
Hybrid encryption

• Asymmetric encryption uses number-theoretic operations and 
is slower than symmetric encryption that often uses block 
ciphers.

• Also we often want to encrypt long messages.

• In practice one usually 

1. encrypts a randomly chosen symmetric key K using an 
asymmetric encryption algorithm and then

2. encrypts a message using a symmetric encryption 
algorithm and K.

• This is called hybrid encryption

1

Hybrid encryption

• Let                        be an asymmetric encryption scheme and  
let                        be a symmetric encryption scheme, s.t. 
the set of keys for SE is always in the message space of AE. 

Then the associated hybrid scheme                     is as 
follows: 

•

•

•

•

• Note that the hybrid scheme is an asymmetric encryption 
scheme
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under K via the symmetric scheme to get a ciphertext Cs, and transmit (Ca, Cs).
This is called hybrid encryption.

More precisely, hybrid encryption is a transform that given any asymmetric
encryption scheme and any symmetric encryption scheme associates to them a new
asymmetric encryption scheme:

Scheme 8.5 Let AE = (Ka, Ea,Da) be an asymmetric encryption scheme, and let
SE = (Ks, Es,Ds) be a stateless symmetric encryption scheme such that Keys(SE) ⊆
Plaintexts(pk) for every pk that might be output by Ka. The hybrid encryption
scheme associated to AE ,SE is the asymmetric encryption scheme AE = (Ka, E ,D)
whose key-generation algorithm is the same as that of AE and whose encryption
and decryption algorithms are defined as follows:

Algorithm Epk(M)
K $←Ks ; Cs $← Es

K(M)
If Cs = ⊥ then return ⊥
Ca $← Ea

pk(K) ; C ← (Ca, Cs)
Return C

Algorithm Dsk(C)
Parse C as (Ca, Cs)
K ← Da

sk(Ca)
If K = ⊥ then return ⊥
M ← Ds

K(Cs)
Return M

Under this hybrid encryption scheme, one can (asymmetrically) encrypt any message
M that is in the plaintext-space of the underlying symmetric encryption scheme.

Hybrid encryption is used for numerous reasons. The principal one is cost. The
number-theoretic operations underlying common asymmetric encryption schemes
are computationally costly relative to the operations on block ciphers that underly
common symmetric encryption schemes. In practice one wants to minimize the
amount of data to which these number-theoretic operations are applied. Accord-
ingly, rather than encrypt the possibly long message M directly under pk via the
given asymmetric scheme, one uses hybrid encryption. The costly number-theoretic
operations are thus applied only to data whose length k is fixed and not dependent
on the length of M .

This context tells us that when we design asymmetric encryption schemes, we
can typically assume that the message space consists of short strings. This will
facilitate our constructions.

However, before we adopt the hybrid encryption paradigm we need to know that
it “works,” meaning that it is secure. In assessing the strength of hybrid encryption,
we use as usual the provable-security philosophy and approach. A hybrid encryption
scheme is built from two components: a base asymmetric encryption scheme and a
base symmetric encryption scheme. The appropriate question to ask is whether
the assumed security of the components suffices to guarantee security of the hybrid
scheme based on them. It turns out that it does, and moreover for security under
both chosen-plaintext and chosen-ciphertext atttacks. Theorem 8.6 below addresses
the first case, and Theorem 8.7 the second. (Although the latter implies the former,
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2

Hybrid encryption

• Theorem. Let                        be an asymmetric encryption 
scheme and  let                        be a symmetric encryption 
scheme, s.t. the set of keys for SE is always in the message 

space of AE. Let                     be the associated hybrid 

scheme as defined on the previous slide. Then for any 
adversary B there exist adversaries A00,01, A00,01, A s.t.

•

•

and A00,01, A10,11 have time complexity of B, make the same 

number of queries, each of length k (symmetric key length), 
and A has time complexity of B and makes only one query.

• Collorary. If the components are IND-CPA, then the 
associated hybrid scheme is also IND-CPA.
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we state and prove them separately because the proof has some delicate issues and
ideas and is best understood via an incremental approach.)

