
Digital signature schemes

• Let’s study the problem of data authentication and integrity in
the asymmetric (public-key) setting.

• A sender needs to be assured that a message came from the
legitimate sender and was not modified on the way.

• MACs solved this problem but for the symmetric-key setting.

• A digital signature scheme primitive is the solution to the goal
of authenticity in the asymmetric setting.

Digital signature schemes

Sender S

(pk,sk)K

Sign
sks σM

Receiver

VF

pks

1/0

M

σ

DS=(K,Sign,VF)

It is required that for every M∈MsgSp, every (pk,sk) that can be
output by K, if σ is output by Sign, then VF(pk,M,σ)=1

MsgSp(pk)-message space

M

Digital signature schemes

• The signing algorithm can be randomized or stateful (but it
does not have to be).

• The MsgSp is often {0,1}* for every pk.

• Note that the key usage in a digital signature scheme is
reverse compared to an asymmetric encryption scheme:

• in a digital signature scheme the holder of the secret key is
a sender, and anyone can verify

• in an asymmetric encryption scheme the holder of the
secret key is a receiver and anyone can encrypt

Security definition for digital signatures

A

Fix DS=(K,Sign,VF)

Run K to get (pk,sk)

For an adversary A consider an experiment

Sign (sk,⋅)

M,σ

Return 1 iff VF(pk,M,σ)=1 and M∈MsgSp(pk) that was was not queried
to the signing oracle

The uf-cma advantage of A is defined as

pk

4 DIGITAL SIGNATURES

Experiment Expuf-cmaDS (A)
(pk, sk) $←K
(M, σ) ← ASignsk(·)(pk)
If the following are true return 1 else return 0:
– VFpk(M, σ) = 1
– M ∈ Messages(pk)
– M was not a query of A to its oracle

The uf-cma-advantage of A is defined as

Advuf-cma
DS (A) = Pr

[
Expuf-cma

DS (A) = 1
]

.

In the case of message authentication schemes, we provided the adversary not only
with an oracle for producing tags, but also with an oracle for verifying them. Above,
there is no verification oracle. This is because verification of a digital signature does
not depend on any quantity that is secret from the adversary. Since the adversary
has the public key and knows the algorithm VF, it can verify as much as it pleases
by running the latter.

When we talk of the time-complexity of an adversary, we mean the worst case
total execution time of the entire experiment. This means the adversary complexity,
defined as the worst case execution time of A plus the size of the code of the adversary
A, in some fixed RAM model of computation (worst case means the maximum over
A’s coins or the answers returned in response to A’s oracle queries), plus the time for
other operations in the experiment, including the time for key generation and the
computation of answers to oracle queries via execution of the encryption algorithm.

As adversary resources, we will consider this time complexity, the message length
µ, and the number of queries q to the sign oracle. We define µ as the sum of the
lengths of the oracle queries plus the length of the message in the forgery output
by the adversary. In practice, the queries correspond to messages signed by the
legitimate sender, and it would make sense that getting these examples is more
expensive than just computing on one’s own. That is, we would expect q to be
smaller than t. That is why q, µ are resources separate from t.

9.3 RSA based signatures

The RSA trapdoor permutation is widely used as the basis for digital signature
schemes. Let us see how.

9.3.1 Key generation for RSA systems

We will consider various methods for generating digital signatures using the RSA
functions. While these methods differ in how the signature and verification algo-
rithms operate, they share a common key-setup. Namely the public key of a user
is a modulus N and an encryption exponent e, where N = pq is the product of two

4 DIGITAL SIGNATURES

Experiment Expuf-cmaDS (A)
(pk, sk) $←K
(M, σ) ← ASignsk(·)(pk)
If the following are true return 1 else return 0:
– VFpk(M, σ) = 1
– M ∈ Messages(pk)
– M was not a query of A to its oracle

The uf-cma-advantage of A is defined as

Advuf-cma
DS (A) = Pr

[
Expuf-cma

DS (A) = 1
]

.

In the case of message authentication schemes, we provided the adversary not only
with an oracle for producing tags, but also with an oracle for verifying them. Above,
there is no verification oracle. This is because verification of a digital signature does
not depend on any quantity that is secret from the adversary. Since the adversary
has the public key and knows the algorithm VF, it can verify as much as it pleases
by running the latter.

When we talk of the time-complexity of an adversary, we mean the worst case
total execution time of the entire experiment. This means the adversary complexity,
defined as the worst case execution time of A plus the size of the code of the adversary
A, in some fixed RAM model of computation (worst case means the maximum over
A’s coins or the answers returned in response to A’s oracle queries), plus the time for
other operations in the experiment, including the time for key generation and the
computation of answers to oracle queries via execution of the encryption algorithm.

As adversary resources, we will consider this time complexity, the message length
µ, and the number of queries q to the sign oracle. We define µ as the sum of the
lengths of the oracle queries plus the length of the message in the forgery output
by the adversary. In practice, the queries correspond to messages signed by the
legitimate sender, and it would make sense that getting these examples is more
expensive than just computing on one’s own. That is, we would expect q to be
smaller than t. That is why q, µ are resources separate from t.

9.3 RSA based signatures

The RSA trapdoor permutation is widely used as the basis for digital signature
schemes. Let us see how.

9.3.1 Key generation for RSA systems

We will consider various methods for generating digital signatures using the RSA
functions. While these methods differ in how the signature and verification algo-
rithms operate, they share a common key-setup. Namely the public key of a user
is a modulus N and an encryption exponent e, where N = pq is the product of two

The resources of A are its time-complexity, the number of queries and
the total length of all queries and of the message in the forgery.

