
CS 6260
Applied Cryptography

Alexandra (Sasha) Boldyreva

Hash functions

Hash functions
• A hash function is a function whose output is shorter than its input.

•

• Standardized by NIST.

• Design principles are similar to that of other hash functions MD4 and
MD5 proposed by Rivest.

• The inputs are first padded and divided by blocks. Then an iterated
(chaining) compression function is applied (known as Merkle-Damgård
transform):

SHA1: {0,1}< →{0,1}160264

IV

m1 m2

ff f
y1 y2

y!

m!

Fig. 5. The plain Merkle-Damg̊ard Construction

where for all i, |mi| = κ and f : {0, 1}n+κ → {0, 1}n.
We have already mentioned in introduction a counter-example based on

MAC. Namely, we showed that MAC(k,m) = H(k‖m) provides a secure MAC
in the random oracle model for H, but is completely insecure when H is replaced
by the previous Merkle-Damg̊ard construction MDf , because of the message ex-
tension attack. In the following, we give a more direct refutation based on the
definition of indifferentiability, using again the message extension attack.

We consider only one-block messages or two-block messages. For such mes-
sages, we have that MDf (m1) = f(0,m1) and MDf (m1,m2) = f(f(0,m1),m2).
We build a distinguisher that can fool any simulator as follows. The distinguisher
first makes a MDf -query for m1 and receives u = MDf (m1). Then it makes a
query for v = f(u,m2) to random oracle f . The distinguisher then makes a
MDf -query for (m1,m2) and eventually checks that v = MDf (m1,m2); in this
case it outputs 1, and 0 otherwise. It is easy to see that the distinguisher always
outputs 1 when interacting with MDf and f . However, when the distinguisher
interacts with H and S (who must simulate f), we observe that S has no informa-
tion about m1 (because S does not see the distinguisher’s H-queries). Therefore,
the simulator cannot answer v such that v = H(m1,m2), except with negligible
probability.

3.3 Prefix-free Merkle-Damg̊ard

In this section, we show that if the inputs to the plain MD construction are
guaranteed to be prefix-free, then the plain MD construction is secure. Namely,
prefix-free encoding enables to eliminate the message expansion attack described
previously. This “fix” is similar to the fix for the CBC-MAC [3], which is also
insecure in its plain form. Thus, the plain MD construction can be safely used
for any application of the random oracle H where the length of the inputs is
fixed or where one uses domain separation (e.g., prepending 0, 1, . . . to differen-
tiate between inputs from different domains). For other applications, one must
specifically ensure that prefix-freeness is satisfied.

A prefix-free code over the alphabet {0, 1}κ is an efficiently computable in-
jective function g : {0, 1}∗ → ({0, 1}κ)∗ such that for all x #= y, g(x) is not a
prefix of g(y). Moreover, it must be easy to recover x given only g(x). We provide

Security of hash functions
• What security properties a good hash function H should have?

• Collision-resistance: nobody should find M1,M2 s.t.
H(M1)=H(M2)

• How to formalize this goal?

• Need to consider families of hash functions.

Collision resistance
• Let H: be a function family. For an adversary A

consider the experiments:

Bellare and Rogaway 3

X ∧ Y bitwise AND of X and Y

X ∨ Y bitwise OR of X and Y

X ⊕ Y bitwise XOR of X and Y

¬X bitwise complement of X

X + Y integer sum modulo 232 of X and Y

ROTLl(X) circular left shift of bits of X by l positions (0 ≤ l ≤ 31)

Figure 5.2: Operations on 32-bit words used in sha1.

So what is SHA1 supposed to do? First and foremost, it is supposed to be the case
that nobody can find distinct strings M and M ′ such that SHA1(M) = SHA1(M ′).
This property is called collision resistance.

