
Chapter 7

Number-Theoretic Primitives

Number theory is a source of several computational problems that serve as primi-
tives in the design of cryptographic schemes. Asymmetric cryptography in particular
relies on these primitives. As with other beasts that we have been calling “prim-
itives,” these computational problems exhibit some intractability features, but by
themselves do not solve any cryptographic problem directly relevant to a user se-
curity goal. But appropriately applied, they become useful to this end. In order
to later effectively exploit them it is useful to first spend some time understanding
them.
This understanding has two parts. The first is to provide precise definitions of the

various problems and their measures of intractability. The second is to look at what
is known or conjectured about the computational complexity of these problems.
There are two main classes of primitives. The first class relates to the discrete

logarithm problem over appropriate groups, and the second to the factoring of com-
posite integers. We look at them in turn.
This chapter assumes some knowledge of computational number theory as cov-

ered in Chapter ??.

7.1 Discrete logarithm related problems

Let G be a cyclic group and let g be a generator of G. Recall this means that
G = {g0, g1, . . . , gm−1}, where m = |G| is the order of G. The discrete logarithm
function DLogG,g : G→ Zm takes input a group element a and returns the unique
i ∈ Zm such that a = gi. There are several computational problems related to this
function that are used as primitives.

7.1.1 Informal descriptions of the problems

The computational problems we consider in this setting are summarized in Fig. 7.1.
In all cases, we are considering an attacker that knows the group G and the generator

1

2 NUMBER-THEORETIC PRIMITIVES

Problem Given Figure out

Discrete logarithm (DL) gx x

Computational Diffie-Hellman (CDH) gx, gy gxy

Decisional Diffie-Hellman (DDH) gx, gy, gz Is z ≡ xy (mod |G|)?

Figure 7.1: An informal description of three discrete logarithm related problems
over a cyclic group G with generator g. For each problem we indicate the input to
the attacker, and what the attacker must figure out to “win.” The formal definitions
are in the text.

g. It is given the quantities listed in the column labeled “given,” and is trying to
compute the quantities, or answer the question, listed in the column labeled “figure
out.”

The most basic problem is the discrete logarithm (DL) problem. Informally
stated, the attacker is given as input some group element X, and must compute
DLogG,g(X). This problem is conjectured to be computationally intractable in
suitable groups G.

One might imagine “encrypting” a message x ∈ Zm by letting gx be the cipher-
text. An adversary wanting to recover x is then faced with solving the discrete
logarithm problem to do so. However, as a form of encryption, this has the disad-
vantage of being non-functional, because an intended recipient, namely the person
to whom the sender is trying to communicate x, is faced with the same task as the
adversary in attempting to recover x.

The Diffie-Hellman (DH) problems first appeared in the context of secret key
exchange. Suppose two parties want to agree on a key which should remain unknown
to an eavesdropping adversary. The first party picks x $← Zm and sends X = gx to
the second party; the second party correspondingly picks y $← Zm and sends Y = gy

to the first party. The quantity gxy is called the DH-key corresponding to X,Y . We
note that

Y x = gxy = Xy . (7.1)

Thus the first party, knowing Y, x, can compute the DH key, as can the second
party, knowing X, y. The adversary sees X,Y , so to recover the DH-key the adver-
sary must solve the Computational Diffie-Hellman (CDH) problem, namely compute
gxy given X = gx and Y = gy. Similarly, we will see later a simple asymmetric en-
cryption scheme, based on Equation (7.1), where recovery of the encrypted message
corresponds to solving the CDH problem.