1

2

3

4

Plain RSA signature scheme

• Is Plain RSA signature scheme secure?

Bellare and Rogaway 5

distinct primes, and e ∈ Z∗
ϕ(N). The corresponding secret contains the decryption

exponent d ∈ Z∗
ϕ(N) (and possibly other stuff too) where ed ≡ 1 (mod ϕ(N)).

How are these parameters generated? We refer back to Definition ??, where we
had introduced the notion of an RSA generator. This is a randomized algorithm
having an associated security parameter and returning a pair ((N, e), (N, p, q, d))
satisfying the various conditions listed in the definition. The key-generation algo-
rithm of the digital signature scheme is simply such a generator, meaning the user’s
public key is (N, e) and its secret key is (N, p, q, d).

Note N is not really secret. Still, it turns out to be convenient to put it in
the secret key. Also, the descriptions we provide of the signing process will usually
depend only on N, d and not p, q, so it may not be clear why p, q are in the secret key.
But in practice it is good to keep them there because their use speeds up signing
via the Chinese Remainder theorem and algorithm.

Recall that the map RSAN,e(·) = (·)e mod N is a permutation on Z∗
N with inverse

RSAN,d(·) = (·)d mod N .
Below we will consider various signature schemes all of which use the above key

generation algorithm and try to build in different ways on the one-wayness of RSA
in order to securely sign.

9.3.2 Trapdoor signatures

Trapdoor signatures represent the most direct way in which to attempt to build
on the one-wayness of RSA in order to sign. We believe that the signer, being in
possession of the secret key N, d, is the only one who can compute the inverse RSA
function RSA−1

N,e = RSAN,d. For anyone else, knowing only the public key N, e,
this task is computationally infeasible. Accordingly, the signer signs a message by
performing on it this “hard” operation. This requires that the message be a member
of Z∗

N , which, for convenience, is assumed. It is possible to verify a signature by
performing the “easy” operation of computing RSAN,e on the claimed signature and
seeing if we get back the message.

More precisely, let Krsa be an RSA generator with associated security param-
eter k, as per Definition ??. We consider the digital signature scheme DS =
(Krsa, Sign, VF) whose signing and verifying algorithms are as follows:

Algorithm SignN,p,q,d(M)
If M #∈ Z∗

N then return ⊥
x ← Md mod N
Return x

Algorithm VFN,e(M, x)
If (M #∈ Z∗

N or x #∈ Z∗
N) then return 0

If M = xe mod N then return 1 else return 0

This is a deterministic stateless scheme, and the message space for public key (N, e)
is Messages(N, e) = Z∗

N , meaning the only messages that the signer signs are those
which are elements of the group Z∗

N . In this scheme we have denoted the signature
of M by x. The signing algorithm simply applies RSAN,d to the message to get
the signature, and the verifying algorithm applies RSAN,e to the signature and tests
whether the result equals the message.

Algorithm K(k)

1

((N,e)(N, p,q,d)) $← K$rsa(k)

1

Return ((N,e)(N, p,q,d))

1

Plain RSA is not secure

6 DIGITAL SIGNATURES

The first thing to check is that signatures generated by the signing algorithm
pass the verification test. This is true because of Proposition ??, which tells us that
if x = Md mod N then xe = M mod N .

Now, how secure is this scheme? As we said above, the intuition behind it
is that the signing operation should be something only the signer can perform,
since computing RSA−1

N,e(M) is hard without knowledge of d. However, what one
should remember is that the formal assumed hardness property of RSA, namely
one-wayness under known-exponent attack (we call it just one-wayness henceforth)
as specified in Definition ??, is under a very different model and setting than that
of security for signatures. One-wayness tells us that if we select M at random and
then feed it to an adversary (who knows N, e but not d) and ask the latter to find
x = RSA−1

N,e(M), then the adversary will have a hard time succeeding. But the
adversary in a signature scheme is not given a random message M on which to forge
a signature. Rather, its goal is to create a pair (M, x) such that VFN,e(M, x) = 1.
It does not have to try to imitate the signing algorithm; it must only do something
that satisfies the verification algorithm. In particular it is allowed to choose M
rather than having to sign a given or random M . It is also allowed to obtain a valid
signature on any message other than the M it eventually outputs, via the signing
oracle, corresponding in this case to having an oracle for RSA−1

N,e(·). These features
make it easy for an adversary to forge signatures.

A couple of simple forging strategies are illustrated below. The first is to simply
output the forgery in which the message and signature are both set to 1. The second
is to first pick at random a value that will play the role of the signature, and then
compute the message based on it:

Forger F
SignN,p,q,d(·)
1 (N, e)

Return (1, 1)
Forger F

SignN,p,q,d(·)
2 (N, e)

x $← Z∗
N ; M ← xe mod N

Return (M, x)

These forgers makes no queries to their signing oracles. We note that 1e ≡ 1
(mod N), and hence the uf-cma-advantage of F1 is 1. Similarly, the value (M, x)
returned by the second forger satisfies xe mod N = M and hence it has uf-cma-
advantage 1 too. The time-complexity in both cases is very low. (In the second
case, the forger uses the O(k3) time to do its exponentiation modulo N .) So these
attacks indicate the scheme is totally insecure.

The message M whose signature the above forger managed to forge is random.
This is enough to break the scheme as per our definition of security, because we
made a very strong definition of security. Actually for this scheme it is possible to
even forge the signature of a given message M , but this time one has to use the
signing oracle. The attack relies on the multiplicativity of the RSA function.