Stop for a moment and think about the collision-resistance requirement, for it
is really quite amazing to think that such a thing could be possible. The function
SHA1 maps strings of (almost) any length to strings of 160 bits. So even if you
restricted the domain of SHA1 just to “short” strings—let us say strings of length
256 bits—then there must be an enormous number of pairs of strings M and M ′

that hash to the same value. This is just by the pigeonhole principle: if 2256 pigeons
(the 256-bit messages) roost in 2160 holes (the 160-bit hash values) then some two
pigeons (two distinct strings) roost in the same hole (have the same hash). Indeed
countless pigeons must share the same hole. The difficult is only that nobody has
as yet identified (meaning, explicitly provided) even two such pigeons (strings).

In trying to define this collision-resistance property of SHA1 we immediately
run into “foundational” problems. We would like to say that it is computationally
infeasible to output a pair of distinct strings M and M ′ that collide under SHA1.
But in what sense could it be infeasible? There is a program—indeed a very short an
simple one, having just two “print” statements—whose output specifies a collision.
It’s not computationally hard to output a collision; it can’t be. The only difficulty
is our human problem of not knowing what this program is.

It seems very hard to make a mathematical definition that captures the idea
that human beings can’t find collisions in SHA1. In order to reach a mathematically
precise definition we are going to have to change the very nature of what we conceive
to be a hash function. Namely, rather than it being a single function, it will be a
family of functions. This is unfortunate in some ways, because it distances us from
concrete hash functions like SHA1. But no alternative is known.

5.2 Collision-resistant hash functions

A hash function for us is a family of functions H: K × D → R. Here D is the
domain of H and R is the range of H. As usual, if K ∈ K is a particular key then

Bellare and Rogaway 5

Expcr2-kk
H (A)

K $←K ; (x1, x2)
$← A(K)

if (HK(x1) = HK(x2) and x1 "= x2 and x1, x2 ∈ D)
then return 1 else return 0

Expcr1-kk
H (A)

(x1, st)
$← A() ; K $←K ; x2

$← A(K, st)

if (HK(x1) = HK(x2) and x1 "= x2 and x1, x2 ∈ D)
then return 1 else return 0

Expcr0
H (A)

(x1, x2)
$← A() ; K $←K

if (HK(x1) = HK(x2) and x1 "= x2 and x1, x2 ∈ D)
then return 1 else return 0

Figure 5.4: Experiments defining security notions for three kinds of collision-
resistant hash functions under known-key attack.

rise to three notions of security. The higher the value of s the more power the
adversary has, and hence the more stringent is the corresponding notion of security.
Fig. 5.4 provides in more detail the experiments underlying the three attacks arising
from the above framework. We represent by st information that the adversary wishes
to maintain across its attack phases. It will output this information in the pre-key
attack phase, and be provided it at the start of the post-key attack phase.

In a variant of this model that we consider in Section 5.8, the adversary is not
given the key K in the post-key attack phase, but instead is given an oracle for
HK(·). To disambiguate, we refer to our current notions as capturing collision-
resistance under known-key attack, and the notions of Section 5.8 as capturing
collision-resistance under hidden-key attack. The notation in the experiments of
Fig. 5.4 and Definition 5.1 reflects this via the use of “kk”, except that for CR0,
known and hidden key attacks coincide, and hence we just say cr0.

The three types of hash functions we are considering are known by other names
in the literature, as indicated in Fig. 5.5.

Definition 5.1 Let H: K×D → R be a hash function and let A be an algorithm.
We let

Advcr2-kk
H (A) = Pr

[
Expcr2-kk

H (A) = 1
]

Advcr1-kk
H (A) = Pr

[
Expcr1-kk

H (A) = 1
]

6 HASH FUNCTIONS

Type Name(s) in literature

CR2-KK collision-free, collision-resistant, collision-intractable

CR1-KK universal one-way [8] (aka. target-collision resistant [1])

CR0 universal, almost universal

Figure 5.5: Types of hash functions, with names in our framework and corresponding
names found in the literature.

Advcr0
H (A) = Pr

[
Expcr0

H (A) = 1
]

.

