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Number-theoretic primitives

• As no encryption scheme besides the 
OneTimePad is unconditionally secure, we need 
to find some building blocks - hard problems 
(assumptions) to base security of our new 
encryption schemes on.

• Block ciphers and their PRF security is not an 
option since now we don’t have shared keys in 
the public-key (asymmetric-key) setting.  

• Let’s consider the discrete log related problems 
and the RSA problem.

Discrete-log related problems
• Let G be a cyclic group and let m = |G|. The discrete 

logarithm function DLogG,g(a): G → Zm  takes a ∈ G and returns 

i ∈ Zm such that gi = a. 

• There are several computational problems related to this 
function:

• Discrete-logarithm (DL) problem

• Computational Diffie-Hellman (CDH) problem

• Decisional Diffie-Hellman (DDH) problem
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Problem Given Figure out

Discrete logarithm (DL) gx x

Computational Diffie-Hellman (CDH) gx, gy gxy

Decisional Diffie-Hellman (DDH) gx, gy, gz Is z ≡ xy (mod |G|)?

Figure 10.1: An informal description of three discrete logarithm related problems over a cyclic
group G with generator g. For each problem we indicate the input to the attacker, and what the
attacker must figure out to “win.” The formal definitions are in the text.

One might imagine “encrypting” a message x ∈ Zm by letting gx be the ciphertext. An
adversary wanting to recover x is then faced with solving the discrete logarithm problem to do so.
However, as a form of encryption, this has the disadvantage of being non-functional, because an
intended recipient, namely the person to whom the sender is trying to communicate x, is faced
with the same task as the adversary in attempting to recover x.

The Diffie-Hellman (DH) problems first appeared in the context of secret key exchange. Suppose
two parties want to agree on a key which should remain unknown to an eavesdropping adversary.
The first party picks x $← Zm and sends X = gx to the second party; the second party correspond-
ingly picks y $← Zm and sends Y = gy to the first party. The quantity gxy is called the DH-key
corresponding to X, Y . We note that

Y x = gxy = Xy . (10.1)

Thus the first party, knowing Y, x, can compute the DH key, as can the second party, knowing X, y.
The adversary sees X, Y , so to recover the DH-key the adversary must solve the Computational
Diffie-Hellman (CDH) problem, namely compute gxy given X = gx and Y = gy. Similarly, we will
see later a simple asymmetric encryption scheme, based on Equation (10.1), where recovery of the
encrypted message corresponds to solving the CDH problem.

The obvious route to solving the CDH problem is to try to compute the discrete logarithm of
either X or Y and then use Equation (10.1) to obtain the DH key. However, there might be other
routes that do not involve computing discrete logarithms, which is why CDH is singled out as a
computational problem in its own right. This problem appears to be computationally intractable
in a variety of groups.

We have seen before that security of a cryptographic scheme typically demands much more than
merely the computational intractability of recovery of some underlying key. The computational
intractability of the CDH problem turns out to be insufficient to guarantee the security of many
schemes based on DH keys, including the secret key exchange protocol and encryption scheme
mentioned above. The Decisional Diffie-Hellman (DDH) problem provides the adversary with a
task that can be no harder, but possibly easier, than solving the CDH problem, namely to tell
whether or not a given group element Z is the DH key corresponding to given group elements X, Y .
This problem too appears to be computationally intractable in appropriate groups.

We now proceed to define the problems more formally. Having done that we will provide more
specific discussions about their hardness in various different groups and their relations to each
other.

DL problem
• Def. Let G be a cyclic group and let m = |G|. Let g be a 

generator. Consider the following experiment associated with 
an adversary A.

•

•

•

• The dl-advantage of A is defined as

•

•

• The discrete logarithm problem is said to be hard in G if the 
dl-advantage of any adversary with reasonable resources is 
small. 
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10.1.2 The discrete logarithm problem

The description of the discrete logarithm problem given above was that the adversary is given as
input some group element X, and is considered successful if it can output DLogG,g(X). We would
like to associate to a specific adversary A some advantage function measuring how well it does in
solving this problem. The measure adopted is to look at the fraction of group elements for which
the adversary is able to compute the discrete logarithm. In other words, we imagine the group
element X given to the adversary as being drawn at random.

Definition 10.1 Let G be a cyclic group of order m, let g be a generator of G, and let A be an
algorithm that returns an integer in Zm. We consider the following experiment:

Experiment Expdl
G,g(A)

x $← Zm ; X ← gx

x ← A(X)
If gx = X then return 1 else return 0

The dl-advantage of A is defined as

Advdl
G,g(A) = Pr

[
Expdl

G,g(A) = 1
]

.