Forger F SignN,e(·)(N, e)
M1

$← Z∗
N − {1, M} ; M2 ← MM−1

1 mod N
x1 ← SignN,e(M1) ; x2 ← SignN,e(M2)

6 DIGITAL SIGNATURES

The first thing to check is that signatures generated by the signing algorithm
pass the verification test. This is true because of Proposition ??, which tells us that
if x = Md mod N then xe = M mod N .

Now, how secure is this scheme? As we said above, the intuition behind it
is that the signing operation should be something only the signer can perform,
since computing RSA−1

N,e(M) is hard without knowledge of d. However, what one
should remember is that the formal assumed hardness property of RSA, namely
one-wayness under known-exponent attack (we call it just one-wayness henceforth)
as specified in Definition ??, is under a very different model and setting than that
of security for signatures. One-wayness tells us that if we select M at random and
then feed it to an adversary (who knows N, e but not d) and ask the latter to find
x = RSA−1

N,e(M), then the adversary will have a hard time succeeding. But the
adversary in a signature scheme is not given a random message M on which to forge
a signature. Rather, its goal is to create a pair (M, x) such that VFN,e(M, x) = 1.
It does not have to try to imitate the signing algorithm; it must only do something
that satisfies the verification algorithm. In particular it is allowed to choose M
rather than having to sign a given or random M . It is also allowed to obtain a valid
signature on any message other than the M it eventually outputs, via the signing
oracle, corresponding in this case to having an oracle for RSA−1

N,e(·). These features
make it easy for an adversary to forge signatures.

A couple of simple forging strategies are illustrated below. The first is to simply
output the forgery in which the message and signature are both set to 1. The second
is to first pick at random a value that will play the role of the signature, and then
compute the message based on it:

Forger F
SignN,p,q,d(·)
1 (N, e)

Return (1, 1)
Forger F

SignN,p,q,d(·)
2 (N, e)

x $← Z∗
N ; M ← xe mod N

Return (M, x)

These forgers makes no queries to their signing oracles. We note that 1e ≡ 1
(mod N), and hence the uf-cma-advantage of F1 is 1. Similarly, the value (M, x)
returned by the second forger satisfies xe mod N = M and hence it has uf-cma-
advantage 1 too. The time-complexity in both cases is very low. (In the second
case, the forger uses the O(k3) time to do its exponentiation modulo N .) So these
attacks indicate the scheme is totally insecure.

The message M whose signature the above forger managed to forge is random.
This is enough to break the scheme as per our definition of security, because we
made a very strong definition of security. Actually for this scheme it is possible to
even forge the signature of a given message M , but this time one has to use the
signing oracle. The attack relies on the multiplicativity of the RSA function.

Forger F SignN,e(·)(N, e)
M1

$← Z∗
N − {1, M} ; M2 ← MM−1

1 mod N
x1 ← SignN,e(M1) ; x2 ← SignN,e(M2)

6 DIGITAL SIGNATURES

The first thing to check is that signatures generated by the signing algorithm
pass the verification test. This is true because of Proposition ??, which tells us that
if x = Md mod N then xe = M mod N .

Now, how secure is this scheme? As we said above, the intuition behind it
is that the signing operation should be something only the signer can perform,
since computing RSA−1

N,e(M) is hard without knowledge of d. However, what one
should remember is that the formal assumed hardness property of RSA, namely
one-wayness under known-exponent attack (we call it just one-wayness henceforth)
as specified in Definition ??, is under a very different model and setting than that
of security for signatures. One-wayness tells us that if we select M at random and
then feed it to an adversary (who knows N, e but not d) and ask the latter to find
x = RSA−1

N,e(M), then the adversary will have a hard time succeeding. But the
adversary in a signature scheme is not given a random message M on which to forge
a signature. Rather, its goal is to create a pair (M, x) such that VFN,e(M, x) = 1.
It does not have to try to imitate the signing algorithm; it must only do something
that satisfies the verification algorithm. In particular it is allowed to choose M
rather than having to sign a given or random M . It is also allowed to obtain a valid
signature on any message other than the M it eventually outputs, via the signing
oracle, corresponding in this case to having an oracle for RSA−1

N,e(·). These features
make it easy for an adversary to forge signatures.

A couple of simple forging strategies are illustrated below. The first is to simply
output the forgery in which the message and signature are both set to 1. The second
is to first pick at random a value that will play the role of the signature, and then
compute the message based on it:

Forger F
SignN,p,q,d(·)
1 (N, e)

Return (1, 1)
Forger F

SignN,p,q,d(·)
2 (N, e)

x $← Z∗
N ; M ← xe mod N

Return (M, x)

These forgers makes no queries to their signing oracles. We note that 1e ≡ 1
(mod N), and hence the uf-cma-advantage of F1 is 1. Similarly, the value (M, x)
returned by the second forger satisfies xe mod N = M and hence it has uf-cma-
advantage 1 too. The time-complexity in both cases is very low. (In the second
case, the forger uses the O(k3) time to do its exponentiation modulo N .) So these
attacks indicate the scheme is totally insecure.

The message M whose signature the above forger managed to forge is random.
This is enough to break the scheme as per our definition of security, because we
made a very strong definition of security. Actually for this scheme it is possible to
even forge the signature of a given message M , but this time one has to use the
signing oracle. The attack relies on the multiplicativity of the RSA function.

Forger F SignN,e(·)(N, e)
M1

$← Z∗
N − {1, M} ; M2 ← MM−1

1 mod N
x1 ← SignN,e(M1) ; x2 ← SignN,e(M2)

3

Bellare and Rogaway 7

x ← x1x2 mod N
Return (M, x)

Given M the forger wants to compute a valid signature x for M . It creates M1, M2

as shown, and obtains their signatures x1, x2. It then sets x = x1x2 mod N . Now
the verification algorithm will check whether xe mod N = M . But note that

xe ≡ (x1x2)e ≡ xe
1x

e
2 ≡ M1M2 ≡ M (mod N) .