In measuring resource usage of an adversary we use our usual conventions. Although
there is formally no definition of a “secure” hash function, we will talk of a hash
function being CR2, CR1 or CR0 with the intended meaning that its associated
advantage function is small for all adversaries of practical running time.

Note that the running time of the adversary is not really relevant for CR0,
because we can always imagine that hardwired into its code is a “best” choice of
distinct points x1, x2, meaning a choice for which

Pr
[
K $←K : HK(x1) = HK(x2)

]

= max
y1 !=y2

Pr
[
K $←K : HK(y1) = HK(y2)

]
.

The above value equals Advcr0
H (A) and is the maximum advantage attainable.

Clearly, a CR2 hash function is also CR1 and a CR1 hash function is also CR0.
The following states the corresponding relations formally. The proof is trivial and
is omitted.

Proposition 5.2 Let H: K × D → R be a hash function. Then for any adversary
A0 there exists an adversary A1 having the same running time as A0 and

Advcr0
H (A0) ≤ Advcr1-kk

H (A1) .

Also for any adversary A1 there exists an adversary A2 having the same running
time as A1 and

Advcr1-kk
H (A1) ≤ Advcr2-kk

H (A2) .

We believe that SHF1 is CR2, meaning that there is no practical algorithm A for
which Advcr2-kk

H (A) is appreciably large. This is, however, purely a belief, based on
the current inability to find such an algorithm. Perhaps, later, such an algorithm
will emerge.

It is useful, for any integer n, to get SHF1n: {0, 1}n → {0, 1}160 denote the
restriction of SHF1 to the domain {0, 1}n. Note that a collision for SHF1n

K is also a

Bellare and Rogaway 5

Expcr2-kk
H (A)

K $←K ; (x1, x2)
$← A(K)

if (HK(x1) = HK(x2) and x1 "= x2 and x1, x2 ∈ D)
then return 1 else return 0

Expcr1-kk
H (A)

(x1, st)
$← A() ; K $←K ; x2

$← A(K, st)

if (HK(x1) = HK(x2) and x1 "= x2 and x1, x2 ∈ D)
then return 1 else return 0

Expcr0
H (A)

(x1, x2)
$← A() ; K $←K

if (HK(x1) = HK(x2) and x1 "= x2 and x1, x2 ∈ D)
then return 1 else return 0

Figure 5.4: Experiments defining security notions for three kinds of collision-
resistant hash functions under known-key attack.

rise to three notions of security. The higher the value of s the more power the
adversary has, and hence the more stringent is the corresponding notion of security.
Fig. 5.4 provides in more detail the experiments underlying the three attacks arising
from the above framework. We represent by st information that the adversary wishes
to maintain across its attack phases. It will output this information in the pre-key
attack phase, and be provided it at the start of the post-key attack phase.

In a variant of this model that we consider in Section 5.8, the adversary is not
given the key K in the post-key attack phase, but instead is given an oracle for
HK(·). To disambiguate, we refer to our current notions as capturing collision-
resistance under known-key attack, and the notions of Section 5.8 as capturing
collision-resistance under hidden-key attack. The notation in the experiments of
Fig. 5.4 and Definition 5.1 reflects this via the use of “kk”, except that for CR0,
known and hidden key attacks coincide, and hence we just say cr0.

The three types of hash functions we are considering are known by other names
in the literature, as indicated in Fig. 5.5.

Definition 5.1 Let H: K×D → R be a hash function and let A be an algorithm.
We let

Advcr2-kk
H (A) = Pr

[
Expcr2-kk

H (A) = 1
]

Advcr1-kk
H (A) = Pr

[
Expcr1-kk

H (A) = 1
]

Bellare and Rogaway 5

Expcr2-kk
H (A)

K $←K ; (x1, x2)
$← A(K)

if (HK(x1) = HK(x2) and x1 "= x2 and x1, x2 ∈ D)
then return 1 else return 0

Expcr1-kk
H (A)