Theorem 8.6 Let AE = (Ka, Ea,Da) be an asymmetric encryption scheme, let
SE = (Ks, Es,Ds) be a stateless symmetric encryption scheme such that

Keys(SE) ⊆ Plaintexts(pk)

for every pk that might be output by Ka, and let AE = (Ka, E ,D) be the hybrid
encryption scheme associated to AE ,SE as per Scheme 8.5. Let k denote the length
of keys output by Ks. Let B be an ind-cpa-adversary attacking AE . Then there
exist ind-cpa adversaries A00,01, A11,10 attacking AE , and an adversary A attacking
SE , such that

Advind-cpa

AE (B)

≤ Advind-cpa
AE (A00,01) + Advind-cpa

AE (A11,10) + Advind-cpa
SE (A) . (8.8)

Furthermore, suppose B had time complexity at most t, made at most q queries
to its left-or-right encryption oracle, these totalling at most µ bits in length. Then
A00,01, A11,10 each have time-complexity at most t and make at most q left-or-right
encryption oracle queries, each query being k bits long. Also A has time-complexity
at most t, and makes only one query to its left-or-right encryption oracle.

The qualitative interpretation of Theorem 8.6 is that if AE and SE are each assumed
to be secure against chosen-plaintext attack, then AE is also secure against chosen-
plaintext attack. On the quantitative front, note that the advantage of AE against
an attack involving q lr-encryption queries is upper bounded as a function of the
advantage of SE against an attack involving only a single lr-encryption query. This
means that the symmetric encryption scheme used may be very weak and yet the
hybrid asymmetric encryption scheme will be secure. For example, the encryption
algorithm of the symmetric encryption scheme could apply a pseudorandom bit
generator to the key to get an output of |M | bits and XOR this with the message
to get the ciphertext. In particular, the symmetric encryption scheme could be
deterministic.

Proof of Theorem 8.6: These constructions are not as straightforward as some
we have seen in the past. We will need to “isolate” the asymmetric and symmetric
components of AE in such a way that an attack on this scheme can be broken down
into attacks on the component schemes. To do this we will use a hybrid argument.
We will associate to B a sequence of experiments

Exp00
AE(B) , Exp01

AE(B) , Exp11
AE(B) , Exp10

AE(B) (8.9)

such that, if we let

P (α, β) = Pr
[
Expαβ

AE(B) = 1
]

(8.10)
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depicted in Fig. 8.4. It gets a lr-encryption oracle E s
K(LR(·, ·, b)) based on a hidden

key K and challenge bit b. It picks a pair of public and secret keys by running the
key-generation algorithm of the asymmetric encryption scheme. It then picks an
index i at random, and initializes a counter j to 0. Next it defines a subroutine
OE(·, ·) that takes input a pair of messages and returns a ciphertext, and runs B,
replying to the latter’s oracle queries via the subroutine. The subroutine increments
the counter j at each call, and computes the symmetric component Cs of the cipher-
text differently depending on how the counter j compares to the parameter i. In one
case, namely when j = i, it computes Cs by calling the given Es

K(LR(·, ·, b)) oracle
on inputs M0, M1. Notice that A makes only one call to its oracle, as required.

For the analysis, regard I as a random variable whose value is uniformly distributed
in {1, . . . , q}. Then notice that for any i ∈ {1, . . . , q}

Pr
[
Expind-cpa-1

SE (A) = 1 | I = i
]

= P (i)

Pr
[
Expind-cpa-0

SE (A) = 1 | I = i
]

= P (i − 1) .

Thus

Advind-cpa
SE (A)

= Pr
[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]

=
q∑

i=1

Pr
[
Expind-cpa-1

SE (A) = 1 | I = i
]
· Pr [I = i]

−
q∑

i=1

Pr
[
Expind-cpa-0

SE (A) = 1 | I = i
]
· Pr [I = i]

=
q∑

i=1

P (i) · Pr [I = i] −
q∑

i=1

P (i − 1) · Pr [I = i]

=
1
q
·

q∑
i=1

P (i) − P (i − 1)

=
1
q
· [P (1, 1) − P (0, 1)] .

In the last step we used Equation (8.17). Re-arranging terms, we get Equation (8.14).
This completes the proof.

We now proceed to the chosen-ciphertext attack case. The scheme itself is un-
changed, but we now claim that if the base components are secure against chosen-
ciphertext attack, then so is the hybrid encryption scheme.