Here we used the multiplicativity of the RSA function and the fact that xi is a valid
signature of Mi for i = 1, 2. This means that x is a valid signature of M . Since M1

is chosen to not be 1 or M , the same is true of M2, and thus M was not an oracle
query of F . So F succeeds with probability one.

These attacks indicate that there is more to signatures than one-wayness of the
underlying function.

9.3.3 The hash-then-invert paradigm

Real-world RSA based signature schemes need to surmount the above attacks, and
also attend to other impracticalities of the trapdoor setting. In particular, messages
are not usually group elements; they are possibly long files, meaning bit strings of
arbitrary lengths. Both issues are typically dealt with by pre-processing the given
message M via a hash function to yield a point y in the range of RSAN,e, and then
applying RSA−1

N,e to y to obtain the signature. The hash function is public, meaning
its description is known, and anyone can compute it.

To make this more precise, let Krsa be an RSA generator with associated security
parameter k and let Keys be the set of all modulli N that have positive probability
to be output by Krsa. Let Hash be a family of functions whose key-space is Keys and
such that HashN : {0, 1}∗ → Z∗

N for every N ∈ Keys. Let DS = (Krsa, Sign, VF) be
the digital signature scheme whose signing and verifying algorithms are as follows:

Algorithm SignN,p,q,d(M)
y ← HashN (M)
x ← yd mod N
Return x

Algorithm VFN,e(M, x)
y ← HashN (M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

Let us see why this might help resolve the weaknesses of trapdoor signatures, and
what requirements security imposes on the hash function.

Let us return to the attacks presented on the trapdoor signature scheme above.
Begin with the first forger we presented, who simply output (1, 1). Is this an attack
on our new scheme? To tell, we see what happens when the above verification
algorithm is invoked on input 1, 1. We see that it returns 1 only if HashN (1) ≡ 1e

(mod N). Thus, to prevent this attack it suffices to ensure that HashN (1) %= 1.
The second forger we had previously set M to xe mod N for some random x ∈ Z∗

N .
What is the success probability of this strategy under the hash-then-invert scheme?
The forger wins if xe mod N = Hash(M) (rather than merely xe mod N = M as

All adversaries (forgers) have uf-cma advantages 1 and are
efficient.

Hash-then-invert paradigm

• We want to have an RSA-based signature scheme

• that resists the attacks above

• has a more flexible message space

• provably secure

• An idea: let’s hash the message first

Let Hash be a function family whose key space is the set of all
moduli N that can be output by Krsa s.t. Hash

Bellare and Rogaway 7

x ← x1x2 mod N
Return (M, x)

Given M the forger wants to compute a valid signature x for M . It creates M1, M2

as shown, and obtains their signatures x1, x2. It then sets x = x1x2 mod N . Now
the verification algorithm will check whether xe mod N = M . But note that

xe ≡ (x1x2)e ≡ xe
1x

e
2 ≡ M1M2 ≡ M (mod N) .

Here we used the multiplicativity of the RSA function and the fact that xi is a valid
signature of Mi for i = 1, 2. This means that x is a valid signature of M . Since M1

is chosen to not be 1 or M , the same is true of M2, and thus M was not an oracle
query of F . So F succeeds with probability one.

These attacks indicate that there is more to signatures than one-wayness of the
underlying function.

9.3.3 The hash-then-invert paradigm

Real-world RSA based signature schemes need to surmount the above attacks, and
also attend to other impracticalities of the trapdoor setting. In particular, messages
are not usually group elements; they are possibly long files, meaning bit strings of
arbitrary lengths. Both issues are typically dealt with by pre-processing the given
message M via a hash function to yield a point y in the range of RSAN,e, and then
applying RSA−1

N,e to y to obtain the signature. The hash function is public, meaning
its description is known, and anyone can compute it.

To make this more precise, let Krsa be an RSA generator with associated security
parameter k and let Keys be the set of all modulli N that have positive probability
to be output by Krsa. Let Hash be a family of functions whose key-space is Keys and
such that HashN : {0, 1}∗ → Z∗

N for every N ∈ Keys. Let DS = (Krsa, Sign, VF) be
the digital signature scheme whose signing and verifying algorithms are as follows:

Algorithm SignN,p,q,d(M)
y ← HashN (M)
x ← yd mod N
Return x

Algorithm VFN,e(M, x)
y ← HashN (M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

Let us see why this might help resolve the weaknesses of trapdoor signatures, and
what requirements security imposes on the hash function.

Let us return to the attacks presented on the trapdoor signature scheme above.
Begin with the first forger we presented, who simply output (1, 1). Is this an attack
on our new scheme? To tell, we see what happens when the above verification
algorithm is invoked on input 1, 1. We see that it returns 1 only if HashN (1) ≡ 1e

(mod N). Thus, to prevent this attack it suffices to ensure that HashN (1) %= 1.
The second forger we had previously set M to xe mod N for some random x ∈ Z∗

N .
What is the success probability of this strategy under the hash-then-invert scheme?
The forger wins if xe mod N = Hash(M) (rather than merely xe mod N = M as

$
N : {0,1}∗ → Z

∗
N

1

• What properties of the hash function do we need?

• If we have hash that “destroys” the algebraic structure and is
collision resistant the obvious attacks do not apply.