(x1, st)
$← A() ; K $←K ; x2

$← A(K, st)

if (HK(x1) = HK(x2) and x1 "= x2 and x1, x2 ∈ D)
then return 1 else return 0

Expcr0
H (A)

(x1, x2)
$← A() ; K $←K

if (HK(x1) = HK(x2) and x1 "= x2 and x1, x2 ∈ D)
then return 1 else return 0

Figure 5.4: Experiments defining security notions for three kinds of collision-
resistant hash functions under known-key attack.

rise to three notions of security. The higher the value of s the more power the
adversary has, and hence the more stringent is the corresponding notion of security.
Fig. 5.4 provides in more detail the experiments underlying the three attacks arising
from the above framework. We represent by st information that the adversary wishes
to maintain across its attack phases. It will output this information in the pre-key
attack phase, and be provided it at the start of the post-key attack phase.

In a variant of this model that we consider in Section 5.8, the adversary is not
given the key K in the post-key attack phase, but instead is given an oracle for
HK(·). To disambiguate, we refer to our current notions as capturing collision-
resistance under known-key attack, and the notions of Section 5.8 as capturing
collision-resistance under hidden-key attack. The notation in the experiments of
Fig. 5.4 and Definition 5.1 reflects this via the use of “kk”, except that for CR0,
known and hidden key attacks coincide, and hence we just say cr0.

The three types of hash functions we are considering are known by other names
in the literature, as indicated in Fig. 5.5.

Definition 5.1 Let H: K×D → R be a hash function and let A be an algorithm.
We let

Advcr2-kk
H (A) = Pr

[
Expcr2-kk

H (A) = 1
]

Advcr1-kk
H (A) = Pr

[
Expcr1-kk

H (A) = 1
]

1

2

3

4

• A hash function is xx-secure if is small for all efficient A.

• CR2-KK secure functions are aka collision-resistant, collision-
free, collision intractable

• CR1-KK secure functions are aka universal one-way, target
collision resistant

• CR0 secure functions are aka universal, almost universal.

• Claim. CR2-KK ⇒ CR1-KK ⇒ CR0

Collision resistance
Adv

xx

H
(A)

1

Looking for collisions
• Let’s apply the birthday-attack strategy: pick q values in the

domain at random. By the birthday paradox the probability of
a collision is close to 1 when Here N is the size of
the range.

• However, we can’t apply the birthday paradox analysis
directly, because the hash function does not “throw balls” at
random.

• But if the function is regular: for every K

 then the probability of finding a
collision is close to that of the birthday attack.

• If the function is not regular then finding collisions is even
easier

• So for SHA1 approximately 280 trials will suffice.

8 HASH FUNCTIONS

for i = 1, . . . , q do // q is the number of trials

xi
$← D ; yi ← HK(xi)

if (there exists j < i such that yi = yj but xi "= xj) // collision found

then return xi, xj

return FAIL // No collision found

Figure 5.6: Birthday attack on a hash function H: K × D → R. The attack is
successful in finding a collision if it does not return FAIL.

around 2160 rather than 2672. But this is still far from practical. Our conclusion is
that as long as the range size of the hash function is large enough, this attack is not
a threat.

We now consider another strategy, called a birthday attack, that turns out to
be much better than the above. It is illustrated in Fig. 5.6. It picks at random q
points from the domain, and applies HK to each of them. If it finds two distinct
points yielding the same output, it has found a collision for HK . The question is
how large q need be to find a collision. The answer may seem surprising at first.
Namely, q = O(

√|R|) trials suffices.
We will justify this later, but first let us note the impact. Consider SHA1n with

n ≥ 161. As we indicated, the random-input collision-finding attack takes about
2160 trials to find a collision. The birthday attack on the other hand takes around√

2160 = 280 trials. This is MUCH less than 2160. Similarly, the birthday attack
finds a collision in shf1 in around 280 trials while while random-input collision-finding
takes about 2160 trials.