3

• Proof. The proof will use a hybrid argument. We will define a 
sequence of 4 experiments associated with B

•

and define

It will be the case that

and thus
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for bits α, β ∈ {0, 1}, then it will be the case that

P (1, 0) = Pr
[
Expind-cpa-1

AE (B) = 1
]

(8.11)

P (0, 0) = Pr
[
Expind-cpa-0

AE (B) = 1
]

. (8.12)

In other words, the first and last experiments in our sequence will correspond to the
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AE (B) = P (1, 0) − P (0, 0) .
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Equation (8.8) follows.
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HE 00
pk(·, ·) , HE 01

pk(·, ·) , HE 11
pk(·, ·) , HE 10

pk(·, ·) . (8.16)

Each oracle will take input a pair M0, M1 of messages and return a ciphertext. Now,
to each pair α, β of bits, we associate the (α, β) hybrid experiment defined as follows:
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Oracle HE 00
pk(M0, M1)

K0
$←Ks ; K1

$←Ks

Cs $← Es(K0, M0 )
If Cs = ⊥ then return ⊥
Ca $← Ea(pk, K0 )
C ← (Ca, Cs)
Return C

Oracle HE 01
pk(M0, M1)

K0
$←Ks ; K1

$←Ks

Cs $← Es(K0, M0 )
If Cs = ⊥ then return ⊥
Ca $← Ea(pk, K1 )
C ← (Ca, Cs)
Return C

Oracle HE 11
pk(M0, M1)

K0
$←Ks ; K1

$←Ks

Cs $← Es(K0, M1 )
If Cs = ⊥ then return ⊥
Ca $← Ea(pk, K1 )
C ← (Ca, Cs)
Return C

Oracle HE 10
pk(M0, M1)

K0
$←Ks ; K1

$←Ks

Cs $← Es(K0, M1 )
If Cs = ⊥ then return ⊥
Ca $← Ea(pk, K0 )
C ← (Ca, Cs)
Return C

Figure 8.2: Hybrid lr-encryption oracles used in the proof of Theorem 8.6.

Experiment Expαβ
AE(B)

(pk, sk) $←Ka

d ← BHE αβ
pk (·,·)(pk)

Return d

This defines our experiments in terms of the oracles, and, finally, the oracles them-
selves are specified in Fig. 8.2. Each hybrid lr-encryption oracle is paramterized by
a pair (α, β) of bits and takes input a pair M0, M1 of messages. Examining the
oracles, you will see that they are mostly identical, different only in the quantities
that have been boxed. Each oracle picks not one but two keys K0, K1, indepen-
dently at random, for symmetric encryption. It then encrypts Mα under K0 via the
symmetric encryption scheme to get a ciphertext Cs, and it encrypts Kβ under the
public key via the asymmetric encryption scheme to get a ciphertext Ca. It returns
the pair (Ca, Cs).

Note oracles HE 00
pk(·, ·) and HE 10

pk(·, ·) do not actually use K1. We have asked these
oracles to pick K1 only to highlight the common template underlying all four oracles.

Observe that oracle HE 00
pk(·, ·) and oracle Epk(LR(·, ·, 0)) are equivalent in the sense

that their responses to any particular query are identically distributed. Similarly
oracle HE 10

pk(·, ·) and oracle Epk(LR(·, ·, 1)) are equivalent. This means that Equa-
tions (8.11) and (8.12) are true, which is the first requirement of a successful hybrid
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AE (A01,00) (8.13)

P (1, 1) − P (0, 1) ≤ Advind-cpa
SE (A) (8.14)

P (1, 0) − P (1, 1) ≤ Advind-cpa
AE (A10,11) . (8.15)

Equation (8.8) follows.

The template above is pretty generic. What we need to do now is to actually specify
the “hybrid” experiments of Equation (8.9) in such a way that Equations (8.11)–
(8.12) are true and we are able to construct adversaries A01,00, A, A10,11 such that
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Recall that B has access to an oracle that takes input a pair of messages and returns
a ciphertext. In the experiments of Definition 8.2 that define the ind-cpa-advantage
of B, this oracle is either Epk(LR(·, ·, 1)) or Epk(LR(·, ·, 0)), depending on the world
in which B is placed. Our hybrid experiments will involve executing B not only
with these oracles, but with others that we will define. Specifically, we will define a
sequence of oracles

HE 00
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Each oracle will take input a pair M0, M1 of messages and return a ciphertext. Now,
to each pair α, β of bits, we associate the (α, β) hybrid experiment defined as follows:
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is in world 0, meaning its oracle is Ea
pk(LR(·, ·, 0)), the ciphertext Ca computed by

subroutine OE(·, ·) is an encryption of K0, and thus subroutine OE(·, ·) is equivalent
to oracle HE 00

pk(·, ·). Hence

Pr
[
Expind-cpa-1

AE (A01,00) = 1
]

= Pr
[
Exp01

AE(B) = 1
]

Pr
[
Expind-cpa-0

AE (A01,00) = 1
]

= Pr
[
Exp00

AE(B) = 1
]

.

Subtracting, and remembering the notation of Equation (8.10), we get

Advind-cpa
AE (A01,00) = P (0, 1) − P (0, 0) ,

which justifies Equation (8.13).