The obvious route to solving the CDH problem is to try to compute the discrete
logarithm of either X or Y and then use Equation (7.1) to obtain the DH key. How-
ever, there might be other routes that do not involve computing discrete logarithms,
which is why CDH is singled out as a computational problem in its own right. This

Bellare and Rogaway 3

problem appears to be computationally intractable in a variety of groups.
We have seen before that security of a cryptographic scheme typically demands

much more than merely the computational intractability of recovery of some under-
lying key. The computational intractability of the CDH problem turns out to be
insufficient to guarantee the security of many schemes based on DH keys, includ-
ing the secret key exchange protocol and encryption scheme mentioned above. The
Decisional Diffie-Hellman (DDH) problem provides the adversary with a task that
can be no harder, but possibly easier, than solving the CDH problem, namely to
tell whether or not a given group element Z is the DH key corresponding to given
group elements X,Y . This problem too appears to be computationally intractable
in appropriate groups.
We now proceed to define the problems more formally. Having done that we will

provide more specific discussions about their hardness in various different groups
and their relations to each other.

7.1.2 The discrete logarithm problem

The description of the discrete logarithm problem given above was that the adversary
is given as input some group element X, and is considered successful if it can output
DLogG,g(X). We would like to associate to a specific adversary A some advantage
function measuring how well it does in solving this problem. The measure adopted is
to look at the fraction of group elements for which the adversary is able to compute
the discrete logarithm. In other words, we imagine the group element X given to
the adversary as being drawn at random.

Definition 7.1 Let G be a cyclic group of order m, let g be a generator of G, and
let A be an algorithm that returns an integer in Zm. We consider the following
experiment:

Experiment Expdl
G,g(A)

x $← Zm ; X ← gx

x← A(X)
If gx = X then return 1 else return 0

The dl-advantage of A is defined as

Advdl
G,g(A) = Pr

[

Expdl
G,g(A) = 1

]

.

Recall that the discrete exponentiation function takes input i ∈ Zm and returns
the group element gi. The discrete logarithm function is the inverse of the discrete
exponentiation function. The definition above simply measures the one-wayness of
the discrete exponentiation function according to the standard definition of one-way
function. It is to emphasize this that certain parts of the experiment are written
the way they are.
The discrete logarithm problem is said to hard in G if the dl-advantage of any ad-

versary of reasonable resources is small. Resources here means the time-complexity
of the adversary, which includes its code size as usual.

4 NUMBER-THEORETIC PRIMITIVES

7.1.3 The Computational Diffie-Hellman problem

As above, the transition from the informal description to the formal definition in-
volves considering the group elements X,Y to be drawn at random.

Definition 7.2 Let G be a cyclic group of order m, let g be a generator of G, and
let A be an algorithm that returns an element of G. We consider the following
experiment:

Experiment Expcdh
G,g(A)

x $← Zm ; y
$← Zm

X ← gx ; Y ← gy

Z ← A(X,Y)
If Z = gxy then return 1 else return 0

The cdh-advantage of A is defined as

Advcdh
G,g(A) = Pr

[

Expcdh
G,g(A) = 1

]

.

Again, the CDH problem is said to be hard in G if the cdh-advantage of any adver-
sary of reasonable resources is small, where the resource in question is the adversary’s
time complexity.

7.1.4 The Decisional Diffie-Hellman problem

The formalization considers a “two worlds” setting. The adversary gets input
X,Y, Z. In either world, X,Y are random group elements, but the manner in which
Z is chosen depends on the world. In World 1, Z = gxy where x = DLogG,g(X) and
y = DLogG,g(Y). In World 0, Z is chosen at random from the group, independently
of X,Y . The adversary must decide in which world it is. (Notice that this is a lit-
tle different from the informal description of Fig. 7.1 which said that the adversary
is trying to determine whether or not Z = gxy, because if by chance Z = gxy in
World 0, we will declare the adversary unsuccessful if it answers 1.)

Definition 7.3 Let G be a cyclic group of order m, let g be a generator of G, let
A be an algorithm that returns a bit, and let b be a bit. We consider the following
experiments:

Experiment Expddh-1
G,g (A)

x $← Zm

y $← Zm
z ← xy mod m
X ← gx ; Y ← gy ; Z ← gz

d← A(X,Y, Z)
Return d

Experiment Expddh-0
G,g (A)

x $← Zm

y $← Zm

z $← Zm
X ← gx ; Y ← gy ; Z ← gz

d← A(X,Y, Z)
Return d

Bellare and Rogaway 5

The ddh-advantage of A is defined as

Advddh
G,g (A) = Pr

[

Expddh-1
G,g (A) = 1

]

− Pr
[

Expddh-0
G,g (A) = 1

]

.