To see why the birthday attack performs as well as we claimed, we recall the
following game. Suppose we have q balls. View them as numbered, 1, . . . , q. We
also have N bins, where N ≥ q. We throw the balls at random into the bins, one
by one, beginning with ball 1. At random means that each ball is equally likely to
land in any of the N bins, and the probabilities for all the balls are independent. A
collision is said to occur if some bin ends up containing at least two balls. We are
interested in C(N, q), the probability of a collision. As shown in the Appendix,

C(N, q) ≈ q2

2N
(5.1)

for 1 ≤ q ≤ √
2N . Thus C(N, q) ≈ 1 for q ≈ √

2N .
The relation to birthdays arises from the question of how many people need be

in a room before the probability of there being two people with the same birthday
is close to one. We imagine each person has a birthday that is a random one of the
365 days in a year. This means we can think of a person as a ball being thrown at
random into one of 365 bins, where the i-th bin represents having birthday the i-th
day of the year. So we can apply the Proposition from the Appendix with N = 365

Bellare and Rogaway 9

and q the number of people in the room. The Proposition says that when the room
contains q ≈ √

2 · 365 ≈ 27 people, the probability that there are two people with
the same birthday is close to one. This number (27) is quite small and may be
hard to believe at first hearing, which is why this is sometimes called the birthday
paradox.

To see how this applies to the birthday attack of Fig. 5.6, let us enumerate the
points in the range as R1, . . . , RN , where N = |R|. Each such point defines a bin.
We view xi as a ball, and imagine that it is thrown into bin yi, where yi = HK(xi).
Thus, a collision of balls (two balls in the same bin) occurs precisely when two values
xi, xj have the same output under HK . We are interested in the probability that
this happens as a function of q. (We ignore the probability that xi = xj , counting a
collision only when HK(xi) = HK(xj). It can be argued that since D is larger than
R, the probability that xi = xj is small enough to neglect.)

However, we cannot apply the birthday analysis directly, because the latter
assumes that each ball is equally likely to land in each bin. This is not, in general,
true for our attack. Let P (Rj) denote the probability that a ball lands in bin Rj ,
namely the probability that HK(x) = Rj taken over a random choice of x from D.
Then

P (y) =
|H−1

K (Rj)|
|D| .

In order for P (R1) = P (R2) = · · · = P (RN) to be true, as required to apply the
birthday analysis, it must be the case that

|H−1
K (R1)| = |H−1

K (R2)| = · · · = |H−1
K (RN)| .

A function HK with this property is called regular, and H is called regular if HK

is regular for every K. Our conclusion is that if H is regular, then the probability
that the attack succeeds is roughly C(N, q). So the above says that in this case we
need about q ≈ √

2N =
√

2 · |R| trials to find a collision with probability close to
one.

If H is not regular, it turns out the attack succeeds even faster, telling us that
we ought to design hash functions to be as “close” to regular as possible [2].

In summary, there is a 2l/2 or better time attack to find collisions in any hash
function outputting l bits. This leads designers to choose l large enough that 2l/2

is prohibitive. In the case of SHF1 and shf1, the choice is l = 160 because 280 is
indeed a prohibitive number of trials. These functions cannot thus be considered
vulnerable to birthday attack. (Unless they turn out to be extremely non-regular,
for which there is no evidence so far.)

Ensuring, by appropriate choice of output length, that a function is not vul-
nerable to a birthday attack does not, of course, guarantee it is collision resistant.
Consider the family H: K×{0, 1}161 → {0, 1}160 defined as follows. For any K and
any x, function HK(x) returns the first 160 bits of x. The output length is 160, so
a birthday attack takes 280 time and is not feasible, but it is still easy to find colli-
sions. Namely, on input K, an adversary can just pick some 160-bit y and output

Are more efficient attacks possible?
• Collisions were found for MD4, MD5.

• February 2005. Xiaoyun Wang, Lisa Yiqun Yin, and Hongbo Yu
described the way to find collisions in SHA1 by using 269 hash
computations (much faster than the birthday attack).

