Appendix A

THE BIRTHDAY PROBLEM

The setting is that we have ¢ balls. View them as numbered, 1,...,q. We also have
N bins, where N > q. We throw the balls at random into the bins, one by one,
beginning with ball 1. At random means that each ball is equally likely to land in
any of the N bins, and the probabilities for all the balls are independent. A collision
is said to occur if some bin ends up containing at least two balls. We are interested
in C'(N, q), the probability of a collision.

The birthday paradox is the case where N = 365. We are asking what is the
chance that, in a group of ¢ people, there are two people with the same birthday,
assuming birthdays are randomly and independently distributed over the days of
the year. It turns out that when ¢ hits /365 the chance of a birthday collision is
already quite high, around 1/2.

This fact can seem surprising when first heard. The reason it is true is that the
collision probability C(N, q) grows roughly proportional to ¢2/N. This is the fact to
remember. The following gives a more exact rendering, providing both upper and
lower bounds on this probability.

Theorem A.1 [Birthday bound]| Let C(N,q) denote the probability of at least
one collision when we throw ¢ > 1 balls at random into NV > ¢ buckets. Then

q(qg—1)

< - 7

and

Also if 1 < ¢ < V2N then



2 THE BIRTHDAY PROBLEM

In the proof we will find the following inequalities useful to make estimates.

Proposition A.2 The inequality
1

(1——)-37 <l-e*<zx.
e

is true for any real number x with 0 < x < 1.1

Proof of Theorem A.1: Let C; be the event that the i-th ball collides with one
of the previous ones. Then Pr[C;] is at most (¢ — 1)/N, since when the i-th ball is
thrown in, there are at most ¢ — 1 different occupied slots and the i-th ball is equally
likely to land in any of them. Now
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This proves the upper bound. For the lower bound we let D; be the event that
there is no collision after having thrown in the i-th ball. If there is no collision after
throwing in ¢ balls then they must all be occupying different slots, so the probability
of no collision upon throwing in the (i + 1)-st ball is exactly (N —4)/N. That is,
N—i 1 i
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Also note Pr[D;] = 1. The probability of no collision at the end of the game can
now be computed via

Pr[Di1| Di] =

- C(N7Q) = Pr [Dq]
= Pr[Dg| Dga] - Pr{Dg-1]

= HPI‘ z+1‘D
q_l Z
= iHl(1—N> :

Note that i/N < 1. So we can use the inequality 1 — x < e~ for each term of the
above expression. This means the above is not more than

—
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Putting all this together we get
C(N,q) > 1—e DN
which is the second inequality in Proposition A.1. To get the last one, we need to

make some more estimates. We know ¢(q—1)/2N < 1 because ¢ < V2N, so we can
use the inequality 1 —e™* > (1 — e~ 1) to get

cv.g) > (1-1) 1D

A computation of the constant here completes the proof. |



