Hybrid encryption

- Asymmetric encryption uses number-theoretic operations and is slower than symmetric encryption that often uses block ciphers.
- Also we often want to encrypt long messages.
- In practice one usually

1. encrypts a randomly chosen symmetric key K using an asymmetric encryption algorithm and then
2. encrypts a message using a symmetric encryption algorithm and K.

- This is called hybrid encryption

Hybrid encryption

- Let $\mathcal{A E}=\left(\mathcal{K}^{a}, \mathcal{E}^{a}, \mathcal{D}^{a}\right)$ be an asymmetric encryption scheme and let $\mathcal{S E}=\left(\mathcal{K}^{s}, \mathcal{E}^{s}, \mathcal{D}^{s}\right)$ be a symmetric encryption scheme, s.t. the set of keys for $S \mathcal{E}$ is always in the message space of $A \mathcal{E}$. Then the associated hybrid scheme $\overline{\mathcal{A E}}=\left(\mathcal{K}^{a}, \overline{\mathcal{E}}, \overline{\mathcal{D}}\right)$ is as follows:
- Algorithm $\overline{\mathcal{E}}_{p k}(M)$

Algorithm $\mathcal{E}_{p k}(M)$	Algorithm $\overline{\mathcal{D}}_{\text {sk }}(C)$
-	$K \stackrel{\&}{\leftarrow} \mathcal{K}^{s} ; C^{s} \stackrel{\&}{\leftarrow} \mathcal{E}_{K}^{s}(M)$

- If $C^{s}=\perp$ then return \perp
- $C^{a} \stackrel{\mathcal{E}_{p k}^{a}(K) ; C \leftarrow\left(C^{a}, C^{s}\right)}{(K)}$
- Return C
$K \leftarrow \mathcal{D}_{\text {sk }}^{a}\left(C^{a}\right)$
If $K=\perp$ then return \perp
$M \leftarrow \mathcal{D}_{K}^{s}\left(C^{s}\right)$
Return M
- Note that the hybrid scheme is an asymmetric encryption scheme

Hybrid encryption

- Theorem. Let $\mathcal{A E}=\left(\mathcal{K}^{a}, \mathcal{E}^{a}, \mathcal{D}^{a}\right)$ be an asymmetric encryption scheme and let $\mathcal{S E}=\left(\mathcal{K}^{s}, \mathcal{E}^{s}, \mathcal{D}^{s}\right)$ be a symmetric encryption scheme, s.t. the set of keys for $\mathcal{S E}$ is always in the message space of $A \mathcal{E}$. Let $\overline{\mathcal{A E}}=\left(\mathcal{K}^{a}, \overline{\mathcal{E}}, \overline{\mathcal{D}}\right)$ be the associated hybrid scheme as defined on the previous slide. Then for any adversary B there exist adversaries $A_{00,01}, A_{00,01}, A$ s.t.
- $\operatorname{Adv}_{\overline{\mathcal{A} \mathcal{E}}}^{\text {ind-cpa }}(B)$
- $\leq \mathbf{A d v}_{\mathcal{A} \mathcal{E}}^{\text {ind-cpa }}\left(A_{00,01}\right)+\mathbf{A d v}_{\mathcal{A} \mathcal{E}}^{\text {ind-cpa }}\left(A_{11,10}\right)+q \mathbf{A d v} \mathbf{v}_{\mathcal{S E}}^{\text {ind-cpa }}(A)$
and $A_{00,01}, A_{10,11}$ have time complexity of B, make the same number of queries, each of length k (symmetric key length), and A has time complexity of B and makes only one query.
- Collorary. If the components are IND-CPA, then the associated hybrid scheme is also IND-CPA.
- Proof. The proof will use a hybrid argument. We will define a sequence of 4 experiments associated with B
- $\quad \operatorname{Exp} \frac{00}{\mathcal{A} \mathcal{E}}(B), \operatorname{Exp} \frac{01}{\mathcal{A} \mathcal{E}}(B), \operatorname{Exp} \frac{11}{\mathcal{A} \mathcal{E}}(B), \operatorname{Exp} \frac{10}{\mathcal{A} \mathcal{E}}(B)$
and define

$$
P(\alpha, \beta)=\operatorname{Pr}\left[\operatorname{Exp}_{\frac{\alpha}{\mathcal{A} \mathcal{E}}}(B)=1\right]
$$

