Appendix A

The Birthday Problem

The setting is that we have q balls. View them as numbered, $1, \ldots, q$. We also have N bins, where $N \geq q$. We throw the balls at random into the bins, one by one, beginning with ball 1 . At random means that each ball is equally likely to land in any of the N bins, and the probabilities for all the balls are independent. A collision is said to occur if some bin ends up containing at least two balls. We are interested in $C(N, q)$, the probability of a collision.

The birthday paradox is the case where $N=365$. We are asking what is the chance that, in a group of q people, there are two people with the same birthday, assuming birthdays are randomly and independently distributed over the days of the year. It turns out that when q hits $\sqrt{365}$ the chance of a birthday collision is already quite high, around $1 / 2$.

This fact can seem surprising when first heard. The reason it is true is that the collision probability $C(N, q)$ grows roughly proportional to q^{2} / N. This is the fact to remember. The following gives a more exact rendering, providing both upper and lower bounds on this probability.

Theorem A. 1 [Birthday bound] Let $C(N, q)$ denote the probability of at least one collision when we throw $q \geq 1$ balls at random into $N \geq q$ buckets. Then

$$
C(N, q) \leq \frac{q(q-1)}{2 N}
$$

and

$$
C(N, q) \geq 1-e^{-q(q-1) / 2 N} .
$$

Also if $1 \leq q \leq \sqrt{2 N}$ then

$$
C(N, q) \geq 0.3 \cdot \frac{q(q-1)}{N} .
$$

In the proof we will find the following inequalities useful to make estimates.
Proposition A. 2 The inequality

$$
\left(1-\frac{1}{e}\right) \cdot x \leq 1-e^{-x} \leq x .
$$

is true for any real number x with $0 \leq x \leq 1$. I

Proof of Theorem A.1: Let C_{i} be the event that the i-th ball collides with one of the previous ones. Then $\operatorname{Pr}\left[C_{i}\right]$ is at most $(i-1) / N$, since when the i-th ball is thrown in, there are at most $i-1$ different occupied slots and the i-th ball is equally likely to land in any of them. Now

$$
\begin{aligned}
C(N, q) & =\operatorname{Pr}\left[C_{1} \vee C_{2} \vee \cdots \vee C_{q}\right] \\
& \leq \operatorname{Pr}\left[C_{1}\right]+\operatorname{Pr}\left[C_{2}\right]+\cdots+\operatorname{Pr}\left[C_{q}\right] \\
& \leq \frac{0}{N}+\frac{1}{N}+\cdots+\frac{q-1}{N} \\
& =\frac{q(q-1)}{2 N} .
\end{aligned}
$$

This proves the upper bound. For the lower bound we let D_{i} be the event that there is no collision after having thrown in the i-th ball. If there is no collision after throwing in i balls then they must all be occupying different slots, so the probability of no collision upon throwing in the $(i+1)$-st ball is exactly $(N-i) / N$. That is,

$$
\operatorname{Pr}\left[D_{i+1} \mid D_{i}\right]=\frac{N-i}{N}=1-\frac{i}{N} .
$$

Also note $\operatorname{Pr}\left[D_{1}\right]=1$. The probability of no collision at the end of the game can now be computed via

$$
\begin{aligned}
1-C(N, q) & =\operatorname{Pr}\left[D_{q}\right] \\
& =\operatorname{Pr}\left[D_{q} \mid D_{q-1}\right] \cdot \operatorname{Pr}\left[D_{q-1}\right] \\
& \vdots \vdots \\
& =\prod_{i=1}^{q-1} \operatorname{Pr}\left[D_{i+1} \mid D_{i}\right] \\
& =\prod_{i=1}^{q-1}\left(1-\frac{i}{N}\right) .
\end{aligned}
$$

Note that $i / N \leq 1$. So we can use the inequality $1-x \leq e^{-x}$ for each term of the above expression. This means the above is not more than

$$
\prod_{i=1}^{q-1} e^{-i / N}=e^{-1 / N-2 / N-\cdots-(q-1) / N}=e^{-q(q-1) / 2 N}
$$

Putting all this together we get

$$
C(N, q) \geq 1-e^{-q(q-1) / 2 N}
$$

which is the second inequality in Proposition A.1. To get the last one, we need to make some more estimates. We know $q(q-1) / 2 N \leq 1$ because $q \leq \sqrt{2 N}$, so we can use the inequality $1-e^{-x} \geq\left(1-e^{-1}\right) x$ to get

$$
C(N, q) \geq\left(1-\frac{1}{e}\right) \cdot \frac{q(q-1)}{2 N}
$$

A computation of the constant here completes the proof. I