• However, to prove security we need more:

• we need to assume that the hash function is a random
function

• this is not a realistic assumption

5

6

7

8

Full-Domain-Hash (FDH) RSA signature scheme

• Let H: be a random function to which all parties
have oracle access to

• FDH-RSA is a signature scheme

12 DIGITAL SIGNATURES

signature scheme DS = (Krsa, Sign, VF) whose signing and verifying algorithms are
as follows:

Algorithm SignH(·)
N,p,q,d(M)

y ← H(M)
x ← yd mod N
Return x

Algorithm VFH(·)
N,e (M, x)

y ← H(M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

The only change with respect to the way we wrote the algorithms for the generic
hash-then-invert scheme of Section 9.3.3 is notational: we write H as a superscript
to indicate that it is an oracle accessible only via the specified oracle interface. The
instruction y ← H(M) is implemented by making the query (hash, M) and letting
y denote the answer returned, as discussed above.

We now ask ourselves whether the above signature scheme is secure under the
assumption that RSA is one-way. To consider this question we first need to extend
our definitions to encompass the new model. The key difference is that the success
probability of an adversary is taken over the random choice of H in addition to
the random choices previously considered. The forger F as before has access to a
signing oracle, but now also has access to H. Furthermore, Sign and VF now have
access to H. Let us first write the experiment that measures the success of forger
F and then discuss it more.

Experiment Expuf-cmaDS (F)
((N, e), (N, p, q, d)) $←Krsa

H $← Func({0, 1}∗,Z∗
N)

(M, x) $← FH(·),Sign
H(·)
N,p,q,d(·)(N, e)

If the following are true return 1 else return 0:
– VFH

pk(M, σ) = 1
– M was not a query of A to its oracle

Note that the forger is given oracle access to H in addition to the usual access
to the sign oracle that models a chosen-message attack. After querying its oracles
some number of times the forger outputs a message M and candidate signature x
for it. We say that F is successful if the verification process would accept M, x, but
F never asked the signing oracle to sign M . (F is certainly allowed to make hash
query M , and indeed it is hard to imagine how it might hope to succeed in forgery
otherwise, but it is not allowed to make sign query M .) The uf-cma-advantage of
A is defined as

Advuf-cma
DS (A) = Pr

[
Expuf-cma

DS (A) = 1
]

.

We will want to consider adversaries with time-complexity at most t, making at most
qsig sign oracle queries and at most qhash hash oracle queries, and with total query
message length µ. Resources refer again to those of the entire experiment. We first

12 DIGITAL SIGNATURES

signature scheme DS = (Krsa, Sign, VF) whose signing and verifying algorithms are
as follows:

Algorithm SignH(·)
N,p,q,d(M)

y ← H(M)
x ← yd mod N
Return x

Algorithm VFH(·)
N,e (M, x)

y ← H(M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

The only change with respect to the way we wrote the algorithms for the generic
hash-then-invert scheme of Section 9.3.3 is notational: we write H as a superscript
to indicate that it is an oracle accessible only via the specified oracle interface. The
instruction y ← H(M) is implemented by making the query (hash, M) and letting
y denote the answer returned, as discussed above.

We now ask ourselves whether the above signature scheme is secure under the
assumption that RSA is one-way. To consider this question we first need to extend
our definitions to encompass the new model. The key difference is that the success
probability of an adversary is taken over the random choice of H in addition to
the random choices previously considered. The forger F as before has access to a
signing oracle, but now also has access to H. Furthermore, Sign and VF now have
access to H. Let us first write the experiment that measures the success of forger
F and then discuss it more.

Experiment Expuf-cmaDS (F)
((N, e), (N, p, q, d)) $←Krsa

H $← Func({0, 1}∗,Z∗
N)

(M, x) $← FH(·),Sign
H(·)
N,p,q,d(·)(N, e)

If the following are true return 1 else return 0:
– VFH

pk(M, σ) = 1
– M was not a query of A to its oracle

Note that the forger is given oracle access to H in addition to the usual access
to the sign oracle that models a chosen-message attack. After querying its oracles
some number of times the forger outputs a message M and candidate signature x
for it. We say that F is successful if the verification process would accept M, x, but
F never asked the signing oracle to sign M . (F is certainly allowed to make hash
query M , and indeed it is hard to imagine how it might hope to succeed in forgery
otherwise, but it is not allowed to make sign query M .) The uf-cma-advantage of
A is defined as

Advuf-cma
DS (A) = Pr

[
Expuf-cma

DS (A) = 1
]

.

We will want to consider adversaries with time-complexity at most t, making at most
qsig sign oracle queries and at most qhash hash oracle queries, and with total query
message length µ. Resources refer again to those of the entire experiment. We first

{0,1}∗ → Z
∗
N

1

Security of the FDH-RSA scheme

• Theorem. Under the RSA assumption the FDH-RSA signature
scheme is uf-cma secure in the random oracle (RO) model.

• Proof. Let Krsa be an RSA generator and let DS be the FDH-

RSA signature scheme. Let F be an adversary making at most
qhash queries to its hash oracle and at most qsign queries to its

signing oracle where qhash ≥qsign +1. Then there exists an

adversary I with comparable resources s.t.

Bellare and Rogaway 13

define the execution time as the time taken by the entire experiment Expuf-cmaDS (F).
This means it includes the time to compute answers to oracle queries, to generate
the keys, and even to verify the forgery. Then the time-complexity t is supposed to
upper bound the execution time plus the size of the code of F . In counting hash
queries we again look at the entire experiment and ask that the total number of
queries to H here be at most qhash. Included in the count are the direct hash queries
of F , the indirect hash queries made by the signing oracle, and even the hash query
made by the verification algorithm in the last step. This latter means that qhash

is always at least the number of hash queries required for a verification, which for
FDH-RSA is one. In fact for FDH-RSA we will have qhash ≥ qsig + 1, something to
be kept in mind when interpreting later results. Finally µ is the sum of the lengths
of all messages in sign queries plus the length of the final output message M .