• February 2005. The result by Xiaoyun Wang, Andrew Yao and
Frances Yao is announced. Collisions in SHA1 can be found by
using 263 hash computations.

• The attacks were not implemented and still does not appear
very practical.

• But the standard SHA1 will most probably be replaced.

One wayness of hash functions
• Let H: be a function family. For an adversary A

consider the experiment:

•

•

•

• We say that H is one-way if
is small for all efficient adversaries A.

• Q. Does one wayness imply collision resistance?

• Claim. Let H: be a function family. Then for an
adversary A there exists an adversary B with comparable
resources s.t.

Bellare and Rogaway 3

X ∧ Y bitwise AND of X and Y

X ∨ Y bitwise OR of X and Y

X ⊕ Y bitwise XOR of X and Y

¬X bitwise complement of X

X + Y integer sum modulo 232 of X and Y

ROTLl(X) circular left shift of bits of X by l positions (0 ≤ l ≤ 31)

Figure 5.2: Operations on 32-bit words used in sha1.

So what is SHA1 supposed to do? First and foremost, it is supposed to be the case
that nobody can find distinct strings M and M ′ such that SHA1(M) = SHA1(M ′).
This property is called collision resistance.

Stop for a moment and think about the collision-resistance requirement, for it
is really quite amazing to think that such a thing could be possible. The function
SHA1 maps strings of (almost) any length to strings of 160 bits. So even if you
restricted the domain of SHA1 just to “short” strings—let us say strings of length
256 bits—then there must be an enormous number of pairs of strings M and M ′

that hash to the same value. This is just by the pigeonhole principle: if 2256 pigeons
(the 256-bit messages) roost in 2160 holes (the 160-bit hash values) then some two
pigeons (two distinct strings) roost in the same hole (have the same hash). Indeed
countless pigeons must share the same hole. The difficult is only that nobody has
as yet identified (meaning, explicitly provided) even two such pigeons (strings).

In trying to define this collision-resistance property of SHA1 we immediately
run into “foundational” problems. We would like to say that it is computationally
infeasible to output a pair of distinct strings M and M ′ that collide under SHA1.
But in what sense could it be infeasible? There is a program—indeed a very short an
simple one, having just two “print” statements—whose output specifies a collision.
It’s not computationally hard to output a collision; it can’t be. The only difficulty
is our human problem of not knowing what this program is.

It seems very hard to make a mathematical definition that captures the idea
that human beings can’t find collisions in SHA1. In order to reach a mathematically
precise definition we are going to have to change the very nature of what we conceive
to be a hash function. Namely, rather than it being a single function, it will be a
family of functions. This is unfortunate in some ways, because it distances us from
concrete hash functions like SHA1. But no alternative is known.

5.2 Collision-resistant hash functions

A hash function for us is a family of functions H: K × D → R. Here D is the
domain of H and R is the range of H. As usual, if K ∈ K is a particular key then

10 HASH FUNCTIONS

y0, y1. This tells us that to ensure collision-resistance it is not only important to
have a long enough output but also design the hash function so that there no clever
“shortcuts” to finding a collision, meaning no attacks that exploit some weakness in
the structure of the function to quickly find collisions.

We believe that shf1 is well-designed in this regard. Nobody has yet found an
adversary that finds a collision in shf1 using less than 280 trials. Even if a somewhat
better adversary, say one finding a collision for shf1 in 265 trials, were found, it
would not be devastating, since this is still a very large number of trials, and we
would still consider shf1 to be collision-resistant.

If we believe shf1 is collision-resistant, Theorem 5.8 tells us that SHF1, as well
as SHF1n, can also be considered collision-resistant, for all n.

5.4 One-wayness of collision-resistant hash functions

Intuitively, a family H is one-way if it is computationally infeasible, given HK and
a range point y = HK(x), where x was chosen at random from the domain, to find
a pre-image of y (whether x or some other) under HK . Since this definition too has
a hidden-key version, we indicate the known-key in the notation below.

