i)] − P (0)

=
q∑

i=1

P (i) −
q−1∑
i=0

P (i) .

We will now construct ind-cca-adversary A so that

Pr
[
Expind-cca-1

AE (A) = 1
]

=
1
q
·

q∑
i=1

P (i) (8.6)

Pr
[
Expind-cca-0

AE (A) = 1
]

=
1
q
·

q−1∑
i=0

P (i) . (8.7)

Then, from the above we would have

Advind-cca
AE (A) =

1
q
· Advind-cca

AE (B) .

Re-arranging terms, we get Equation (8.2).

We now specify the “hybrid” experiments of Equation (8.3) in such a way that
Equations (8.4) and (8.5) are true and we are able to construct adversary A such
that Equations (8.6) and (8.7) are true.

We associate to any i ∈ {0, . . . , q} an oracle and an experiment, as indicated in
Fig. 8.1. The oracle associated to i is stateful, maintaining a counter j that is
initialized to 0 by the overlying experiment and is incremented by the oracle each
time the latter is invoked.

Now, observe that oracles HE 0
pk(·, ·) and Epk(LR(·, ·, 0)) are equivalent, meaning

that on any inputs, their responses are identically distributed. Similarly, oracles
HE q

pk(·, ·) and Epk(LR(·, ·, 1)) are equivalent. Hence, Equations (8.4) and (8.5) are
true.

Adversary A is specified in Fig. 8.1. It begins by initializing a counter j to 0, and
picking I at random from {1, . . . , q}. It then defines a subroutine OE . Finally
A executes B, replacing the B’s lr-encryption oracle with the subroutine OE , and
providing B a decryption oracle via A’s own access to a decryption oracle.

We highlight that A’s operation depends on the fact that it was provided the public
encryption key as an input. This enables it to compute encryptions under this key
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Oracle HE i
pk(M0, M1)

j ← j + 1
If j ≤ i

then C $← Epk(M1)
else C $← Epk(M0)

EndIf
Return C

Experiment ExpiAE(B)
(pk, sk) $←K
d ← BHE i

pk(·,·),Dsk(·)(pk)
Return d

Adversary AEpk(LR(·,·,b)),Dsk(·)(pk)
j ← 0 ; I $← {1, . . . , q}
Subroutine OE(M0, M1)

j ← j + 1
If j < I then C $← Epk(M1) EndIf
If j = I then C $← Epk(LR(M0, M1, b)) EndIf
If j > I then C $← Epk(M0) EndIf
Return C

End Subroutine
d $← BOE(·,·),Dsk(·)(pk)
Return d

Figure 8.1: Hybrid oracles and experiments related to the construction of ind-cca
adversary A in the proof of Theorem 8.4.

such that, if we let

P (i) = Pr
[
Expi

AE(B) = 1
]

for i ∈ {0, 1, . . . , q}, then it will be the case that

P (0) = Pr
[
Expind-cca-0

AE (B) = 1
]

(8.4)

P (q) = Pr
[
Expind-cca-1

AE (B) = 1
]

. (8.5)

In other words, the first and last experiments in our sequence will correspond to the
world 0 and world 1 experiments, respectively, in Definition 8.2. If so, Definition 8.2
tells us that

Advind-cca
AE (B) = P (q) − P (0) .
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directly, and it does so inside the subroutine. Had we not given A the public key,
this construction would not be posible.

To complete the proof it suffices to justify Equations (8.6) and (8.7). Suppose A
is in world 1, meaning the challenge bit b equals 1. Then subroutine OE encrypts
the right message of its input pair the first I times it is called, and the left-message
after that. One the other hand, if A is in world 0, meaning b = 0, subroutine OE
encrypts the right message of its input pair the first I − 1 times it is called, and the
left message after that. Regarding I as a random variable taking values in {1, . . . , q},
this means that for every i ∈ {1, . . . , q} we have

Pr
[
Expind-cca-1

AE (A) = 1 | I = i
]

= P (i)

Pr
[
Expind-cca-0

AE (A) = 1 | I = i
]

= P (i − 1) .

Since the random variable I is uniformly distributed in the range {1, . . . , q} we have

Pr
[
Expind-cca-1

AE (A) = 1
]

=
q∑

i=1

Pr
[
Expind-cca-1

AE (A) = 1 | I = i
]
· Pr [I = i]

=
q∑

i=1

P (i) · 1
q

.

This justifies Equation (8.6). Similarly,

Pr
[
Expind-cca-0

AE (A) = 1
]

=
q∑

i=1

Pr
[
Expind-cca-0

AE (A) = 1 | I = i
]
· Pr [I = i]

=
q∑

i=1

P (i − 1) · 1
q

=
q−1∑
i=0

P (i) · 1
q

,

which justifies Equation (8.7). This concludes the proof.

8.4 Hybrid encryption

Before we present constructions of asymmetric encryption schemes, it is useful to
get some idea of the context in which they are used.