It will be the case that

$$
\begin{aligned}
P(1,0) & =\operatorname{Pr}\left[\operatorname{Exp}_{\overline{\mathcal{A} \mathcal{E}}}^{\text {ind cpa-1 }}(B)=1\right] \\
P(0,0) & =\operatorname{Pr}\left[\operatorname{Exp}_{\frac{\text { ind-cpa-0 }}{\mathcal{A} \mathcal{E}}}(B)=1\right]
\end{aligned}
$$

and thus $\quad \operatorname{Adv}_{\overline{\mathcal{A E}}}^{\text {ind-cpa }}(B)=P(1,0)-P(0,0)$
$=P(1,0)-P(1,1)+P(1,1)-P(0,1)+P(0,1)-P(0,0)$
$=[P(1,0)-P(1,1)]+[P(1,1)-P(0,1)]+[P(0,1)-P(0,0)]$

We will construct adversaries $A_{00,01}, A, A_{00,01}$ s.t.

$$
\begin{aligned}
& P(0,1)-P(0,0) \leq \operatorname{Adv}_{\mathcal{A \mathcal { E }}}^{\text {ind-cpa }}\left(A_{01,00}\right) \\
& P(1,1)-P(0,1) \leq \operatorname{Adv}_{\mathcal{S E}}^{\text {ind ccpa }}(A) \\
& P(1,0)-P(1,1) \leq \operatorname{Adv}_{\mathcal{A} \mathcal{E}}^{\text {ind cca }}\left(A_{10,11}\right)
\end{aligned}
$$

and the theorem statement will follow.

We now define the 4 experiments that use different oracles $\mathcal{H} \mathcal{E}_{p k}^{00}(\cdot, \cdot), \quad \mathcal{H} \mathcal{E}_{p k}^{01}(\cdot, \cdot), \mathcal{H E} \mathcal{E}_{p k}^{11}(\cdot, \cdot), \quad \mathcal{H} \mathcal{E}_{p k}^{10}(\cdot, \cdot)$

For all possible bits α, β define

Experiment $\operatorname{Exp}_{\frac{\alpha \beta}{\mathcal{A}}}^{\alpha \beta}(B)$
$(p k, s k) \stackrel{K^{a}}{\leftarrow}$
$d \leftarrow B^{\mathcal{H} \mathcal{E}_{p k}^{\alpha \beta}(\cdot, \cdot)}(p k)$
Return d

Oracle $\mathcal{H E} \mathcal{E}_{p k}^{01}\left(M_{0}, M_{1}\right)$
 $C^{s} \leftarrow \mathcal{E}^{s}\left(K_{0}, M_{0}\right)$ If $C^{s}=\perp$ then return \perp $C^{a} \stackrel{s}{2}^{a}\left(p k, K_{1}\right)$ $C \leftarrow\left(C^{a}, C^{s}\right)$ Return C

Oracle $\mathcal{H E} \mathcal{E}_{p k}^{10}\left(M_{0}, M_{1}\right)$ $K_{0} \stackrel{\S}{*}^{\mathcal{K}} \mathcal{K}^{s} ; K_{1} \stackrel{\&}{ } \mathcal{K}^{s}$ $C^{s} \stackrel{\varepsilon}{s}^{s} \mathcal{E}^{s}\left(K_{0}, M_{1}\right)$ If $C^{s}=\perp$ then return \perp $C^{a} \stackrel{\&}{\leftarrow} \mathcal{E}^{a}\left(p k, K_{0}\right)$ $C \leftarrow\left(C^{a}, C^{s}\right)$
Return C