Definition 5.3 Let H: K × D → R be a family of functions and let A be an
algorithm. We consider the following experiment:

Expow-kk
H (A)

K $←K ; x $← D ; y ← HK(x) ; x′ $← A(K, y)

If (HK(x′) = y and x′ ∈ D) then return 1 else return 0

We let

Advow-kk
H (A) = Pr

[
Expow-kk

H (A) = 1
]

.

We now ask ourselves whether collision-resistance implies one-wayness. It is easy
to see, however, that, in the absence of additional assumptions about the hash
function than collision-resistance, the answer is “no.” For example, let H be a
family of functions every instance of which is the identity function. Then H is
highly collision-resistant (the advantage of an adversary in finding a collision is
zero regardless of its time-complexity since collisions simply don’t exist) but is not
one-way.

However, we would expect that “genuine” hash functions, meaning ones that
perform some non-trivial compression of their data (ie. the size of the range is more
than the size of the domain) are one-way. This turns out to be true, but needs to be
carefully quantified. To understand the issues, it may help to begin by considering
the natural argument one would attempt to use to show that collision-resistance
implies one-wayness.

Suppose we have an adversary A that has a significant advantage in attacking
the one-wayness of hash function H. We could try to use A to find a collision via

10 HASH FUNCTIONS

y0, y1. This tells us that to ensure collision-resistance it is not only important to
have a long enough output but also design the hash function so that there no clever
“shortcuts” to finding a collision, meaning no attacks that exploit some weakness in
the structure of the function to quickly find collisions.

We believe that shf1 is well-designed in this regard. Nobody has yet found an
adversary that finds a collision in shf1 using less than 280 trials. Even if a somewhat
better adversary, say one finding a collision for shf1 in 265 trials, were found, it
would not be devastating, since this is still a very large number of trials, and we
would still consider shf1 to be collision-resistant.

If we believe shf1 is collision-resistant, Theorem 5.8 tells us that SHF1, as well
as SHF1n, can also be considered collision-resistant, for all n.

5.4 One-wayness of collision-resistant hash functions

Intuitively, a family H is one-way if it is computationally infeasible, given HK and
a range point y = HK(x), where x was chosen at random from the domain, to find
a pre-image of y (whether x or some other) under HK . Since this definition too has
a hidden-key version, we indicate the known-key in the notation below.

Definition 5.3 Let H: K × D → R be a family of functions and let A be an
algorithm. We consider the following experiment:

Expow-kk
H (A)

K $←K ; x $← D ; y ← HK(x) ; x′ $← A(K, y)

If (HK(x′) = y and x′ ∈ D) then return 1 else return 0

We let

Advow-kk
H (A) = Pr

[
Expow-kk

H (A) = 1
]

.

We now ask ourselves whether collision-resistance implies one-wayness. It is easy
to see, however, that, in the absence of additional assumptions about the hash
function than collision-resistance, the answer is “no.” For example, let H be a
family of functions every instance of which is the identity function. Then H is
highly collision-resistant (the advantage of an adversary in finding a collision is
zero regardless of its time-complexity since collisions simply don’t exist) but is not
one-way.

However, we would expect that “genuine” hash functions, meaning ones that
perform some non-trivial compression of their data (ie. the size of the range is more
than the size of the domain) are one-way. This turns out to be true, but needs to be
carefully quantified. To understand the issues, it may help to begin by considering
the natural argument one would attempt to use to show that collision-resistance
implies one-wayness.

Suppose we have an adversary A that has a significant advantage in attacking
the one-wayness of hash function H. We could try to use A to find a collision via

Bellare and Rogaway 11

the following strategy. In the pre-key phase (we consider a type-1 attack) we pick
and return a random point x1 from D. In the post-key phase, having received the
key K, we compute y = HK(x1) and give K, y to A. The latter returns some x2,
and, if it was successful, we know that HK(x2) = y. So HK(x2) = HK(x1) and we
have a collision.