Recall that the discrete exponentiation function takes input i ∈ Zm and returns the group element
gi. The discrete logarithm function is the inverse of the discrete exponentiation function. The
definition above simply measures the one-wayness of the discrete exponentiation function according
to the standard definition of one-way function. It is to emphasize this that certain parts of the
experiment are written the way they are.

The discrete logarithm problem is said to hard in G if the dl-advantage of any adversary of
reasonable resources is small. Resources here means the time-complexity of the adversary, which
includes its code size as usual.

10.1.3 The Computational Diffie-Hellman problem

As above, the transition from the informal description to the formal definition involves considering
the group elements X, Y to be drawn at random.

Definition 10.2 Let G be a cyclic group of order m, let g be a generator of G, and let A be an
algorithm that returns an element of G. We consider the following experiment:

Experiment Expcdh
G,g(A)

x $← Zm ; y $← Zm

X ← gx ; Y ← gy

Z ← A(X, Y )
If Z = gxy then return 1 else return 0

The cdh-advantage of A is defined as

Advcdh
G,g(A) = Pr

[
Expcdh

G,g(A) = 1
]

.

Again, the CDH problem is said to be hard in G if the cdh-advantage of any adversary of reasonable
resources is small, where the resource in question is the adversary’s time complexity.
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CDH
• Def. Let G be a cyclic group of order m.  Let g be a generator. 

Consider the following experiment associated with an 
adversary A.

•

•

•

• The cdh-advantage of A is defined as

•

• The computational Diffie-Hellman (CDH) problem is said to be 
hard in G if the cdh-advantage of any adversary with 
reasonable resources is small. 
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DDH
• Def. Let G be a cyclic group of order m.  Let g be a generator. 

Consider the following experiments associated with an 
adversary A.

•

•

•

•

• The cdh-advantage of A is defined as

•

• The decisional Diffie-Hellman (DDH) problem is said to be hard 
in G if the ddh-advantage of any adversary with reasonable 
resources is small. 
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10.1.4 The Decisional Diffie-Hellman problem

The formalization considers a “two worlds” setting. The adversary gets input X, Y, Z. In either
world, X, Y are random group elements, but the manner in which Z is chosen depends on the
world. In World 1, Z = gxy where x = DLogG,g(X) and y = DLogG,g(Y ). In World 0, Z is chosen
at random from the group, independently of X, Y . The adversary must decide in which world it is.
(Notice that this is a little different from the informal description of Fig. 10.1 which said that the
adversary is trying to determine whether or not Z = gxy, because if by chance Z = gxy in World 0,
we will declare the adversary unsuccessful if it answers 1.)

Definition 10.3 Let G be a cyclic group of order m, let g be a generator of G, let A be an
algorithm that returns a bit, and let b be a bit. We consider the following experiments:

Experiment Expddh-1
G,g (A)

x $← Zm

y $← Zm

z ← xy mod m
X ← gx ; Y ← gy ; Z ← gz

d ← A(X, Y, Z)
Return d

Experiment Expddh-0
G,g (A)

x $← Zm

y $← Zm

z $← Zm

X ← gx ; Y ← gy ; Z ← gz

d ← A(X, Y, Z)
Return d

The ddh-advantage of A is defined as

Advddh
G,g (A) = Pr

[
Expddh-1

G,g (A) = 1
]
− Pr

[
Expddh-0

G,g (A) = 1
]

.

Again, the DDH problem is said to be hard in G if the ddh-advantage of any adversary of reasonable
resources is small, where the resource in question is the adversary’s time complexity.

10.1.5 Relations between the problems

Relative to a fixed group G and generator g for G, if you can solve the DL problem then you
can solve the CDH problem, and if you can solve the CDH problem then you can solve the DDH
problem. So if DL is easy then CDH is easy, and if CDH is easy then DDH is easy. Equivalently,
if DDH is hard then CDH is hard, and if CDH is hard then DL is hard.

We note that the converses of these statements are not known to be true. There are groups
where DDH is easy, while CDH and DL appear to be hard. (We will see examples of such groups
later.) Correspondingly, there could be groups where CDH is easy but DL is hard.

The following Proposition provides the formal statement and proof corresponding to the above
claim that if you can solve the DL problem then you can solve the CDH problem, and if you can
solve the CDH problem then you can solve the DDH problem.

