
Implementation pitfalls

• We learned about various cryptographic primitives and the 
provable security approach, saw many secure constructions.

• You are almost ready to employ this knowledge in practice.

• Let us review some common mistakes one needs to be aware 
of and avoid when implementing cryptographic protocols.

Always remember to

• Use widely accepted and believed to be secure building blocks 
(e.g. AES).

• Use provably secure (under reasonable assumptions) 
constructions (e.g. $CBC).

• Do not assume that the schemes provide security properties 
other than what is proven about them (e.g. encryption does 
not provide authenticity).

• Realize that the use of a provably secure scheme does not 
guarantee that the entire system will be secure.

• Make sure that you implement exactly the scheme that was 
proven secure.

Not using the right primitives

• ATM-based passive optical networks commonly use a block 
cipher called CHURN. It’s key size is 8 bits and it’s block size 
is 4 bits!

• The use of the ECB mode and the Plain RSA encryption is still 
very common.

Using the constructs without security proofs

One can prove that for every A making q queries there exists B s.t.

Is CTRS$ secure?

Not considering the security bounds

Let E:{0,1}k×{0,1}n→{0,1}n be a block cipher.

R←{0,1}L
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Consider the encryption algorithm of a scheme CTRS$[L]
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8.2 Using a construct without proofs of security

There have been numerous cryptographic protocols, like encryption schemes and MACs, that did
not come with proofs of security. That’s not surprising since people did not start to prove the
security of block cipher-based encryption schemes and MACs until the 1990s. What is unfortunate
is that, without proofs of security, it is impossible to know whether a construction is actually secure
or not. In fact, in the exercises you have already been asked to find attacks against constructions
that do not come with proofs of security, even if they might appear secure at first sight.

Nowadays, many more people understand that it is important to use cryptographic protocols
that come with proofs of security. Still, it is not uncommon to find homebrew security software
using the ECB encryption mode, or something akin to CBCC. (We’ll get back to some examples
later.)

Hopefully, the discussions in Chapters 4 through 7 strongly motivate the fact that, whenever
possible, software applications should use constructions that are provably secure under reasonable
assumptions.

8.3 Not considering the security bounds

Another common implementation pitfall is to not fully understand the security bounds in the proofs.
We saw a little bit of this when we discussed CBC$ with FEAL in Section 8.1 of this chapter. But
now let’s consider the case where we actually believe that the underlying cryptographic primitive
is secure.

Let us define the encryption scheme CTRS$[L] = (K, E ,D) with a block cipher E: {0, 1}k ×
{0, 1}n → {0, 1}n. Here L is an integer between 1 and n−1, and is a parameter of our construction.
The key generation algorithm returns a randomly selected value from {0, 1}k. The encryption algo-
rithm is shown below, and the decryption algorithm is defined in the natural way. This construction
is very similar to CTR$ from Chapter 5.

algorithm EK(M)
m ← %|M |/n&
If m ≥ 2n−l then return ⊥

R
$
← {0, 1}L

Pad ← EK(R‖〈1〉)‖EK(R‖〈2〉)‖ · · ·EK(R‖〈m〉)
Pad ← the first |M | bits of Pad
C ′ ← M⊕Pad
C ← R‖C ′

return C

Here 〈x〉 denotes the n − L-bit encoding of the integer x ∈ {0, . . . , 2n−L − 1}.
We can prove the following result about the above construction.

Theorem 8.3.1 Let E: {0, 1}k × {0, 1}n → {0, 1}n be a family of functions, let L ∈ {1, . . . , n− 1}
be an integer, and let CTRS$[L] = (K, E ,D) be the corresponding CTRS$[L] symmetric encryp-
tion scheme as described above. Let A be an adversary (for attacking the IND-CPA security of
CTRS$[L]) that runs in time at most t and asks at most q queries, these totaling at most σ n-bit
blocks. Then there exists an adversary B (attacking the PRF security of E) such that

Adv
ind-cpa
CTRS$[L](A) ≤ Adv

prf
E (B) +

q2

2L+1
. (8.1)
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• WEP protocol for IEEE 802.11 wireless networks uses a 
scheme like CTRS$ with L=24,40,64 or 80. 

• Assume L=24 and q=4096. Then the last term becomes 1/2 
and no security is guaranteed by the bound!
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Not using the right tool

• It is tempting to believe that encryption provide some 
authenticity.

• The first versions of the SSH protocol, IPsec specification and 
the WEP protocol did not use message authentication codes, 
and thus were subject to certain attacks. 