However, there is one point that needs to be clarified here, namely that if time-
complexity refers to that of the entire experiment, how do we measure the time to
pick H at random? It is an infinite object and thus cannot be actually chosen in
finite time. The answer is that although we write H as being chosen at random
upfront in the experiment, this is not how it is implemented. Instead, imagine
H as being chosen dynamically. Think of the process implementing the table we
described, so that random choices are made only at the time the H oracle is called,
and the cost is that of maintaining and updating a table that holds the values of H
on inputs queried so far. Namely when a query M is made to H, we charge the cost
of looking up the table, checking whether H(M) was already defined and returning
it if so, else picking a random point from Z∗

N , putting it in the table with index M ,
and returning it as well.

In this setting we claim that the FDH-RSA scheme is secure. The following
theorem upper bounds its uf-cma-advantage solely in terms of the ow-kea advantage
of the underlying RSA generator.

Theorem 9.3 Let Krsa be an RSA generator with associated security parameter
k, and let DS be the FDH-RSA scheme associated to Krsa. Let F be an adversary
making at most qhash queries to its hash oracle and at most qsig queries to its signing
oracle where qhash ≥ 1 + qsig. Then there exists an adversary I such that

Advuf-cma
DS (F) ≤ qhash · Advow-kea

Krsa
(I) . (9.2)

and I, F are of comparable resources.

The theorem says that the only way to forge signatures in the FDH-RSA scheme is
to try to invert the RSA function on random points. There is some loss in security:
it might be that the chance of breaking the signature scheme is larger than that of
inverting RSA in comparable time, by a factor of the number of hash queries made
in the forging experiment. But we can make Advow-keaKrsa

(t′) small enough that even
qhash · Advow-keaKrsa

(t′) is small, by choosing a larger modulus size k.
One must remember the caveat: this is in a model where the hash function

is random. Yet, even this tells us something, namely that the hash-then-invert

• I has to simulate for F the following experiment

• I has to give F a public key and answer its hash and signing
queries.

• I has to use F’s forgery to invert its challenge.

• The idea: I guesses when F makes a hash query on a
message in the future forgery, and gives its challenge to F as
an answer to this hash query. Other hash and signing queries
are answered differently (using a little trick).

12 DIGITAL SIGNATURES

signature scheme DS = (Krsa, Sign, VF) whose signing and verifying algorithms are
as follows:

Algorithm SignH(·)
N,p,q,d(M)

y ← H(M)
x ← yd mod N
Return x

Algorithm VFH(·)
N,e (M, x)

y ← H(M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

The only change with respect to the way we wrote the algorithms for the generic
hash-then-invert scheme of Section 9.3.3 is notational: we write H as a superscript
to indicate that it is an oracle accessible only via the specified oracle interface. The
instruction y ← H(M) is implemented by making the query (hash, M) and letting
y denote the answer returned, as discussed above.

We now ask ourselves whether the above signature scheme is secure under the
assumption that RSA is one-way. To consider this question we first need to extend
our definitions to encompass the new model. The key difference is that the success
probability of an adversary is taken over the random choice of H in addition to
the random choices previously considered. The forger F as before has access to a
signing oracle, but now also has access to H. Furthermore, Sign and VF now have
access to H. Let us first write the experiment that measures the success of forger
F and then discuss it more.

Experiment Expuf-cmaDS (F)
((N, e), (N, p, q, d)) $←Krsa

H $← Func({0, 1}∗,Z∗
N)

(M, x) $← FH(·),Sign
H(·)
N,p,q,d(·)(N, e)

If the following are true return 1 else return 0:
– VFH

pk(M, σ) = 1
– M was not a query of A to its oracle

Note that the forger is given oracle access to H in addition to the usual access
to the sign oracle that models a chosen-message attack. After querying its oracles
some number of times the forger outputs a message M and candidate signature x
for it. We say that F is successful if the verification process would accept M, x, but
F never asked the signing oracle to sign M . (F is certainly allowed to make hash
query M , and indeed it is hard to imagine how it might hope to succeed in forgery
otherwise, but it is not allowed to make sign query M .) The uf-cma-advantage of
A is defined as

Advuf-cma
DS (A) = Pr

[
Expuf-cma

DS (A) = 1
]

.

We will want to consider adversaries with time-complexity at most t, making at most
qsig sign oracle queries and at most qhash hash oracle queries, and with total query
message length µ. Resources refer again to those of the entire experiment. We first

Bellare and Rogaway 17

array entries is the following, for j = 1, . . . , qhash–

Msg [j] – The j-th hash query in the experiment
Y [j] – The reply of the hash oracle simulator to the above, meaning

the value playing the role of H(Msg [j]). For j = i it is y.
X[j] – For j != i, the response to sign query Msg [j], meaning it satisfies

(X[j])e ≡ Y [j] (mod N). For j = i it is undefined.

The code for the inverter is below.

Inverter I(N, e, y)
Initialize arrays Msg [1 . . . qhash], X[1 . . . qhash], Y [1 . . . qhash] to empty
j ← 0 ; i $← {1, . . . , qhash}
Run F on input (N, e)
If F makes oracle query (hash, M)

then h ← H -Sim(M) ; return h to F as the answer
If F makes oracle query (sign, M)

then x ← Sign-Sim(M) ; return x to F as the answer
Until F halts with output (M, x)
y′ ← H -Sim(M)
Return x

The inverter responds to oracle queries by using the appropriate subroutines. Once
it has the claimed forgery, it makes the corresponding hash query and then returns
the signature x.