Again, the DDH problem is said to be hard in G if the ddh-advantage of any adver-
sary of reasonable resources is small, where the resource in question is the adversary’s
time complexity.

7.1.5 Relations between the problems

Relative to a fixed group G and generator g for G, if you can solve the DL problem
then you can solve the CDH problem, and if you can solve the CDH problem then
you can solve the DDH problem. So if DL is easy then CDH is easy, and if CDH
is easy then DDH is easy. Equivalently, if DDH is hard then CDH is hard, and if
CDH is hard then DL is hard.

We note that the converses of these statements are not known to be true. There
are groups where DDH is easy, while CDH and DL appear to be hard. (We will see
examples of such groups later.) Correspondingly, there could be groups where CDH
is easy but DL is hard.

The following Proposition provides the formal statement and proof correspond-
ing to the above claim that if you can solve the DL problem then you can solve the
CDH problem, and if you can solve the CDH problem then you can solve the DDH
problem.

Proposition 7.4 Let G be a cyclic group and let g be a generator of G. Let Adl

be an adversary (against the DL problem). Then there exists an adversary Acdh

(against the CDH problem) such that

Advdl
G,g(Adl) ≤ Advcdh

G,g(Acdh) . (7.2)

Furthermore the running time of Acdh is the that of Adl plus the time to do one
exponentiation in G. Similarly let Acdh be an adversary (against the CDH problem).
Then there exists an adversary Addh (against the DDH problem) such that

Advcdh
G,g(Acdh) ≤ Advddh

G,g (Addh) +
1

|G| . (7.3)

Furthermore the running time of Addh is the same as that of Acdh.

Proof of Proposition 7.4: Adversary Acdh works as follows:

Adversary Acdh(X,Y)
x← A(X)
Z ← Y x

Return Z

6 NUMBER-THEORETIC PRIMITIVES

Let x = DLogG,g(X) and y = DLogG,g(y). If Adl is successful then its output x
equals x. In that case

Y x = Y x = (gy)x = gyx = gxy

is the correct output for Acdh. This justifies Equation (7.2).

We now turn to the second inequality in the proposition. Adversary Addh works as
follows:

Adversary Addh(X,Y, Z)
Z ← B(X,Y)
If Z = Z then return 1 else return 0

We claim that

Pr
[

Expddh-1
G,g (Addh) = 1

]

= Advcdh
G,g(Acdh)

Pr
[

Expddh-0
G,g (Addh) = 1

]

=
1

|G| ,

which implies Equation (7.3). To justify the above, let x = DLogG,g(X) and y =

DLogG,g(y). If Acdh is successful then its output Z equals g
xy, so in world 1, Addh

returns 1. On the other hand in world 0, Z is uniformly distributed over G and
hence has probability 1/|G| of equalling Z.

7.2 The choice of group

The computational complexity of the above problems depends of course on the choice
of group G. (But not perceptibly on the choice of generator g.) The issues are the
type of group, and also its size. Let us look at some possibilities.

7.2.1 General groups

For any “reasonable” group G, there is an algorithm that can solve the discrete log-
arithm problem in time |G|1/2 ·O(|p|3). (The exceptions are groups lacking succinct
representations of group elements, and we will not encounter such groups here.) In
thinking about this running time we neglect the |p|3 factor since it is very small
compared to |G|1/2, so that we view this as a O(|G|1/2) algorithm.
There are several different algorithms with this running time. Shank’s baby-

step giant-step algorithm is the simplest, and is deterministic. Pollard’s algorithm
is randomized, and, although taking time on the same order as that taken by Shank’s
algorithm, is more space efficient, and preferred in practice.