We leave to the reader the task of verifying Equation (8.15) based on the construc-
tion of A11,10 given in Fig. 8.3, and now proceed to the construction of the ind-cpa
adversary A attacking the base symmetric encryption scheme.

The intuition here is that the (0, 1) and (1, 1) hybrid experiments both compute Ca

as an encryption of key K1, but differ in which message they symmetrically encrypt
under K0, and thus the difference between P (0, 1) and P (1, 1) measures the ability
of the adversary to tell which message Cs encrypts under K0. This is something
we can relate solely to the security of the base symmetric encryption scheme. The
construction however will require a little more work, introducing another sequence
of hybrid experiments. This time there will be q + 1 of them,

Exp0
AE(B) , Exp1

AE(B) , . . . , Expq

AE(B) .

Again we associate to any i ∈ {0, . . . , q} an oracle and an experiment, as indicated
in Fig. 8.4. The oracle associated to i is stateful, maintaining a counter j that is
initially 0 and is incremented each time the oracle is invoked. The oracle behaves
differently depending on how its counter j compares to its defining parameter i. If
j ≤ i it symmetrically encrypts, under K0, the right message M1, and otherwise it
symmetrically encrypts, under K0, the left message M0. The asymmetric component
Ca is always an encryption of K1.

For i = 0, . . . , q we let

P (i) = Pr
[
Expi

AE(B) = 1
]

.

Now, suppose i = 0. In that case, the value Cs computed by oracle HE i
pk(·, ·) on

input M0, M1 is a symmetric encryption of M0 regardless of the value of the counter
j. This means that oracles HE 0

pk(·, ·) and HE 01
pk(·, ·) are equivalent. Similarly, oracles

HE q
pk(·, ·) and HE 11

pk(·, ·) are equivalent. Hence

P (0, 1) = P (0) and P (1, 1) = P (q) .

So

P (1, 1) − P (0, 1)
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Adversary A
Ea

pk(LR(·,·,b))
01,00 (pk)

Subroutine OE(M0, M1)
K0

$←Ks ; K1
$←Ks

Cs $← Es(K0, M0)
If Cs = ⊥ then return ⊥
Ca $← Ea
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Return (Ca, Cs)

End Subroutine
d $← BOE(·,·)(pk)
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$←Ks ; K1
$←Ks

Cs $← Es(K0, M1)
If Cs = ⊥ then return ⊥
Ca $← Ea

pk(LR(K1, K0, b))
Return (Ca, Cs)
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Figure 8.3: Adversaries attacking AE constructed for the proof of Theorem 8.6.

argument.
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We now construct A. As A can make only 1 query, the 
construction will require another sequence of hybrid arguments
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is in world 0, meaning its oracle is Ea
pk(LR(·, ·, 0)), the ciphertext Ca computed by

subroutine OE(·, ·) is an encryption of K0, and thus subroutine OE(·, ·) is equivalent
to oracle HE 00

pk(·, ·). Hence

Pr
[
Expind-cpa-1

AE (A01,00) = 1
]

= Pr
[
Exp01

AE(B) = 1
]

Pr
[
Expind-cpa-0

AE (A01,00) = 1
]

= Pr
[
Exp00

AE(B) = 1
]

.

Subtracting, and remembering the notation of Equation (8.10), we get

Advind-cpa
AE (A01,00) = P (0, 1) − P (0, 0) ,

which justifies Equation (8.13).

We leave to the reader the task of verifying Equation (8.15) based on the construc-
tion of A11,10 given in Fig. 8.3, and now proceed to the construction of the ind-cpa
adversary A attacking the base symmetric encryption scheme.

The intuition here is that the (0, 1) and (1, 1) hybrid experiments both compute Ca

as an encryption of key K1, but differ in which message they symmetrically encrypt
under K0, and thus the difference between P (0, 1) and P (1, 1) measures the ability
of the adversary to tell which message Cs encrypts under K0. This is something
we can relate solely to the security of the base symmetric encryption scheme. The
construction however will require a little more work, introducing another sequence
of hybrid experiments. This time there will be q + 1 of them,

Exp0
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AE(B) , . . . , Expq

AE(B) .

Again we associate to any i ∈ {0, . . . , q} an oracle and an experiment, as indicated
in Fig. 8.4. The oracle associated to i is stateful, maintaining a counter j that is
initially 0 and is incremented each time the oracle is invoked. The oracle behaves
differently depending on how its counter j compares to its defining parameter i. If
j ≤ i it symmetrically encrypts, under K0, the right message M1, and otherwise it
symmetrically encrypts, under K0, the left message M0. The asymmetric component
Ca is always an encryption of K1.

