CS 6260 Applied Cryptography

Alexandra (Sasha) Boldyreva Introduction, perfect (Shannon) secrecy.

Cryptography is very old and very new

- Crypto is an ancient discipline
 - Recall Julius Caesar, Enigma,...
- Crypto as a science (modern cryptography) has short but exciting history
 - Most of it happened in the last 30 years!
- This course will be an introduction to modern cryptography

- All the information is at www.cc.gatech.edu/classes/ AY2005/cs6260_fall/
- Office hours: CoC 254, M 2-3 pm, Th 2-3 pm
- Please answer the following questions:
 - Your name
 - Your department/major, Ph.D., M.S. or B.S., year in the program
 - Why you are taking this class (required, curious, etc.)
 - Your plans after the graduation (industry, research, etc.)

Main goals of cryptography are

- data privacy
- data authenticity (it came from where it claims)
- data integrity (it has not been modified on the way) in the digital world

Who used some cryptography recently?

Go	als and primitive	S
goal setting	symmetric-key	asymmetric-key
data privacy	symmetric (secret-key) encryption	asymmetric (public- key) encryption
data authenticity/ integrity	message authentication code (MAC)	digital signature scheme

How good is a scheme?

- "Trial-and-error" approach:
 - 1. Try to find an attack
 - 2. If an attack found then the scheme is insecure, fix the scheme, repeat step 1.
 - 3. If no attack found then?
- "Provable security" approach:
 - show that if an attack found (a scheme is insecure), then one can break some trusted assumption (e.g. factoring)
 - requires a definition of what "secure" means

One Time Pad

- OneTimePad=($\mathcal{K},\mathcal{E},\mathcal{D}$), MsgSp={0,1}ⁿ:
 - \mathcal{K} : return a random n-bit string K (KeySp={0,1}ⁿ)
 - $\mathcal{F}(K,M)$: C \leftarrow M \oplus K, return C
 - $\hat{D}(K,C)$: M \leftarrow C \oplus K, return M
- Example: M=01111111011101

K=110010011010100

- C=101101100001001
- A new key must be used to encrypt a new message

Perfect (Shannon) security

 <u>Def 1</u>. An encryption scheme SE=(K,E,D) is perfectly secure if for every probability distribution PD {0,1}ⁿ→]0,1] on a

 $\begin{aligned} \mathsf{MsgSp} = \{0,1\}^n, \text{ for every ciphertext C and message M} \\ \mathsf{Pr}[\mathsf{message is } \mathsf{M} \mid \mathsf{ciphertext is C}] = \mathsf{PD}(\mathsf{M}) \\ &\searrow \mathsf{over the choices of K} \end{aligned}$

 <u>Def 2</u>. An encryption scheme SE=(K,E,D) is Shannon-secure if for every ciphertext C and messages M1,M2 Pr[E(K1,M1)=C] = Pr[E(K2,M2)=C]

over the choices of K1,K2

• <u>Claim</u>. Def 1 and Def 2 are equivalent, i.e. a scheme is perfectly secure iff it is Shannon-secure.

- <u>Th.1</u> OneTimePad is a Shannon-secure encryption scheme.
 - <u>Proof</u>. Fix any ciphertext $C \in \{0,1\}^n$. For every M Pr[E(K,M)=C] = Pr[K=M \oplus C] = 2⁻ⁿ

- <u>Th.2</u> [Shannon's theorem, optimality of OneTimePad] If a scheme is Shannon-secure, then the key space cannot be smaller than the message space (if KeySp={0,1}^k and MsgSp={0,1}^m, then k≥m and a key must be as long as the message we want to encrypt).
 - Proof. We prove that |KeySp| cannot be smaller that |MsgSp|. Fix a ciphertext C (by picking M1,K1 and setting C=E(K1,M1)). Thus Pr[E(K,M1)=C]>0. Assume there exists M2 such that Pr[D(K,C)=M2]=0. By the correctness requirement Pr[E(K,M2)=C]=0. Therefore Pr[E(K,M1)=C]≠ Pr[E(K,M2)=C] that violates Shannon secrecy. Thus for every M2∈MsgSp there exists K∈KeySp s.t. D(K,C)=M2, and thus |KeySp|>= |MsgSp|.

- <u>Th.3</u> If a scheme is perfectly secure, then the key space cannot be smaller than the message space.
 - Proof. We prove that |KeySp| cannot be smaller that |MsgSp|. Assume |KeySp|<|MsgSp|. Fix C. Let's count messages to which C can decrypt to under various keys: S={M₁,..M_{|KeySp|}}. |S|<|MsgSp|, thus there exists M_i st Pr[message is M_i|ciphertext is C]=0 while PD(M_i)>0. A contradiction. Thus |KeySp|≥|MsgSp|.

- So we cannot do better than OneTimePad. But it is impractical (very fast, but we need a very long key). Is it the end? Yes, of the information-theoretic crypto. No, if we relax the security requirement and assume that adversaries are computationally bounded. We will also assume that
 - There are some "hard" problems
 - Secret keys are secret
 - All algorithms are public (Kerckhoff's principle)
- We move to the area of computational-complexity crypto, that opens a lot of possibilities.

13

14