Let us present Shank’s baby-step giant-step algorithm. Let m = |G| and let
n = d√me. Given X = gx we seek x. We note that there exist integers x0, x1

Bellare and Rogaway 7

such that 0 ≤ x0, x1 ≤ n and x = nx1 + x0. This means that g
nx1+x0 = X, or

Xg−x0 = (gn)x1 . The idea of the algorithm is to compute two lists:

Xg−b for b = 0, 1, . . . , n

(gn)a for a = 0, 1, . . . , n

and then find a group element that is contained in both lists. The corresponding
values of a, b satisfy Xg−b = (gn)a, and thus DLogG,g(X) = an + b. The details
follow.

Algorithm Absgs(X)
n← d√me ; N ← gn

For b = 0, . . . , n do B[Xg−b]← b
For a = 0, . . . , n do

Y ← Na

If B[Y] is defined then x0 ← B[Y] ; x1 ← a
Return ax1 + x0

This algorithm is interesting because it shows that there is a better way to compute
the discrete logarithm of X than to do an exhaustive search for it. However, it does
not yield a practical discrete logarithm computation method, because one can work
in groups large enough that an O(|G|1/2) algorithm is not really feasible. There are
however better algorithms in some specific groups.

7.2.2 Integers modulo a prime

Naturally, the first specific group to consider is the integers modulo a prime, which
Fact ?? tells us is cyclic. So let G = Z∗

p for some prime p and let g be a generator
of g. We consider the different problems in turn.
We begin by noting that the Decisional Diffie-Hellman problem is easy in this

group. Some indication of this already appeared in Section ??. Proposition ??
says that the DH key gxy is a square with probability 3/4 and a non-square with
probability 1/4 if x, y are chosen at random from Zp−1. However, Proposition ??
implies that a random group element is a square with probability 1/2. Thus, a
strategy to tell which world we are in when given a tripleX,Y, Z is to test whether or
not Z is a square mod p. If so, bet on World 1, else on World 0. (Proposition ?? tells
us that the Jacobi symbol can be computed via an exponentiation mod p, so testing
for squares can be done efficiently, specifically in cubic time.) A computation shows
that this adversary has advantage 1/4, enough to show that the DDH problem is
easy. The Proposition below presents a slightly better attack that achieves advantage
1/2, and provides the details of the analysis.

Proposition 7.5 Let p ≥ 3 be a prime, let G = Z∗
p, and let g be a generator of G.

Then there is an adversary A, with running time O(|p|3) such that

Advddh
G,g (A) =

1

2
.

8 NUMBER-THEORETIC PRIMITIVES

Proof of Proposition 7.5: The input to our adversary A is a triple X,Y, Z of
group elements, and the adversary is trying to determine whether Z was chosen as
gxy or as a random group element, where x, y are the discrete logarithms of X and
Y , respectively. Proposition ?? tells us that if we know Jp(g

x) and Jp(g
y), we can

predict Jp(g
xy). Our adversary’s strategy is to compute Jp(g

x) and Jp(g
y) and then

see whether or not the challenge value Z has the Jacobi symbol value that gxy ought
to have. In more detail, it works as follows:

Adversary A(X,Y, Z)
If Jp(X) = 1 or Jp(Y) = 1
Then s← 1 Else s← −1

If Jp(Z) = s then return 1 else return 0

Proposition ?? tells us that the Jacobi symbol can be computed via an exponentia-
tion modulo p, which, as per Fig. ??, takes O(|p|3) time. Thus, the time-complexity
of the above adversary is O(|p|3). We now claim that

Pr
[

Expddh-1
G,g (A) = 1

]

= 1

Pr
[

Expddh-0
G,g (A) = 1

]

=
1

2
.

Subtracting, we get

Advddh
G,g (A) = Pr

[

Expddh-1
G,g (A) = 1

]

− Pr
[

Expddh-0
G,g (A) = 1

]

= 1− 1
2
=
1

2
as desired. Let us now see why the two equations above are true.

Let x = DLogG,g(X) and y = DLogG,g(Y). Proposition ?? tells us that the value s
computed by our adversary A equals Jp(g

xy mod p). But in World 1, Z = gxy mod p,
so our adversary will always return 1. In World 0, Z is distributed uniformly over
G, so Proposition ?? tells us that

Pr [Jp(Z) = 1] = Pr [Jp(Z) = −1] =
(p− 1)/2
p− 1 =

1

2
.