Proposition 10.4 Let G be a cyclic group and let g be a generator of G. Let Adl be an adversary
(against the DL problem). Then there exists an adversary Acdh (against the CDH problem) such
that

Advdl
G,g(Adl) ≤ Advcdh

G,g(Acdh) . (10.2)

Furthermore the running time of Acdh is the that of Adl plus the time to do one exponentiation in
G. Similarly let Acdh be an adversary (against the CDH problem). Then there exists an adversary
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Relations between problems

• Fix a group and a generator

• The computational complexity of the problems 
depend on the choice of a group.

Can solve 
DL

Can solve 
CDH

Can solve 
DDH

⇒ ⇒

DDH is 
hard

⇒ ⇒CDH is 
hard

DL is 
hard

• For most groups there is an algorithm that solves the DL 
problem in O(|G|1/2)

• Let’s consider G=Zp for a prime p.

• Claim. [DDH is easy]. Let p ≥ 3 be a prime, let  G=Zp, and 

let g be a generator of G. Then there is an adversary A, 

with running time O(|p|3) such that

∗

∗
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There are several different algorithms with this running time. Shank’s baby-step giant-step
algorithm is the simplest, and is deterministic. Pollard’s algorithm is randomized, and, although
taking time on the same order as that taken by Shank’s algorithm, is more space efficient, and
preferred in practice.

Let us present Shank’s baby-step giant-step algorithm. Let m = |G| and let n = !√m#.
Given X = gx we seek x. We note that there exist integers x0, x1 such that 0 ≤ x0, x1 ≤ n and
x = nx1 + x0. This means that gnx1+x0 = X, or Xg−x0 = (gn)x1 . The idea of the algorithm is to
compute two lists:

Xg−b for b = 0, 1, . . . , n

(gn)a for a = 0, 1, . . . , n

and then find a group element that is contained in both lists. The corresponding values of a, b
satisfy Xg−b = (gn)a, and thus DLogG,g(X) = an + b. The details follow.

Algorithm Absgs(X)
n ← !√m# ; N ← gn

For b = 0, . . . , n do B[Xg−b] ← b
For a = 0, . . . , n do

Y ← Na

If B[Y ] is defined then x0 ← B[Y ] ; x1 ← a
Return ax1 + x0

This algorithm is interesting because it shows that there is a better way to compute the discrete
logarithm of X than to do an exhaustive search for it. However, it does not yield a practical discrete
logarithm computation method, because one can work in groups large enough that an O(|G|1/2)
algorithm is not really feasible. There are however better algorithms in some specific groups.

10.2.2 Integers modulo a prime

Naturally, the first specific group to consider is the integers modulo a prime, which we know is
cyclic. So let G = Z∗

p for some prime p and let g be a generator of g. We consider the different
problems in turn.

We begin by noting that the Decisional Diffie-Hellman problem is easy in this group. Some
indication of this already appeared in the chapter on Computational Number Theory. In particular
we saw there that the DH key gxy is a square with probability 3/4 and a non-square with probability
1/4 if x, y are chosen at random from Zp−1. However, we know that a random group element is
a square with probability 1/2. Thus, a strategy to tell which world we are in when given a triple
X, Y, Z is to test whether or not Z is a square mod p. If so, bet on World 1, else on World 0. (We
also know that the Jacobi symbol can be computed via an exponentiation mod p, so testing for
squares can be done efficiently, specifically in cubic time.) A computation shows that this adversary
has advantage 1/4, enough to show that the DDH problem is easy. The Proposition below presents
a slightly better attack that achieves advantage 1/2, and provides the details of the analysis.

Proposition 10.5 Let p ≥ 3 be a prime, let G = Z∗
p, and let g be a generator of G. Then there

is an adversary A, with running time O(|p|3) such that

Advddh
G,g (A) =

1

2
.



• Proof. The idea is to compute and analyze the Legendre 
symbols of the inputs.

•

•

•

We claim that

subtracting and noting that computing the Legendre symbol 
takes cubic time in |p| (computed via exponentiation) we get 
the statement.