Not quite. The catch is that we only have a collision if x2 != x1. The probability
that this happens turns out to depend on the quantity:

PreImH(1) = Pr
[
K $←K ; x $← D ; y ← HK(x) : |H−1

K (y)| = 1
]

.

This is the probability that the size of the pre-image set of y is exactly 1, taken
over y generated as shown. The following Proposition says that a collision-resistant
function H is one-way as long as PreImH(1) is small.

Proposition 5.4 Let H: K × D → R be a hash function. Then for any A there
exists a B such that

Advow-kk
H (A) ≤ 2 · Advcr1-kk

H (B) + PreImH(1) .

Furthermore the running time of B is that of A plus the time to sample a domain
point and compute H once.

The result is about the CR1 type of collision-resistance. However Proposition 5.2
implies that the same is true for CR2.

A general and widely-applicable corollary of the above Proposition is that collision-
resistance implies one-wayness as long as the domain of the hash function is signifi-
cantly larger than its range. The following quantifies this.

Corollary 5.5 Let H: K×D → R be a hash function. Then for any A there exists
a B such that

Advow-kk
H (A) ≤ 2 · Advcr1-kk

H (B) +
|R|
|D| .

Furthermore the running time of B is that of A plus the time to sample a domain
point and compute H once.

Proof of Corollary 5.5: For any key K, the number of points in the range of
HK that have exactly one pre-image certainly cannot exceed |R|. This implies that

PreImH(1) ≤ |R|
|D| .

The corollary follows from Proposition 5.4.

Corollary 5.5 says that if H is collision-resistant, and performs enough compression
that |R| is much smaller than |D|, then it is also one-way. Why? Let A be a practical

Bellare and Rogaway 3

X ∧ Y bitwise AND of X and Y

X ∨ Y bitwise OR of X and Y

X ⊕ Y bitwise XOR of X and Y

¬X bitwise complement of X

X + Y integer sum modulo 232 of X and Y

ROTLl(X) circular left shift of bits of X by l positions (0 ≤ l ≤ 31)

Figure 5.2: Operations on 32-bit words used in sha1.

So what is SHA1 supposed to do? First and foremost, it is supposed to be the case
that nobody can find distinct strings M and M ′ such that SHA1(M) = SHA1(M ′).
This property is called collision resistance.

Stop for a moment and think about the collision-resistance requirement, for it
is really quite amazing to think that such a thing could be possible. The function
SHA1 maps strings of (almost) any length to strings of 160 bits. So even if you
restricted the domain of SHA1 just to “short” strings—let us say strings of length
256 bits—then there must be an enormous number of pairs of strings M and M ′

that hash to the same value. This is just by the pigeonhole principle: if 2256 pigeons
(the 256-bit messages) roost in 2160 holes (the 160-bit hash values) then some two
pigeons (two distinct strings) roost in the same hole (have the same hash). Indeed
countless pigeons must share the same hole. The difficult is only that nobody has
as yet identified (meaning, explicitly provided) even two such pigeons (strings).

In trying to define this collision-resistance property of SHA1 we immediately
run into “foundational” problems. We would like to say that it is computationally
infeasible to output a pair of distinct strings M and M ′ that collide under SHA1.
But in what sense could it be infeasible? There is a program—indeed a very short an
simple one, having just two “print” statements—whose output specifies a collision.
It’s not computationally hard to output a collision; it can’t be. The only difficulty
is our human problem of not knowing what this program is.

It seems very hard to make a mathematical definition that captures the idea
that human beings can’t find collisions in SHA1. In order to reach a mathematically
precise definition we are going to have to change the very nature of what we conceive
to be a hash function. Namely, rather than it being a single function, it will be a
family of functions. This is unfortunate in some ways, because it distances us from
concrete hash functions like SHA1. But no alternative is known.

5.2 Collision-resistant hash functions

A hash function for us is a family of functions H: K × D → R. Here D is the
domain of H and R is the range of H. As usual, if K ∈ K is a particular key then

5

6

7

8