Check that

$$
\begin{aligned}
& P(1,0)=\operatorname{Pr}\left[\operatorname{Exp}_{\overline{\mathcal{A} \mathcal{E}}}^{\text {ind-cpa-1 }}(B)=1\right] \\
& P(0,0)=\operatorname{Pr}\left[\operatorname{Exp}_{\overline{\mathcal{A} \mathcal{E}}}^{\text {ind-cpa-0 }}(B)=1\right]
\end{aligned}
$$

We now construct adversaries $A_{00,01}, A_{10,11}$

$$
\begin{aligned}
& \text { Subroutine } \mathcal{O E}\left(M_{0}, M_{1}\right) \quad \text { Subroutine } \mathcal{O E}\left(M_{0}, M_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C^{s} \stackrel{s}{s} \mathcal{E}^{s} ; K_{0} \leftarrow M_{0} \\
& C^{s} \stackrel{s}{s}^{s} \mathcal{E}^{s}\left(K_{0}, M_{0}\right) \\
& \text { If } C^{s}=\perp \text { then return } \perp \\
& C^{a} \stackrel{\&}{\&} \mathcal{E}_{p k}^{a}\left(\operatorname{LR}\left(K_{0}, K_{1}, b\right)\right) \\
& \text { Return (} C^{a}, C^{s} \text {) } \\
& \text { End Subroutine } \\
& d \leftarrow B^{\mathcal{O}(\cdot)}(p k) \\
& \text { Return } d \\
& C^{s, s} \mathcal{E}^{s}\left(K_{0}, M_{1}\right) \\
& \text { If } C^{s}=\perp \text { then return } \perp \\
& C^{a} \stackrel{\stackrel{s}{s} \mathcal{E}_{p k}^{a}\left(\operatorname{LR}\left(K_{1}, K_{0}, b\right)\right)}{ } \\
& \text { Return (} C^{a}, C^{s} \text {) } \\
& \text { End Subroutine } \\
& d \leftarrow B^{\mathcal{O E}(\cdots)}(p k) \\
& \text { Return d } \\
& \text { Check that } \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{A} \mathcal{E}}^{\text {ind }}{ }^{\text {cpa-1 }}\left(A_{01,00}\right)=1\right]=\operatorname{Pr}\left[\operatorname{Exp} \frac{01}{\mathcal{A} \mathcal{E}}(B)=1\right] \\
& \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{A \mathcal { E }}}^{\text {ind-cpa-0 }}\left(A_{01,00}\right)=1\right]=\operatorname{Pr}\left[\operatorname{Exp}_{\overline{\mathcal{A}}}(B)=1\right] \\
& \operatorname{Adv}_{\mathcal{A} \mathcal{E}}^{\text {ind }}{ }^{\text {cpa }}\left(A_{01,00}\right)=P(0,1)-P(0,0)
\end{aligned}
$$

We now construct A. As A can make only 1 query, the construction will require another sequence of hybrid arguments

$$
\operatorname{Exp}_{\overline{\mathcal{A} \mathcal{E}}}^{0}(B), \operatorname{Exp}_{\frac{1}{\mathcal{A} \mathcal{E}}}(B), \ldots, \operatorname{Exp}_{\frac{q}{\mathcal{A} \mathcal{E}}}^{q}(B)
$$

Define $\quad P(i)=\operatorname{Pr}\left[\operatorname{Exp}_{\overline{\mathcal{A} \mathcal{E}}}^{i}(B)=1\right]$
Oracle $\mathcal{H E}_{p k}^{i}\left(M_{0}, M_{1}\right)$
$j \leftarrow j+1$
$K_{0} \stackrel{\oiint}{\leftarrow} \mathcal{K}^{s} ; K_{1} \stackrel{\oiint}{\leftarrow} \mathcal{K}^{s}$
If $j \leq i$
then $C^{s} \stackrel{\&}{\leftarrow} \mathcal{E}^{s}\left(K_{0}, M_{1}\right)$
else $C^{s} \stackrel{\oiint}{\leftarrow} \mathcal{E}^{s}\left(K_{0}, M_{0}\right)$
EndIf
If $C^{s}=\perp$ then return \perp
$C^{a} \stackrel{\&}{\leftarrow} \mathcal{E}^{a}\left(p k, K_{1}\right)$
$C \leftarrow\left(C^{a}, C^{s}\right) \quad$ Check that
Return $C \quad P(0,1)=P(0) \quad$ and $\quad P(1,1)=P(q)$
$P(1,1)-P(0,1)$
$=P(q)-P(0)$
$=P(q)-P(q-1)+P(q-1)-\cdots-P(1)+P(1)-P(0)$
$=\sum_{i=1}^{q}[P(i)-P(i-1)]$.