• A slightest tweak to a provably-secure scheme can make it 
insecure

• Diebold voting machines encrypted the votes with CBC$, but 
used all-zero string as an IV.

• Microsoft Word and Excel used CBCS$, but did not pick a new 
random R each time.

Not implementing exactly the provable-secure schemes

Random numbers

• It is usually straightforward to implement the pseudo-code 
descriptions in C or Java.

• However, how do you implement commands like                ?

• The C offers a built-in random number generator, that works 
roughly as this

6 IMPLEMENTATION PITFALLS

Given this description, and a description of the block cipher E, any experienced C or Java program-
mer should be able to easily implement most parts of the above algorithms. This is because almost
all of the operations in the above pseudocode are common to all popular languages. For example,
the “←” operation corresponds to the standard assignment operator (“=” in C and Java). The

programmer might, however, be puzzled about how to implement the “
$
←” randomized assignment

operator from the lines

K
$
← {0, 1}k

and
IV

$
← {0, 1}n .

It is worth thinking about how a programmer might instantiate the “
$
←” operation in C or Java.

In order to implement the algorithms exactly as described in the above pseudocode, the operation

“
$
←” must select bits independently and uniformly at random. If an implementation of CBC$

does not do this, then the implementation is not exactly the object described above and in Figure
5.2. At a minimum, this means that the security of the software implementation of CBC$ does
not immediately follow from Theorem 5.19. In the worst case, not only might the security of
the software implementation not follow from Theorem 5.19, but the software implementation may
actually be insecure.

The first problem is that it is hard for computers, which are inherently deterministic, to select
bits independently and uniformly at random. Therefore, people implementing cryptosystems are

left to approximate the
$
← operation as best they can. The second problem is that there are many

natural approaches for trying to implement the
$
← operation in C or Java, and some of these

approaches can actually yield an insecure implementation. We consider some example (flawed)

approaches for instantiating
$
← here.

8.6.1 The C random number generator

The C programming language has a built in “random number generator,” called rand. Associated

to rand is another function named srand. Therefore, a natural way to try to implement
$
← would

be to use rand and srand.
At a high level, the way a programmer is supposed to use rand and srand is as follows. The

program is first supposed to call srand(seed), where seed is the “seed” to the C random number
generator. After calling srand, the program can invoke rand() any number of times. Each time
rand() will return a value that is supposed to appear random. Therefore, a natural way for trying
to generate a large number of random bits is to invoke rand() as many times as necessary. Here
we ignore how the programmer picks seed.

Let us look under the hood and see how rand and srand work. Although different systems
implement these functions in slightly different ways, there is a lot of commonality between the
code for these functions on different systems. Below we show the code for srand and rand on one
popular system. For this system, state is a global 32-bit unsigned integer. We do not present
actual C code, but try to capture as the essence of these functions in C-like pseudocode.

procedure srand(seed)

state = seed;

function rand()

state = ((state * 1103515245) + 12345)

mod 2147483648;

return state
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32-bit number

231

• So one can implement                as follows

• But looking at how rand() works we notice that

• This means that there are still only 232 possibilities for the key.
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Here 2147483648 is 231.
Let us now consider how a programmer might use rand to implement the CBC$ encryption

scheme’s key generation algorithm. We show our traditional pseudocode on the left, and a C-like
pseudocode on the right.

algorithm K

K
$
← {0, 1}k

return K

function keygen()

key = rand();

return key

The first observation that we make is that, since rand returns a 32-bit integer, key must also be
a 32-bit integer. If k > 32, then the implementation would clearly not be using a key selected
randomly from the set of all strings k-bit strings {0, 1}k. The security implications of this should
be clear. While we consider it impractical to exhaustively search a randomly selected 128-bit AES
key, it would be practical to exhaustively search a 32-bit key generated via the above keygen code.

To fix the problem, one might try invoking rand() multiple times. For example, if the block
cipher is AES with k = 128, the above pseudocode might change to:

algorithm K

K
$
← {0, 1}128

return K

function keygen()

key[0] = rand(); key[1] = rand();

key[2] = rand(); key[3] = rand();

return key

where key is a now a four-element array of 32-bit unsigned integers.
But there is still something seriously wrong with the above implementation of keygen that

could compromise the security of CBC$. To see the problem, let us return to how rand works. By
looking at how rand works, we find that

key[1] = ((key[0] · 1103515245) + 12345) mod 231

key[2] = ((((key[0] · 1103515245) + 12345) · 1103515245) +

12345) mod 231

key[3] = ((((((key[0] · 1103515245) + 12345) · 1103515245) +

12345) · 1103515245) + 12345) mod 231

This means that now, even though key is now a 128-bit value (an array of four 32-bit elements),
there are only 232 possibilities for key. An adversary could therefore exhaustively search key using
at most 232 tries.