Given an asymmetric encryption scheme AE = (Ka, Ea,Da), one rarely encrypts
data directly with it. Rather, to encrypt M under a public key pk of this scheme,
we first pick a random key K for a symmetric encryption scheme SE = (Ks, Es,Ds),
encrypt K under pk via the asymmetric scheme to get a ciphertext Ca, encrypt M
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The ElGamal scheme

• Let G be a cyclic group of order n and let g be a generator of 
G. The ElGamal encryption scheme EG=(K, E, D) associated 
to G,g is as follows:

•

•

• Security depends on the choice of G.
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Algorithm K
x $← Zn

X ← gx

Return (X, x)

Algorithm EX(M)
If M "∈ G then return ⊥
y $← Zn ; Y ← gy

K ← Xy ; W ← KM
Return (Y, W )

Algorithm Dx((Y, W ))
K ← Y x

M ← WK−1

Return M

The plaintext-space associated to a public key X ∈ G is G itself, and if M is not in
this set then the encryption algorithm returns ⊥.

The quantities G, g are assumed to be chosen a priori and known to all parties. A
typical example is G = Z∗

p where p ≥ 3 is a prime. We have discussed in Section ??
how to find primes and generators and thus set up G, g in this case.

The first thing that should be verified about the El Gamal scheme is that decryp-
tion works correctly, meaning Dx(EX(M)) = M for all M ∈ G. This is true because
of Equation (8.22), which says that the value K in both algorithms is indeed the
same.

In common with several other algebraic schemes, in the natural formulation of
the El Gamal scheme given above, the message is a group element. In practice we
might prefer to think of our starting message as a string. In that case, we would
encode the string as a group element before using the El Gamal scheme. For example
if G = Z∗

p where p is a prime of length k (i.e. 2k−1 ≤ p < 2k), the scheme could be
viewed as enabling us to encrypt any binary string message m of length k−1. To do
this, compute the integer whose binary representation is m and then adding one to
it to get an integer M in the range 1, . . . , 2k−1. This M beign in Z∗

p can be thought
of as the message for the El Gamal scheme. From the group element returned by
the decryption algorithm one can recover the corresponding string message in the
obvious way. More generally, the message space can be viewed as any set of strings
of size at most |G|, mapping these to group elements via some injective encoding
function for the sake of encryption.

Now, we turn to security, concentrating first on security against chosen-plaintext
attack. The first thing to consider is whether the adversary could recover the secret
key x from the public key X. This however requires solving the discrete logarithm
problem, which we are assuming is computationally intractable. Next we could
consider the possibility of recovery of the plaintext M from a ciphertext (Y, W ). The
most obvious attack is for the adversary (given the public key X and a ciphertext
(Y, W )) to try to compute the key K from X, Y , and then recover M via M =
[[WK−1 mod p]]−1. But trying to find K amounts to solving the CDH problem,
which as we discussed is believed to be hard.

However, by now we know that it is naive to restrict security concerns to key
recovery or even to recovery of plaintext from ciphertext. We must also address the
possibility of loss of partial information about the plaintext. In other words, we
should be asking whether the scheme meets the notion of IND-CPA we discussed
above. Whether it does or not turns out to depend on the choice of group.

Before assessing IND-CPA, we need to clarify something. Recall that encryption
is not, by our definition, required to hide the length of a message, captured by the

The ElGamal scheme in Zp for a prime p

• In this group the ElGamal is IND-CPA insecure, namely there 
exists an adversary A with ind-cpa advantage 1.

• The idea: given a ciphertext A can compute Jp(M).

•

•

•

•

•

Note that M0 is a square and M1 is not. Why?

If b=0 then Jp(M0)=1, Jp(W)=s , if b=1 then Jp(M1)=-1, Jp(W)≠s

Hence                                     and

∗
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fact that the left-or-right encryption oracle simply returns ⊥ if fed a pair of messages
of equal length. This leads us to ask what is the length of a message when the latter
is a group element. As we said earlier, some encoding of group elements as strings is
presumed. However, we insist that the strings corresponding to all elements of the
group be of the same length, meaning encryption should not enable an adversary to
distinguish the ciphertexts corresponding to any two group elements.

8.5.2 El Gamal in the group Z∗
p

We first look at the case where G = Z∗
p for a prime p ≥ 3 and show that in this case

the scheme fails to be IND-CPA. The attacks rely on a little number theory from
Chapter ??. Recall that the Legendre (also Jacobi) symbol Jp(A) of A ∈ Z∗

p is 1 if
A is a quadratic residue and −1 otherwise. We claim that given a ciphertext (Y, W )
of the scheme above, we can compute Jp(M). This is loss of information about M
since a priori there is no reason that the Jacobi symbol of M should be known to
an adversary.

