CS 6260
Number-theoretic primitives

Discrete-log related problems

- Let \mathbf{G} be a cyclic group and let $\mathrm{m}=|\mathbf{G}|$. The discrete logarithm function $\operatorname{DLog}_{\mathbf{G}, \mathrm{g}}(\mathrm{a}): \mathbf{G} \rightarrow \mathbf{Z}_{\mathbf{m}}$ takes $\mathrm{a} \in \mathbf{G}$ and returns $\mathrm{i} \in \mathbf{Z}_{\mathbf{m}}$ such that $\mathrm{g}^{\mathrm{i}}=\mathrm{a}$.
- There are several computational problems related to this function:
- Discrete-logarithm (DL) problem
- Computational Diffie-Hellman (CDH) problem
- Decisional Diffie-Hellman (DDH) problem

Problem	Given	Figure out
Discrete logarithm (DL)	g^{x}	x
Computational Diffie-Hellman (CDH)	g^{x}, g^{y}	$g^{x y}$
Decisional Diffie-Hellman (DDH)	g^{x}, g^{y}, g^{z}	Is $z \equiv x y \quad(\bmod \|G\|) ?$

- As no encryption scheme besides the OneTimePad is unconditionally secure, we need to find some building blocks - hard problems (assumptions) to base security of our new encryption schemes on.
- Block ciphers and their PRF security is not an option since now we don't have shared keys in the public-key (asymmetric-key) setting.
- Let's consider the discrete log related problems and the RSA problem.

DL problem

- Def. Let \mathbf{G} be a cyclic group and let $m=|\mathbf{G}|$. Let g be a generator. Consider the following experiment associated with an adversary A.
- Experiment $\operatorname{Exp}_{G, g}^{\mathrm{dl}}(A)$

- $\bar{x} \leftarrow A(X)$

If $g^{\bar{x}}=X$ then return 1 else return 0

- The dl-advantage of A is defined as
- $\operatorname{Adv}_{G, g}^{\mathrm{dl}}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{dl}}(A)=1\right]$
-
- The discrete logarithm problem is said to be hard in \mathbf{G} if the dl-advantage of any adversary with reasonable resources is small.

CDH

- Def. Let \mathbf{G} be a cyclic group of order m. Let g be a generator. Consider the following experiment associated with an adversary A.
- Experiment $\operatorname{Exp}_{G, g}^{\mathrm{cdh}}(A)$
$x \stackrel{\S}{\leftarrow} \mathbf{Z}_{m} ; y \stackrel{\oiint}{\leftarrow} \mathbf{Z}_{m}$
- $\quad X \leftarrow g^{x} ; Y \leftarrow g^{y}$
- $Z \leftarrow A(X, Y)$
- If $Z=g^{x y}$ then return 1 else return 0
- The cdh-advantage of A is defined as
- $\quad \mathbf{A d v}_{G, g}^{\mathrm{cdh}}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{cdh}}(A)=1\right]$
- The computational Diffie-Hellman (CDH) problem is said to be hard in \mathbf{G} if the cdh-advantage of any adversary with reasonable resources is small.

DDH

- Def. Let \mathbf{G} be a cyclic group of order m. Let g be a generator. Consider the following experiments associated with an adversary A.
- Experiment $\operatorname{Exp}_{G, g}^{\mathrm{ddh}-1}(A)$
$x \stackrel{\stackrel{\unrhd}{\bullet}}{\mathbf{Z}_{m}}$
Experiment $\operatorname{Exp}_{G, g}^{\mathrm{ddh}-0}(A)$
$x \stackrel{\&}{\stackrel{8}{2}} \mathbf{Z}_{m}$
- $\quad y \stackrel{\&}{\leftarrow} \mathbf{Z}_{m}$
- $\quad X \leftarrow g^{x} ; Y \leftarrow g^{y} ; Z \leftarrow g^{z}$
$d \leftarrow A(X, Y, Z)$
$y \stackrel{\leftarrow}{\bullet} \mathbf{Z}_{m}$
$z \stackrel{\&}{-} \mathbf{Z}_{m}$
$X \leftarrow g^{x} ; Y \leftarrow g^{y} ; Z \leftarrow g^{z}$
$d \leftarrow A(X, Y, Z)$
- Return d

Return d

- The cdh-advantage of A is defined as
- $\operatorname{Adv}_{G, g}^{\mathrm{ddh}}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{ddh}-1}(A)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{ddh}-0}(A)=1\right]$
- The decisional Diffie-Hellman (DDH) problem is said to be hard in \mathbf{G} if the ddh-advantage of any adversary with reasonable resources is small.

Relations between problems

- Fix a group and a generator

- The computational complexity of the problems depend on the choice of a group.
- For most groups there is an algorithm that solves the DL problem in $\mathrm{O}\left(|\mathrm{G}|^{1 / 2}\right)$
- Let's consider $\mathbf{G}=\mathbf{Z}_{\mathbf{p}}^{*}$ for a prime p .
- Claim. [DDH is easy]. Let $p \geq 3$ be a prime, let $\mathbf{G}=\mathbf{Z}_{\mathbf{p}}^{*}$, and let g be a generator of \mathbf{G}. Then there is an adversary A, with running time $\mathrm{O}\left(|p|^{3}\right)$ such that

$$
\mathbf{A d v}_{G, g}^{\mathrm{ddh}}(A)=\frac{1}{2}
$$

- Proof. The idea is to compute and analyze the Legendre symbols of the inputs.
- Adversary $A(X, Y, Z)$
- If $J_{p}(X)=1$ or $J_{p}(Y)=1$
- Then $s \leftarrow 1$ Else $s \leftarrow-1$
- If $J_{p}(Z)=s$ then return 1 else return 0

We claim that

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{ddh}-1}(A)=1\right]=1 \\
& \operatorname{Pr}\left[\operatorname{Exp}_{G, g}^{\mathrm{ddh}-0}(A)=1\right]=\frac{1}{2}
\end{aligned}
$$

subtracting and noting that computing the Legendre symbol takes cubic time in $|\mathrm{p}|$ (computed via exponentiation) we get the statement.

- We often want the DDH problem to be hard.
- The DDH problem is believed to be hard in several groups, e.g.
- $\mathrm{QR}\left(\mathbf{Z}_{\mathbf{p}}^{*}\right)$-the subgroup of quadratic residues of $\mathbf{Z}_{\mathbf{p}}^{*}$ where $p=2 q+1, p, q$, are primes. It's a cyclic group of prime order.
- The best algorithm to solve the CDH problem in $\mathbf{Z}_{\mathbf{p}}^{*}$ is (seems to be) by solving the DL problem.
- The (seemingly) best algorithm to solve the DL problem is the GNFS (General Number Field Sieve) that runs
- $\quad O\left(e^{(C+o(1)) \cdot \ln (p)^{1 / 3} \cdot(\ln \ln (p))^{2 / 3}}\right)$
-

where $\mathrm{C} \approx 1.92$.
If the prime factorization of order of the group is known: $p-1=p_{1}^{\alpha_{1}} \cdots p_{n}^{\alpha_{n}}$, the the DL problem can be solved in time in the order of $\sum_{i=1}^{n} \alpha_{i} \cdot\left(\sqrt{p_{i}}+|p|\right)$

- Thus if we want the DL problem to be hard, then at least one prime factor needs to be large. E.g. $p=2 q+1$, where q is a large prime.