8.6.2 Key generation and the Netscape browser

¿From the above discussion, it should be clear that there are serious problems in one of the most
natural approaches for trying to generate random numbers in software (using rand). There are two
problems with rand. First, the state variable of rand is only 32-bits long, which means that the
state can be exhaustively search using reasonable resources. Second, knowing one value of state

(e.g., Key[0]) allows us to compute all previous or subsequent outputs of rand (e.g., Key[1],
Key[2], and Key[3]).

Rather than use (rand), another natural approach for trying to create random numbers is to
try to exploit properties of believed-to-be secure cryptographic objects, like AES or SHA1. This is
exactly what version 1.1 of the Netscape browser did [5]. The following C-like pseudocode shows

6 IMPLEMENTATION PITFALLS

Given this description, and a description of the block cipher E, any experienced C or Java program-
mer should be able to easily implement most parts of the above algorithms. This is because almost
all of the operations in the above pseudocode are common to all popular languages. For example,
the “←” operation corresponds to the standard assignment operator (“=” in C and Java). The

programmer might, however, be puzzled about how to implement the “
$
←” randomized assignment

operator from the lines

K
$
← {0, 1}k

and
IV

$
← {0, 1}n .

It is worth thinking about how a programmer might instantiate the “
$
←” operation in C or Java.

In order to implement the algorithms exactly as described in the above pseudocode, the operation

“
$
←” must select bits independently and uniformly at random. If an implementation of CBC$

does not do this, then the implementation is not exactly the object described above and in Figure
5.2. At a minimum, this means that the security of the software implementation of CBC$ does
not immediately follow from Theorem 5.19. In the worst case, not only might the security of
the software implementation not follow from Theorem 5.19, but the software implementation may
actually be insecure.

The first problem is that it is hard for computers, which are inherently deterministic, to select
bits independently and uniformly at random. Therefore, people implementing cryptosystems are

left to approximate the
$
← operation as best they can. The second problem is that there are many

natural approaches for trying to implement the
$
← operation in C or Java, and some of these

approaches can actually yield an insecure implementation. We consider some example (flawed)

approaches for instantiating
$
← here.

8.6.1 The C random number generator

The C programming language has a built in “random number generator,” called rand. Associated

to rand is another function named srand. Therefore, a natural way to try to implement
$
← would

be to use rand and srand.
At a high level, the way a programmer is supposed to use rand and srand is as follows. The

program is first supposed to call srand(seed), where seed is the “seed” to the C random number
generator. After calling srand, the program can invoke rand() any number of times. Each time
rand() will return a value that is supposed to appear random. Therefore, a natural way for trying
to generate a large number of random bits is to invoke rand() as many times as necessary. Here
we ignore how the programmer picks seed.

Let us look under the hood and see how rand and srand work. Although different systems
implement these functions in slightly different ways, there is a lot of commonality between the
code for these functions on different systems. Below we show the code for srand and rand on one
popular system. For this system, state is a global 32-bit unsigned integer. We do not present
actual C code, but try to capture as the essence of these functions in C-like pseudocode.

procedure srand(seed)

state = seed;

function rand()

state = ((state * 1103515245) + 12345)

mod 2147483648;

return state

Kohno 7

Here 2147483648 is 231.
Let us now consider how a programmer might use rand to implement the CBC$ encryption

scheme’s key generation algorithm. We show our traditional pseudocode on the left, and a C-like
pseudocode on the right.

algorithm K

K
$
← {0, 1}k

return K

function keygen()

key = rand();

return key

The first observation that we make is that, since rand returns a 32-bit integer, key must also be
a 32-bit integer. If k > 32, then the implementation would clearly not be using a key selected
randomly from the set of all strings k-bit strings {0, 1}k. The security implications of this should
be clear. While we consider it impractical to exhaustively search a randomly selected 128-bit AES
key, it would be practical to exhaustively search a 32-bit key generated via the above keygen code.