Since s is distributed independently of Z, the probability that Jp(Z) = s is 1/2.

Now we consider the CDH and DL problems. It appears that the best approach to
solving the CDH in problem in Z∗

p is via the computation of discrete logarithms.
(This has not been proved in general, but there are proofs for some special classes
of primes.) Thus, the main question is how hard is the computation of discrete
logarithms. This depends both on the size and structure of p.

The currently best algorithm is the GNFS (General Number Field Sieve) which
has a running time of the form

O(e(C+o(1))·ln(p)1/3·(ln ln(p))2/3

) (7.4)

Bellare and Rogaway 9

where C ≈ 1.92. For certain classes of primes, the value of C is even smaller. These
algorithms are heuristic, in the sense that the run time bounds are not proven, but
appear to hold in practice.

If the prime factorization of the order of the group is known, the discrete loga-
rithm problem over the group can be decomposed into a set of discrete logarithm
problems over subgroups. As a result, if p−1 = pα1

1 · · · pαn
n is the prime factorization

of p − 1, then the discrete logarithm problem in Z∗
p can be solved in time on the

order of
n

∑

i=1

αi · (
√
pi + |p|) .

If we want the discrete logarithm problem in Z∗
p to be hard, this means that it must

be the case that at least one of the prime factors pi of p − 1 is large enough that√
pi is large.

The prime factorization of p − 1 might be hard to compute given only p, but
in fact we usually choose p in such a way that we know the prime factorization of
p− 1, because it is this that gives us a way to find a generator of the group Z∗

p, as
discussed in Section ??. So the above algorithm is quite relevant.

From the above, if we want to make the DL problem in Z∗
p hard, it is necessary

to choose p so that it is large and has at least one large prime factor. A common
choice is p = sq + 1 where s ≥ 2 is some small integer (like s = 2) and q is a prime.
In this case, p− 1 has the factor q, which is large.
Precise estimates of the size of a prime necessary to make a discrete logarithm

algorithm infeasible are hard to make based on asymptotic running times of the
form given above. Ultimately, what actual implementations can accomplish is the
most useful data. In April 2001, it was announced that discrete logarithms had
been computed modulo a 120 digit (ie. about 400 bit) prime [?]. The computation
took 10 weeks and was done on a 525MHz quadri-processor Digital Alpha Server
8400 computer. The prime p did not have any special structure that was exploited,
and the algorithm used was the GNFS. A little earlier, discrete logarithms had been
computed modulo a slightly larger prime, namely a 129 digit one, but this had a
special structure that was exploited [?].

Faster discrete logarithm computation can come from many sources. One is ex-
ploiting parallelism and the paradigm of distributing work across available machines
on the Internet. Another is algorithmic improvements. A reduction in the constant
C of Equation (7.4) has important impact on the running time. A reduction in
the exponents from 1/3, 2/3 to 1/4, 3/4 would have an even greater impact. There
are also threats from hardware approaches such as the design of special purpose
discrete logarithm computation devices. Finally, the discrete logarithm probably
can be solved in polynomial time with a quantum computer. Whether a quantum
computer can be built is not known.

Predictions are hard to make. In choosing a prime p for cryptography over Z∗
p,

the security risks must be weighed against the increase in the cost of computations
over Z∗

p as a function of the size of p.

10 NUMBER-THEORETIC PRIMITIVES

7.2.3 Other groups

In elliptic curve groups, the best known algorithm is the O(
√

|G|) one mentioned
above. Thus, it is possible to use elliptic curve groups of smaller size than groups of
integers modulo a prime for the same level of security, leading to improved efficiency
for implementing discrete log based cryptosystem.

7.3 The RSA system

The RSA system is the basis of the most popular public-key cryptography solutions.
Here we provide the basic mathematical and computational background that will
be used later.