We now describe the hash oracle simulator. It makes reference to the global variables
instantiated in in the main code of I. It takes as argument a value v which is simply
some message whose hash is requested either directly by F or by the sign simulator
below when the latter is invoked by F .

We will make use of a subroutine Find that given an array A, a value v and index
m, returns 0 if v !∈ {A[1], . . . , A[m]}, and else returns the smallest index l such that
v = A[l].

Subroutine H -Sim(v)
l ← Find(Msg , v, j) ; j ← j + 1 ; Msg [j] ← v
If l = 0 then

If j = i then Y [j] ← y

Else X[j] $← Z∗
N ; Y [j] ← (X[j])e mod N

EndIf
Return Y [j]

Else
If j = i then abort
Else X[j] ← X[l] ; Y [j] ← Y [l] ; Return Y [j]

Bellare and Rogaway 17

array entries is the following, for j = 1, . . . , qhash–

Msg [j] – The j-th hash query in the experiment
Y [j] – The reply of the hash oracle simulator to the above, meaning

the value playing the role of H(Msg [j]). For j = i it is y.
X[j] – For j != i, the response to sign query Msg [j], meaning it satisfies

(X[j])e ≡ Y [j] (mod N). For j = i it is undefined.

The code for the inverter is below.

Inverter I(N, e, y)
Initialize arrays Msg [1 . . . qhash], X[1 . . . qhash], Y [1 . . . qhash] to empty
j ← 0 ; i $← {1, . . . , qhash}
Run F on input (N, e)
If F makes oracle query (hash, M)

then h ← H -Sim(M) ; return h to F as the answer
If F makes oracle query (sign, M)

then x ← Sign-Sim(M) ; return x to F as the answer
Until F halts with output (M, x)
y′ ← H -Sim(M)
Return x

The inverter responds to oracle queries by using the appropriate subroutines. Once
it has the claimed forgery, it makes the corresponding hash query and then returns
the signature x.

We now describe the hash oracle simulator. It makes reference to the global variables
instantiated in in the main code of I. It takes as argument a value v which is simply
some message whose hash is requested either directly by F or by the sign simulator
below when the latter is invoked by F .

We will make use of a subroutine Find that given an array A, a value v and index
m, returns 0 if v !∈ {A[1], . . . , A[m]}, and else returns the smallest index l such that
v = A[l].

Subroutine H -Sim(v)
l ← Find(Msg , v, j) ; j ← j + 1 ; Msg [j] ← v
If l = 0 then

If j = i then Y [j] ← y

Else X[j] $← Z∗
N ; Y [j] ← (X[j])e mod N

EndIf
Return Y [j]

Else
If j = i then abort
Else X[j] ← X[l] ; Y [j] ← Y [l] ; Return Y [j]

9

10

11

12

Bellare and Rogaway 17

array entries is the following, for j = 1, . . . , qhash–

Msg [j] – The j-th hash query in the experiment
Y [j] – The reply of the hash oracle simulator to the above, meaning

the value playing the role of H(Msg [j]). For j = i it is y.
X[j] – For j != i, the response to sign query Msg [j], meaning it satisfies

(X[j])e ≡ Y [j] (mod N). For j = i it is undefined.

The code for the inverter is below.

Inverter I(N, e, y)
Initialize arrays Msg [1 . . . qhash], X[1 . . . qhash], Y [1 . . . qhash] to empty
j ← 0 ; i $← {1, . . . , qhash}
Run F on input (N, e)
If F makes oracle query (hash, M)

then h ← H -Sim(M) ; return h to F as the answer
If F makes oracle query (sign, M)

then x ← Sign-Sim(M) ; return x to F as the answer
Until F halts with output (M, x)
y′ ← H -Sim(M)
Return x

The inverter responds to oracle queries by using the appropriate subroutines. Once
it has the claimed forgery, it makes the corresponding hash query and then returns
the signature x.

We now describe the hash oracle simulator. It makes reference to the global variables
instantiated in in the main code of I. It takes as argument a value v which is simply
some message whose hash is requested either directly by F or by the sign simulator
below when the latter is invoked by F .

We will make use of a subroutine Find that given an array A, a value v and index
m, returns 0 if v !∈ {A[1], . . . , A[m]}, and else returns the smallest index l such that
v = A[l].

Subroutine H -Sim(v)
l ← Find(Msg , v, j) ; j ← j + 1 ; Msg [j] ← v
If l = 0 then

If j = i then Y [j] ← y

Else X[j] $← Z∗
N ; Y [j] ← (X[j])e mod N

EndIf
Return Y [j]

Else
If j = i then abort
Else X[j] ← X[l] ; Y [j] ← Y [l] ; Return Y [j]

Bellare and Rogaway 17

array entries is the following, for j = 1, . . . , qhash–

Msg [j] – The j-th hash query in the experiment
Y [j] – The reply of the hash oracle simulator to the above, meaning

the value playing the role of H(Msg [j]). For j = i it is y.
X[j] – For j != i, the response to sign query Msg [j], meaning it satisfies

(X[j])e ≡ Y [j] (mod N). For j = i it is undefined.

The code for the inverter is below.

Inverter I(N, e, y)
Initialize arrays Msg [1 . . . qhash], X[1 . . . qhash], Y [1 . . . qhash] to empty
j ← 0 ; i $← {1, . . . , qhash}
Run F on input (N, e)
If F makes oracle query (hash, M)

then h ← H -Sim(M) ; return h to F as the answer
If F makes oracle query (sign, M)

then x ← Sign-Sim(M) ; return x to F as the answer
Until F halts with output (M, x)
y′ ← H -Sim(M)
Return x

The inverter responds to oracle queries by using the appropriate subroutines. Once
it has the claimed forgery, it makes the corresponding hash query and then returns
the signature x.

