Implementation pitfalls

* We learned about various cryptographic primitives and the
provable security approach, saw many secure constructions.

* You are almost ready to employ this knowledge in practice.

¢ Let us review some common mistakes one needs to be aware
of and avoid when implementing cryptographic protocols.

Always remember to

Use widely accepted and believed to be secure building blocks
(e.g. AES).

Use provably secure (under reasonable assumptions)
constructions (e.g. $CBC).

Do not assume that the schemes provide security properties
other than what is proven about them (e.g. encryption does
not provide authenticity).

Realize that the use of a provably secure scheme does not
guarantee that the entire system will be secure.

Make sure that you implement exactly the scheme that was
proven secure.

Not using the right primitives

ATM-based passive optical networks commonly use a block
cipher called CHURN. It's key size is 8 bits and it’s block size
is 4 bits!

Using the constructs without security proofs

The use of the ECB mode and the Plain RSA encryption is still
very common.

Not considering the security bounds
Consider the encryption algorithm of a scheme CTRS$[L]

Let E:{0,1}¥x{0,1}"-{0,1}" be a block cipher.

R-{0,135 R[I<13]

RlI<m

(&]

One can prove that for every A making q queries there exists B s.t.
2

ind-cpa rf q
AVt (A) < Advi(B) + SLF

Is CTRS$ secure?

q2

- £
Adv it (A) < Adv (B) + st

* WEP protocol for IEEE 802.11 wireless networks uses a
scheme like CTRS$ with L=24,40,64 or 80.

¢ Assume L=24 and q=4096. Then the last term becomes 1/2
and no security is guaranteed by the bound!

Not using the right tool

* It is tempting to believe that encryption provide some
authenticity.

* The first versions of the SSH protocol, IPsec specification and
the WEP protocol did not use message authentication codes,
and thus were subject to certain attacks.

Not implementing exactly the provable-secure schemes

* A slightest tweak to a provably-secure scheme can make it
insecure

* Diebold voting machines encrypted the votes with CBC$, but
used all-zero string as an IV.

* Microsoft Word and Excel used CBCS$, but did not pick a new
random R each time.

Random numbers

« It is usually straightforward to implement the pseudo-code
descriptions in C or Java.

« However, how do you implement commands like K & {0,1}* ?

¢ The C offers a built-in random number generator, that works
roughly as this

32-bit number

procedure srand(seed) | function rand()
state = seed; state = ((state * 1103515245) + 12345)
mod 2147483648;

return state 3

* So one can implement K < {0,1}* as follows

function keygen()

algorith
dg?fl‘ ";f 128 key[0] = rand(Q); key[1] = rand();
r;t:r{rn k’} key[2] = rand(); key[3] = rand();

return key

¢ But looking at how rand() works we notice that

key[1] = ((key[0] -1103515245) + 12345) mod 2*!

key[2] = ((((key[0] - 1103515245) + 12345) - 1103515245) +
12345) mod 2°!

key[3] = ((((((key[0] - 1103515245) + 12345) - 1103515245) +
12345) - 1103515245) + 12345) mod 2%!

¢ This means that there are still only 232 possibilities for the key.

The Netscape browser tried to do better:

procedure NetscapeRandSetup ()

pid = process ID;
ppid = parent process ID;
seconds = current time of day

function NetscapeGetRand ()
rv = SHA1(NSseed);
NSseed = NSseed + 1 mod 2!%0;
return rv;

(seconds) ;

microseconds = current time of day
(microseconds);

x = concatenation of pid, ppid,
seconds, microseconds;

NSseed = SHAL(x);

¢ This can be used as

function keygen() ;
algorithm K NetscapeRandSetup() ;
K& {0,1)128 tmp = NetscapeGetRand();
return K key = first 128-bits of tmp;
return key

* Despite the reasonable properties of SHA1 and the 160-bit
output of the generator, an adversary can learn or guess x.

Randomness for encryption

* Designers of SSH, IPsec, SSL all assumed that the last blocks
of the ciphertexts in CBC can be used as IVs for the next
ciphertexts.

Combining the schemes

* Recall that it is insecure in general to apply the Encrypt-and-
MAC paradigm in order to achieve both privacy and
authenticity.

Key management
* All users of the WEP encryption protocol use the same
symmetric key.
* The key for the secure votes encryption in Diebold machines
is hardwired in the code:
#define DESKEY ((des_key*)"F2654hD4")

10

Reference

* Y. Kohno “Implementation pitfalls”. Available at
http://www.cse.ucsd.edu/~mihir/cse107/yoshi.pdf

11