7.3.1 The basic mathematics

We begin with a piece of notation:

Definition 7.6 Let N, f ≥ 1 be integers. The RSA function associated to N, f
is the function RSAN,f : Z

∗
N → Z∗

N defined by RSAN,f (w) = wf mod N for all
w ∈ Z∗

N .

The RSA function associated to N, f is thus simply exponentiation with exponent
f in the group Z∗

N , but it is useful in the current context to give it a new name.
The following summarizes a basic property of this function. Recall that ϕ(N) is the
order of the group Z∗

N .

Proposition 7.7 Let N ≥ 2 and e, d ∈ Z∗
ϕ(N) be integers such that ed ≡ 1

(mod ϕ(N)). Then the RSA functions RSAN,e and RSAN,d are both permuta-
tions on Z∗

N and, moreover, are inverses of each other, ie. RSA
−1
N,e = RSAN,d and

RSA
−1
N,d = RSAN,e.

A permutation, above, simply means a bijection from Z∗
N to Z

∗
N , or, in other words,

a one-to-one, onto map. The condition ed ≡ 1 (mod ϕ(N)) says that d is the
inverse of e in the group Z∗

ϕ(N).

Proof of Proposition 7.7: For any x ∈ Z∗
N , the following hold modulo N :

RSAN,d(RSAN,e(x)) ≡ (xe)d ≡ xed ≡ xed mod ϕ(N) ≡ x1 ≡ x .

The third equivalence used the fact that ϕ(N) is the order of the group Z∗
N . The

fourth used the assumed condition on e, d. Similarly, we can show that for any
y ∈ Z∗

N ,

RSAN,e(RSAN,d(y)) ≡ y

modulo N . These two facts justify all the claims of the Proposition. With N, e, d

as in Proposition 7.7 we remark that

Bellare and Rogaway 11

• For any x ∈ Z∗
N : RSAN,e(x) = MOD-EXP(x, e,N) and so one can efficiently

compute RSAN,e(x) given N, e, x.

• For any y ∈ Z∗
N : RSAN,d(y) = MOD-EXP(y, d,N) and so one can efficiently

compute RSAN,d(y) given N, d, y.

We now consider an adversary that is given N, e, y and asked to compute RSA
−1
N,e(y).

If it had d, this could be done efficiently by the above, but we do not give it d. It
turns out that when the paremeters N, e are properly chosen, this adversarial task
appears to be computationally infeasible, and this property will form the basis of
both asymmetric encryption schemes and digital signature schemes based on RSA.
Our goal in this section is to lay the groundwork for these later applications by
showing how RSA parameters can be chosen so as to make the above claim of
computational difficulty true, and formalizing the sense in which it is true.

7.3.2 Generation of RSA parameters

We begin with a computational fact.

Proposition 7.8 There is an O(k2) time algorithm that on inputs ϕ(N), e where
e ∈ Zϕ(N)∗ and N < 2k, returns d ∈ Zϕ(N)∗ satisfying ed ≡ 1 (mod ϕ(N)).

Proof of Proposition 7.8: Since d is the inverse of e in the group Z∗
ϕ(N), the al-

gorithm consists simply of running MOD-INV(e, ϕ(N)) and returning the outcome.
Recall that the modular inversion algorithm invokes the extended-gcd algorithm as
a subroutine and has running time quadratic in the bit-length of its inputs.

To choose RSA parameters, one runs a generator. We consider a few types of
geneators:

Definition 7.9 A modulus generator with associated security parameter k (where
k ≥ 2 is an integer) is a randomized algorithm that takes no inputs and returns
integers N, p, q satisfying:

1. p, q are distinct, odd primes

2. N = pq

3. 2k−1 ≤ N < 2k (ie. N has bit-length k).

An RSA generator with associated security parameter k is a randomized algorithm
that takes no inputs and returns a pair ((N, e), (N, p, q, d)) such that the three
conditions above are true, and, in addition,

4. e, d ∈ Z∗
(p−1)(q−1)

5. ed ≡ 1 (mod (p− 1)(q − 1))
We call N an RSA modulus, or just modulus. We call e the encryption exponent

and d the decryption exponent.

