
Appendix A

The Birthday Problem

The setting is that we have q balls. View them as numbered, 1, . . . , q. We also have
N bins, where N ≥ q. We throw the balls at random into the bins, one by one,
beginning with ball 1. At random means that each ball is equally likely to land in
any of the N bins, and the probabilities for all the balls are independent. A collision
is said to occur if some bin ends up containing at least two balls. We are interested
in C(N, q), the probability of a collision.

The birthday paradox is the case where N = 365. We are asking what is the
chance that, in a group of q people, there are two people with the same birthday,
assuming birthdays are randomly and independently distributed over the days of
the year. It turns out that when q hits

√
365 the chance of a birthday collision is

already quite high, around 1/2.
This fact can seem surprising when first heard. The reason it is true is that the

collision probability C(N, q) grows roughly proportional to q2/N . This is the fact to
remember. The following gives a more exact rendering, providing both upper and
lower bounds on this probability.

Theorem A.1 [Birthday bound] Let C(N, q) denote the probability of at least
one collision when we throw q ≥ 1 balls at random into N ≥ q buckets. Then

C(N, q) ≤ q(q − 1)

2N

and

C(N, q) ≥ 1− e−q(q−1)/2N .

Also if 1 ≤ q ≤
√
2N then

C(N, q) ≥ 0.3 · q(q − 1)

N
.
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2 THE BIRTHDAY PROBLEM

In the proof we will find the following inequalities useful to make estimates.

Proposition A.2 The inequality
(

1− 1

e

)

· x ≤ 1− e−x ≤ x .

is true for any real number x with 0 ≤ x ≤ 1.

Proof of Theorem A.1: Let Ci be the event that the i-th ball collides with one
of the previous ones. Then Pr [Ci] is at most (i− 1)/N , since when the i-th ball is
thrown in, there are at most i−1 different occupied slots and the i-th ball is equally
likely to land in any of them. Now

C(N, q) = Pr [C1 ∨ C2 ∨ · · · ∨ Cq]

≤ Pr [C1] + Pr [C2] + · · ·+ Pr [Cq]

≤ 0

N
+

1

N
+ · · ·+ q − 1

N

=
q(q − 1)

2N
.

This proves the upper bound. For the lower bound we let Di be the event that
there is no collision after having thrown in the i-th ball. If there is no collision after
throwing in i balls then they must all be occupying different slots, so the probability
of no collision upon throwing in the (i + 1)-st ball is exactly (N − i)/N . That is,

Pr [Di+1 | Di] =
N − i

N
= 1− i

N
.

Also note Pr [D1] = 1. The probability of no collision at the end of the game can
now be computed via

1− C(N, q) = Pr [Dq]

= Pr [Dq | Dq−1] · Pr [Dq−1]

...
...

=
q−1
∏

i=1

Pr [Di+1 | Di]

=
q−1
∏

i=1

(

1− i

N

)

.

Note that i/N ≤ 1. So we can use the inequality 1 − x ≤ e−x for each term of the
above expression. This means the above is not more than

q−1
∏

i=1

e−i/N = e−1/N−2/N−···−(q−1)/N = e−q(q−1)/2N .



3

Putting all this together we get

C(N, q) ≥ 1− e−q(q−1)/2N ,

which is the second inequality in Proposition A.1. To get the last one, we need to
make some more estimates. We know q(q−1)/2N ≤ 1 because q ≤

√
2N , so we can

use the inequality 1− e−x ≥ (1− e−1)x to get

C(N, q) ≥
(

1− 1

e

)

· q(q − 1)

2N
.

A computation of the constant here completes the proof.