We now describe the hash oracle simulator. It makes reference to the global variables
instantiated in in the main code of I. It takes as argument a value v which is simply
some message whose hash is requested either directly by F or by the sign simulator
below when the latter is invoked by F .

We will make use of a subroutine Find that given an array A, a value v and index
m, returns 0 if v !∈ {A[1], . . . , A[m]}, and else returns the smallest index l such that
v = A[l].

Subroutine H -Sim(v)
l ← Find(Msg , v, j) ; j ← j + 1 ; Msg [j] ← v
If l = 0 then

If j = i then Y [j] ← y

Else X[j] $← Z∗
N ; Y [j] ← (X[j])e mod N

EndIf
Return Y [j]

Else
If j = i then abort
Else X[j] ← X[l] ; Y [j] ← Y [l] ; Return Y [j]

18 DIGITAL SIGNATURES

EndIf
EndIf

The manner in which the hash queries are answered enables the following sign sim-
ulator.

Subroutine Sign-Sim(M)
h ← H -Sim(M)
If j = i then abort
Else return X[j]
EndIf

Inverter I might abort execution due to the “abort” instruction in either subroutine.
The first such situation is that the hash oracle simulator is unable to return y as
the response to the i-th hash query because this query equals a previously replied
to query. The second case is that F asks for the signature of the message which is
the i-th hash query, and I cannot provide that since it is hoping the i-th message is
the one in the forgery and has returned y as the hash oracle response.

Now we need to lower bound the ow-kea-advantage of I with respect to Krsa. There
are a few observations involved in verifying the bound claimed in Equation (9.2).
First that the “view” of F at any time at which I has not aborted is the “same” as
in Experiment Expuf-cmaDS (F). This means that the answers being returned to F by
I are distributed exactly as they would be in the real experiment. Second, F gets no
information about the value i that I chooses at random. Now remember that the last
hash simulator query made by I is the message M in the forgery, so M is certainly
in the array Msg at the end of the execution of I. Let l = Find(Msg , M, qhash) be
the first index at which M occurs, meaning Msg [l] = M but no previous message is
M . The random choice of i then means that there is a 1/qhash chance that i = l,
which in turn means that Y [i] = y and the hash oracle simulator won’t abort. If x
is a correct signature of M we will have xe ≡ Y [i] (mod N) because Y [i] is H(M)
from the point of view of F . So I is successful whenever this happens.

9.3.6 PSS0: A security improvement

The FDH-RSA signature scheme has the attractive security attribute of possessing a
proof of security under the assumption that RSA is a one-way function, albeit in the
random oracle model. However the quantitative security as given by Theorem 9.3
could be better. The theorem leaves open the possibility that one could forge sig-
natures with a probability that is qhash times the probability of being able to invert
the RSA function at a random point, the two actions being measured with regard
to adversaries with comparable execution time. Since qhash could be quite large,
say 260, there is an appreciable loss in security here. We now present a scheme in

18 DIGITAL SIGNATURES

EndIf
EndIf

The manner in which the hash queries are answered enables the following sign sim-
ulator.

Subroutine Sign-Sim(M)
h ← H -Sim(M)
If j = i then abort
Else return X[j]
EndIf

Inverter I might abort execution due to the “abort” instruction in either subroutine.
The first such situation is that the hash oracle simulator is unable to return y as
the response to the i-th hash query because this query equals a previously replied
to query. The second case is that F asks for the signature of the message which is
the i-th hash query, and I cannot provide that since it is hoping the i-th message is
the one in the forgery and has returned y as the hash oracle response.

Now we need to lower bound the ow-kea-advantage of I with respect to Krsa. There
are a few observations involved in verifying the bound claimed in Equation (9.2).
First that the “view” of F at any time at which I has not aborted is the “same” as
in Experiment Expuf-cmaDS (F). This means that the answers being returned to F by
I are distributed exactly as they would be in the real experiment. Second, F gets no
information about the value i that I chooses at random. Now remember that the last
hash simulator query made by I is the message M in the forgery, so M is certainly
in the array Msg at the end of the execution of I. Let l = Find(Msg , M, qhash) be
the first index at which M occurs, meaning Msg [l] = M but no previous message is
M . The random choice of i then means that there is a 1/qhash chance that i = l,
which in turn means that Y [i] = y and the hash oracle simulator won’t abort. If x
is a correct signature of M we will have xe ≡ Y [i] (mod N) because Y [i] is H(M)
from the point of view of F . So I is successful whenever this happens.

9.3.6 PSS0: A security improvement

The FDH-RSA signature scheme has the attractive security attribute of possessing a
proof of security under the assumption that RSA is a one-way function, albeit in the
random oracle model. However the quantitative security as given by Theorem 9.3
could be better. The theorem leaves open the possibility that one could forge sig-
natures with a probability that is qhash times the probability of being able to invert
the RSA function at a random point, the two actions being measured with regard
to adversaries with comparable execution time. Since qhash could be quite large,
say 260, there is an appreciable loss in security here. We now present a scheme in

In practice: RSA PKSC#1

• Fix a function Hash:{0,1}*→{0,1}n where n≥128
• E.g. for SHA1 n=160

• Define PKCS-HASH(M) as

00 01 ff ff … ff 00 H

M

Hash

HashIDPKCS-HASH(M):

n
k

• If Hash is collision resistant, so is PKCS-HASH.

• But hardness of computing the inverse of the RSA function on
a random point in Z* does not imply that on a point in
S={PKCS-HASH(M): M{0,1}*}

• The are no attacks known, but it does not mean we should
not be concerned.

N

13

14

15