To fix the problem, one might try invoking rand() multiple times. For example, if the block
cipher is AES with k = 128, the above pseudocode might change to:

algorithm K

K
$
← {0, 1}128

return K

function keygen()

key[0] = rand(); key[1] = rand();

key[2] = rand(); key[3] = rand();

return key

where key is a now a four-element array of 32-bit unsigned integers.
But there is still something seriously wrong with the above implementation of keygen that

could compromise the security of CBC$. To see the problem, let us return to how rand works. By
looking at how rand works, we find that

key[1] = ((key[0] · 1103515245) + 12345) mod 231

key[2] = ((((key[0] · 1103515245) + 12345) · 1103515245) +

12345) mod 231

key[3] = ((((((key[0] · 1103515245) + 12345) · 1103515245) +

12345) · 1103515245) + 12345) mod 231

This means that now, even though key is now a 128-bit value (an array of four 32-bit elements),
there are only 232 possibilities for key. An adversary could therefore exhaustively search key using
at most 232 tries.

8.6.2 Key generation and the Netscape browser

¿From the above discussion, it should be clear that there are serious problems in one of the most
natural approaches for trying to generate random numbers in software (using rand). There are two
problems with rand. First, the state variable of rand is only 32-bits long, which means that the
state can be exhaustively search using reasonable resources. Second, knowing one value of state

(e.g., Key[0]) allows us to compute all previous or subsequent outputs of rand (e.g., Key[1],
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• The Netscape browser tried to do better:

• This can be used as

• Despite the reasonable properties of SHA1 and the 160-bit 
output of the generator, an adversary can learn or guess x.

8 IMPLEMENTATION PITFALLS

the two main functions in Netscape’s random number generator. We simplify the functions in order
to capture the important properties.

procedure NetscapeRandSetup()

pid = process ID;

ppid = parent process ID;

seconds = current time of day
(seconds);

microseconds = current time of day
(microseconds);

x = concatenation of pid, ppid,
seconds, microseconds;

NSseed = SHA1(x);

function NetscapeGetRand()

rv = SHA1(NSseed);

NSseed = NSseed + 1 mod 2160;

return rv;

Here NSseed is a global 160-bit (20 byte) string, which we sometimes interpret as a 160-bit unsigned
integer; NS standards for Netscape, to avoid confusion with the seed variable used with C’s standard
rand function. As for why NSseed is 160-bits long, recall that SHA1 outputs a 160-bit value. This
construction does seem better than rand. For example, given an output of NetscapeGetRand,
and assuming reasonable properties of SHA1, it would seem hard to predict the next output of
NetscapeGetRand. Or at least that’s the intuition.

Below we show how Netscape 1.1 would instantiate K using the above functions:

algorithm K

K
$
← {0, 1}128

return K

function keygen();

NetscapeRandSetup();

tmp = NetscapeGetRand();

key = first 128-bits of tmp;
return key

Does the above keygen function generate keys uniformly and independently at random? Certain
keygen uses a strong cryptographic object (SHA1) in its design, and it might be tempting to assume
that the use of SHA1 “randomizes” the value of the output key.

Unfortunately, this reasoning is flawed. In particular, note that key ultimately depends only
on the values of pid, ppid, seconds, and microseconds. If an adversary observes the time that
it sees a user send an encrypted message, it would likely be able to guess seconds. Further, under
many natural assumptions, the adversary would also be able to guess or exhaustively search the
values for pid, ppid, and microseconds. Thus, an adversary would be able to exhaustively search
key using a reasonable amount of resources, even though key is a 128-bit value.

8.6.3 Randomness during encryption

Let us now turn our attention to the CBC$ encryption algorithm. Recall that the CBC$ encryption
algorithm is supposed to select the IV uniformly at random from {0, 1}128. It turns out that if the
implementation of the encryption algorithm tries to do this, but instead selects the IV in a way
that the adversary could predict, then the CBC$ implementation will fail to preserve the privacy of
the encapsulated messages. (This is similar to Diebold’s mistake, from Section 8.5, of always using
the all zero block as the IV. However, in this case we assume that the designer is actually trying
to implement CBC$ exactly as specified in Figure 5.2.)
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Randomness for encryption

• Designers of SSH, IPsec, SSL all assumed that the last blocks 
of the ciphertexts in CBC can be used as IVs for the next 
ciphertexts.

• Recall that it is insecure in general to apply the Encrypt-and-
MAC paradigm in order to achieve both privacy and 
authenticity.

• All users of the WEP encryption protocol use the same 
symmetric key.

• The key for the secure votes encryption in Diebold machines 
is hardwired in the code:

Combining the schemes

Key management
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#define DESKEY ((des_key*)"F2654hD4")

Even if the WEP or Diebold encryption keys were initially generated randomly, giving them to all
members of a wireless network or all voting machines is not a good idea. For example, if one of the
participants in the network or one of the authors or maintainers of the voting machines turned out
to be malicious or subvertable, he or she could compromise the privacy of the encrypted content.
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