Bellare and Rogaway 7

Proof of Proposition 10.5: The input to our adversary A is a triple X, Y, Z of group elements,
and the adversary is trying to determine whether Z was chosen as gxy or as a random group element,
where x, y are the discrete logarithms of X and Y , respectively. We know that if we know Jp(gx)
and Jp(gy), we can predict Jp(gxy). Our adversary’s strategy is to compute Jp(gx) and Jp(gy) and
then see whether or not the challenge value Z has the Jacobi symbol value that gxy ought to have.
In more detail, it works as follows:

Adversary A(X, Y, Z)
If Jp(X) = 1 or Jp(Y ) = 1

Then s ← 1 Else s ← −1
If Jp(Z) = s then return 1 else return 0

We know that the Jacobi symbol can be computed via an exponentiation modulo p, which we know
takes O(|p|3) time. Thus, the time-complexity of the above adversary is O(|p|3). We now claim
that

Pr
[
Expddh-1

G,g (A) = 1
]

= 1

Pr
[
Expddh-0

G,g (A) = 1
]

=
1

2
.

Subtracting, we get

Advddh
G,g (A) = Pr

[
Expddh-1

G,g (A) = 1
]
− Pr

[
Expddh-0

G,g (A) = 1
]

= 1 − 1

2
=

1

2
as desired. Let us now see why the two equations above are true.

Let x = DLogG,g(X) and y = DLogG,g(Y ). We know that the value s computed by our adversary
A equals Jp(gxy mod p). But in World 1, Z = gxy mod p, so our adversary will always return 1. In
World 0, Z is distributed uniformly over G, so

Pr [Jp(Z) = 1] = Pr [Jp(Z) = −1] =
(p − 1)/2

p − 1
=

1

2
.

Since s is distributed independently of Z, the probability that Jp(Z) = s is 1/2.

Now we consider the CDH and DL problems. It appears that the best approach to solving the
CDH in problem in Z∗

p is via the computation of discrete logarithms. (This has not been proved in
general, but there are proofs for some special classes of primes.) Thus, the main question is how
hard is the computation of discrete logarithms. This depends both on the size and structure of p.

The currently best algorithm is the GNFS (General Number Field Sieve) which has a running
time of the form

O(e(C+o(1))·ln(p)1/3·(ln ln(p))2/3

) (10.4)

where C ≈ 1.92. For certain classes of primes, the value of C is even smaller. These algorithms are
heuristic, in the sense that the run time bounds are not proven, but appear to hold in practice.

If the prime factorization of the order of the group is known, the discrete logarithm problem
over the group can be decomposed into a set of discrete logarithm problems over subgroups. As a
result, if p− 1 = pα1

1 · · · pαn
n is the prime factorization of p− 1, then the discrete logarithm problem

in Z∗
p can be solved in time on the order of

n∑
i=1

αi · (√pi + |p|) .
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as desired. Let us now see why the two equations above are true.
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A equals Jp(gxy mod p). But in World 1, Z = gxy mod p, so our adversary will always return 1. In
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(p − 1)/2

p − 1
=

1

2
.

Since s is distributed independently of Z, the probability that Jp(Z) = s is 1/2.

Now we consider the CDH and DL problems. It appears that the best approach to solving the
CDH in problem in Z∗

p is via the computation of discrete logarithms. (This has not been proved in
general, but there are proofs for some special classes of primes.) Thus, the main question is how
hard is the computation of discrete logarithms. This depends both on the size and structure of p.

The currently best algorithm is the GNFS (General Number Field Sieve) which has a running
time of the form

O(e(C+o(1))·ln(p)1/3·(ln ln(p))2/3

) (10.4)

where C ≈ 1.92. For certain classes of primes, the value of C is even smaller. These algorithms are
heuristic, in the sense that the run time bounds are not proven, but appear to hold in practice.
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over the group can be decomposed into a set of discrete logarithm problems over subgroups. As a
result, if p− 1 = pα1

1 · · · pαn
n is the prime factorization of p− 1, then the discrete logarithm problem

in Z∗
p can be solved in time on the order of

n∑
i=1

αi · (√pi + |p|) .

• The best algorithm to solve the CDH problem in Zp is (seems 

to be) by solving the DL problem. 

• The (seemingly) best algorithm to solve the DL problem is the 
GNFS (General Number Field Sieve) that runs

•

•

where C ≈1.92.

If the prime factorization of order of the group is known: 

                              , the the DL problem can be solved in time 

in the order of

• Thus if we want the DL problem to be hard, then at least one 

prime factor needs to be large. E.g. p=2q+1, where q is a 

large prime.

∗
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• We often want the DDH problem to be hard.

• The DDH problem is believed to be hard in several groups, 
e.g.

• QR(Zp) -the subgroup of quadratic residues of Zp where 

p=2q+1, p,q, are primes. It’s a cyclic group of prime order.

∗ ∗