We now explain how to compute Jp(M) given an encryption (Y, W ) of M under
public key X = gx. The scheme tells us that W = KM where K = gxy and gy = Y .
We first note that by Proposition ??, Jp(W ) = Jp(KM) = Jp(K) · Jp(M). This
implies Jp(M) = Jp(K) · Jp(W ). Now Proposition ?? tells us Jp(K) = Jp(gxy)
can be computed given Jp(X) and Jp(Y ). Finally, Proposition ?? tells us that
Jp(X), Jp(Y ), Jp(W ) can all be computed in time cubic in the length of p. Putting
it all together, Jp(M) can be computed given X, Y, W in time cubic in the length
of p. We now detail the attack.

Proposition 8.9 Let p ≥ 3 be a prime and let G = Z∗
p. Let g be a generator of G.

Let AEEG be the El Gamal encryption scheme associated to G, g as per Scheme 8.8.
Then there is an adversary A such that

Advind-cpa
AEEG

(A) = 1 .

Furthermore A makes only one query to its left-or-right encryption oracle and having
running time O(|p|3) plus the time to perform some encoding related operations.

Proof of Proposition 8.9: Adversary A has input a public key X ∈ Z∗
p and

access to a left-or-right encryption oracle EX(LR(·, ·, b)), where E is the encryption
algorithm of the scheme. (We regard p, g as fixed and known to all parties including
the adversary.) Now here is the adversary:

Adversary AEX(LR(·,·,b))(X)
M0 ← 1 ; M1 ← g

(Y, W ) $← EX(LR(M0, M1, b))
If X(p−1)/2 ≡ −1 (mod p) and Y (p−1)/2 ≡ −1 (mod p))

then s ← −1 else s ← 1

28 ASYMMETRIC ENCRYPTION

EndIf
If W (p−1)/2 ≡ s (mod p) then return 0 else return 1 EndIf

Proposition ?? together with Proposition ?? tell us that s = Jp(K) where K = gxy,
Y = gy and X = gx. By Proposition ?? and some basic algebra, we have

Jp(W ) = Jp(KM−1
b ) = Jp(K) · Jp(M−1

b ) = Jp(K) · Jp(Mb) = s · Jp(Mb)

where b is the challenge bit. Proposition ?? tells us that M0 is a square (it equals g0

and 0 is even) and M1 is a non-square (it equals g1 and 1 is odd). Now suppose we are
in world 0, meaning b = 0. Then Jp(Mb) = 1 so Jp(W ) = s and thus A returns 0.
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• The ElGamal is IND-CPA secure in groups where the 
Decisional Diffie-Hellman (DDH) problem is hard, 

• i.e. in QR(Zp) -the subgroup of quadratic residues of Zp 

where p=2q+1 and p,q are primes. It’s a cyclic group of 
prime order.

∗ ∗

IND-CCA insecurity of ElGamal

• ElGamal is not IND-CCA secure regardless of the choice of 
group G.

•

•

•

•

•

•

•

• The ind-cca advantage of A is 1 and A maks just one LR 
encryption and 1 decryption query and makes 2 group 
multiplications.
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Adversary AEX(LR(·,·,b)),Dx(·)(X)
Let M0, M1 be any two distinct elements of G

(Y, W ) $← EX(LR(M0, M1, b))
W ′ ← Wg

M ← Dx((Y, W ′))
If M = M0g then return 0 else return 1

The ciphertext (Y, W ′) is different from the ciphertext (Y, W ) and thus the adversary
is allowed to call its decryption oracle on (Y, W ′). Let b denote the challenge bit
and let K = gxy where Y = gy. Then

M = Dx((Y, W ′)) = K−1W ′ = K−1Wg = Mbg .

Thus the value returned by A is the bit b, meaning it has advantage 1.

8.5.4 Security of El Gamal under the DDH assumption

In suitable groups, the El Gamal encryption scheme is secure against chosen-plaintext
attack. The groups in question are those for which the DDH (Decision Diffie-
Hellman) problem is hard. The problem was described in Section ??. Recall the
problem is that the adversary is given gx, gy, gz and must return a bit to indicate
whether or not gz = gxy, where g is a generator of the underlying cyclic group G. If
one can solve the CDH problem then one can solve the DDH problem by computing
gxy and testing whether it equals gz, but it might be possible to solve the DDH
problem without solving the CDH problem. Indeed, this is true in some groups
such as integers modulo a prime, as indicated by Proposition ??, meaning the DDH
problem is easy in these groups. But there are choices of group for which the DDH
problem is hard, in particular some groups of prime order such as the subgroup of
quadratic residues of the group of integers modulo a prime (cf. Section ??).
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Cramer-Shoup encryption scheme

• The scheme is somewhat similar to ElGamal, but uses more 
exponentiations and a hash function.

• The Cramer-Shoup scheme is IND-CCA secure if the DDH problem 
is hard in the group and if the hash function family is universal one-
way.

• Reference: R. Cramer and V. Shoup, “A practical public key 
cryptosystem provably secure against adaptive chosen ciphertext 
attack”, In proceedings of Crypto ‘98.
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