12 NUMBER-THEORETIC PRIMITIVES

Note that (p − 1)(q − 1) = ϕ(N) is the size of the group Z∗
N . So above, e, d are

relatively prime to the order of the group Z∗
N . As the above indicates, we are going

to restrict attention to numbers N that are the product of two distinct odd primes.
Condition (4) for the RSA generator translates to 1 ≤ e, d < (p − 1)(q − 1) and
gcd(e, (p− 1)(q − 1)) = gcd(d, (p− 1)(q − 1)) = 1.
For parameter generation to be feasible, the generation algorithm must be effi-

cient. There are many different possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, q at random, with each be-
ing about k/2 bits long. The corresponding modulus generator K$

mod with associated
security parameter k works as follows:

Algorithm K$
mod

`1 ← bk/2c ; `2 ← dk/2e
Repeat

p $←{2`1−1, . . . , 2`1 − 1} ; q $←{2`2−1, . . . , 2`2 − 1}
Until the following conditions are all true:

– TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
– p 6= q
– 2k−1 ≤ N

N ← pq

Return (N, e), (N, p, q, d)

Above, TEST-PRIME denotes an algorithm that takes input an integer and returns
1 or 0. It is designed so that, with high probability, the former happens when the
input is prime and the latter when the input is composite.

Sometimes, we may want modulii product of primes having a special form, for ex-
ample primes p, q such that (p−1)/2 and (q−1)/2 are both prime. This corresponds
to a modulus different generator, which works as above but simply adds, to the list
of conditions tested to exit the loop, the conditions TEST-PRIME((p− 1)/2)) = 1
and TEST-PRIME((q − 1)/2)) = 1. There are numerous other possible modulus
generators too.

An RSA generator, in addition to N, p, q, needs to generate the exponents e, d.
There are several options for this. One is to first chooseN, p, q, then pick e at random
subject to gcd(N,ϕ(N)) = 1, and compute d via the algorithm of Proposition 7.8.
This random-exponent RSA generator, denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q) $←K$
mod

M ← (p− 1)(q − 1)
e $← Z∗

M

Compute d by running the algorithm of Proposition 7.8 on inputs M, e

Return ((N, e), (N, p, q, d))

Bellare and Rogaway 13

In order to speed-up computation of RSAN,e, however, we often like e to be small.
To enable this, we begin by setting e to some small prime number like 3, and then
picking the other parameters appropriately. In particular we associate to any odd
prime number e the following exponent-e RSA generator :

Algorithm Kersa
Repeat

(N, p, q) $←K$
mod(k)

Until

– e < (p− 1) and e < (q − 1)
– gcd(e, (p− 1)) = gcd(e, (q − 1)) = 1
M ← (p− 1)(q − 1)
Compute d by running the algorithm of Proposition 7.8 on inputs M, e

Return ((N, e), (N, p, q, d))

7.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning
given N, e, y it is hard to compute RSA

−1
N,e(y). One must be careful to formalize this

properly though. The formalization chooses y at random.

Definition 7.10 Let Krsa be an RSA generator with associated security parameter
k, and let A be an algorithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d)) $←Krsa

x $← Z∗
N ; y ← xe mod N

x′ $←A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[

Expow-kea
Krsa

(A) = 1
]

.

Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-
exponent attack, abbreviated “cea,” in which, rather than having the encryption
exponent specified by the instance of the problem, one allows the adversary to
choose it. The only condition imposed is that the adversary not choose e = 1.

Definition 7.11 Let Kmod be a modulus generator with associated security param-
eter k, and let A be an algorithm. We consider the following experiment:

14 NUMBER-THEORETIC PRIMITIVES

Experiment Expow-cea
Krsa

(A)

(N, p, q) $←Kmod

y $← Z∗
N

(x, e) $←A(N, y)
If xe ≡ y (mod N) and e > 1
then return 1 else return 0.

The ow-cea-advantage of A is defined as

Advow-cea
K

mod
(A) = Pr

[

Expow-cea
K

mod
(A) = 1

]

.

7.4 Historical notes

7.5 Exercises and Problems