$$
\begin{aligned}
& \text { Adversary } A^{\mathcal{E}_{K}^{s}(\operatorname{LR}(\cdot, ;, b))} \\
& (p k, s k) \stackrel{\&}{\leftarrow} \mathcal{K}^{a} ; j \leftarrow 0 ; I \leftarrow\{1, \ldots, q\} \\
& \text { Subroutine } \mathcal{O E}\left(M_{0}, M_{1}\right) \\
& j \leftarrow j+1 \\
& K_{0} \stackrel{\&}{\leftarrow} \mathcal{K}^{s} ; K_{1} \stackrel{\&}{\leftarrow} \mathcal{K}^{s} \\
& \text { If } j<I \text { then } C^{s} \hookleftarrow \mathcal{E}^{s}\left(K_{0}, \boxed{M_{1}}\right) \text { EndIf } \\
& \text { If } j=I \text { then } C^{s} \stackrel{\&}{\leftarrow} \mathcal{E}_{K}^{s}\left(\operatorname{LR}\left(M_{0}, M_{1}, b\right)\right) \text { EndIf } \\
& \text { If } j>I \text { then } C^{s} \stackrel{\leftrightarrow}{\uplus} \mathcal{E}^{s}\left(K_{0}, M_{0}\right) \text { EndIf } \\
& \text { If } C^{s}=\perp \text { then return } \perp \\
& C^{a} \stackrel{\&}{\leftarrow} \mathcal{E}^{a}\left(p k, \boxed{K_{1}}\right) \\
& \text { Return }\left(C^{a}, C^{s}\right) \\
& \text { End Subroutine } \\
& d \stackrel{\&}{\leftarrow} B^{\mathcal{O E}(\cdot, \cdot)}(p k) \\
& \text { Return } d \\
& \text { Check that } \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S E}}^{\text {ind-cpa-1 }}(A)=1 \mid I=i\right]=P(i) \\
& \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S} \mathcal{E}}^{\text {ind }}{ }^{\text {cpa- } 0}(A)=1 \mid I=i\right]=P(i-1)
\end{aligned}
$$

Analyzing A we get

$\operatorname{Adv}_{\mathcal{S E}}{ }^{\text {ind-cpa }}(A)$
$=\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S E}}^{\text {ind-cpa-1 }}(A)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S E}}^{\text {ind-cpa-0 }}(A)=1\right]$
$=\sum_{i=1}^{q} \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S} \mathcal{E}}^{\mathrm{ind} \text { cpa-1 }}(A)=1 \mid I=i\right] \cdot \operatorname{Pr}[I=i]$
$-\sum_{i=1}^{q} \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S E}}^{\text {ind-cpa- }}(A)=1 \mid I=i\right] \cdot \operatorname{Pr}[I=i]$
$=\sum_{i=1}^{q} P(i) \cdot \operatorname{Pr}[I=i]-\sum_{i=1}^{q} P(i-1) \cdot \operatorname{Pr}[I=i]$
$=\frac{1}{q} \cdot \sum_{i=1}^{q} P(i)-P(i-1)$
$=\frac{1}{q} \cdot[P(1,1)-P(0,1)]$.

- Note that a symmetric encryption scheme can satisfy a definition weaker than IND-CPA (as in the proof A makes only one query to the LR oracle.)
- In particular, the symmetric scheme can be deterministic
- This is because a new symmetric key is picked for each message
- An analogues theorem can be stated and proved for the case of chosen-ciphertext attacks (if the components are IND-CCA secure, then the hybrid scheme is IND-CCA secure).