For i = 0, . . . , q we let
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Expi

AE(B) = 1
]

.

Now, suppose i = 0. In that case, the value Cs computed by oracle HE i
pk(·, ·) on
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j. This means that oracles HE 0
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Oracle HE i
pk(M0, M1)

j ← j + 1
K0

$←Ks ; K1
$←Ks

If j ≤ i

then Cs $← Es(K0, M1 )
else Cs $← Es(K0, M0 )

EndIf
If Cs = ⊥ then return ⊥
Ca $← Ea(pk, K1 )
C ← (Ca, Cs)
Return C

Experiment Expi
AE(B)

(pk, sk) $←Ka

d ← BHE i
pk(·,·)(pk)

Return d

Adversary AEs
K(LR(·,·,b))

(pk, sk) $←Ka ; j ← 0 ; I $← {1, . . . , q}
Subroutine OE(M0, M1)

j ← j + 1
K0

$←Ks ; K1
$←Ks

If j < I then Cs $← Es(K0, M1 ) EndIf
If j = I then Cs $← Es

K(LR(M0, M1, b)) EndIf
If j > I then Cs $← Es(K0, M0 ) EndIf
If Cs = ⊥ then return ⊥
Ca $← Ea(pk, K1 )
Return (Ca, Cs)

End Subroutine
d $← BOE(·,·)(pk)
Return d

Figure 8.4: Hybrid oracles and experiments related to the construction of ind-cpa
adversary A in the proof of Theorem 8.6.

= P (q) − P (0)

= P (q) − P (q − 1) + P (q − 1) − · · ·− P (1) + P (1) − P (0)

=
q∑

i=1

[P (i) − P (i − 1)] . (8.17)
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depicted in Fig. 8.4. It gets a lr-encryption oracle E s
K(LR(·, ·, b)) based on a hidden

key K and challenge bit b. It picks a pair of public and secret keys by running the
key-generation algorithm of the asymmetric encryption scheme. It then picks an
index i at random, and initializes a counter j to 0. Next it defines a subroutine
OE(·, ·) that takes input a pair of messages and returns a ciphertext, and runs B,
replying to the latter’s oracle queries via the subroutine. The subroutine increments
the counter j at each call, and computes the symmetric component Cs of the cipher-
text differently depending on how the counter j compares to the parameter i. In one
case, namely when j = i, it computes Cs by calling the given Es

K(LR(·, ·, b)) oracle
on inputs M0, M1. Notice that A makes only one call to its oracle, as required.

For the analysis, regard I as a random variable whose value is uniformly distributed
in {1, . . . , q}. Then notice that for any i ∈ {1, . . . , q}

Pr
[
Expind-cpa-1

SE (A) = 1 | I = i
]

= P (i)

Pr
[
Expind-cpa-0

SE (A) = 1 | I = i
]

= P (i − 1) .

Thus

Advind-cpa
SE (A)

= Pr
[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]

=
q∑

i=1

Pr
[
Expind-cpa-1

SE (A) = 1 | I = i
]
· Pr [I = i]

−
q∑

i=1

Pr
[
Expind-cpa-0

SE (A) = 1 | I = i
]
· Pr [I = i]

=
q∑

i=1

P (i) · Pr [I = i] −
q∑

i=1

P (i − 1) · Pr [I = i]

=
1
q
·

q∑
i=1

P (i) − P (i − 1)

=
1
q
· [P (1, 1) − P (0, 1)] .

In the last step we used Equation (8.17). Re-arranging terms, we get Equation (8.14).
This completes the proof.

We now proceed to the chosen-ciphertext attack case. The scheme itself is un-
changed, but we now claim that if the base components are secure against chosen-
ciphertext attack, then so is the hybrid encryption scheme.

Check that
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We now proceed to the chosen-ciphertext attack case. The scheme itself is un-
changed, but we now claim that if the base components are secure against chosen-
ciphertext attack, then so is the hybrid encryption scheme.

Analyzing A we get
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• Note that a symmetric encryption scheme can satisfy a 
definition weaker than IND-CPA (as in the proof A makes only 
one query to the LR oracle.) 

• In particular, the symmetric scheme can be deterministic

• This is because a new symmetric key is picked for each 
message

• An analogues theorem can be stated and proved for the case 
of chosen-ciphertext attacks (if the components are IND-CCA 
secure, then the hybrid scheme is IND-CCA secure).
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