CS 6260 Some number theory

Groups

- Def. Let G be a non-empty set and let • denote a binary operation on G. We say that G is a group if it has the following properties:

1. Closure: For every $a, b \in G$ it is the case that $a \cdot b$ is also in G.
2. Associativity: For every $a, b, c \in G$ it is the case that $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
3. Identity: There exists an element $1 \in G$ such that $a \cdot 1=1 \cdot a=a$ for all $a \in G$.
4. Invertibility: For every $a \in G$ there exists a unique $b \in G$ such that $a \cdot b=b \cdot a=1$.
$\rangle_{\text {inverse, denoted } a^{-1}}$

Let $\mathbf{Z}=\{. . .,-2,-1,0,1,2, \ldots\}$ denote the set of integers. Let $\mathbf{Z}+=\{1,2, \ldots\}$ denote the set of positive integers and $\mathbf{N}=\{0,1,2, \ldots\}$ the set of non-negative integers.

If a, N are integers with $N>0$ then there are unique integers r, q such that $a=N q+r$ and $0 \leq r<N$.

We associate to any positive integer N the following two sets:
$\mathbf{Z}_{\mathbf{N}}=\{0,1, \ldots, N-1\}, \mathbf{Z}_{\mathbf{N}}^{*}=\{i \in Z: 1 \leq i \leq N-1$ and $\operatorname{gcd}(i, N)=1\}$

- Fact. Let N be a positive integer. Then $\mathbf{Z}_{\mathbf{N}}$ is a group under addition modulo N , and $\mathbf{Z}_{\mathbf{N}}^{*}$ is a group under multiplication modulo N .
- In any group, we can define an exponentiation operation:
if $i=0$ then a^{i} is defined to be 1 ,
if $i>0$ then $a^{i}=a \cdot a \cdots a(i$ times $)$
if $\mathrm{i}<0$ then $\mathrm{a}^{\mathrm{i}}=a^{-1} \cdot a^{-1} \cdots a^{-1}(j=-\mathrm{i}$ times $)$
- For all $a \in \mathbf{G}$ and all $i, j \in \mathbf{Z}$:
- $a^{i+j}=a^{i} \cdot a^{j}$
- $\left(a^{i}\right)^{j}=a^{i j}$
- $a^{-i}=\left(a^{i}\right)^{-1}=\left(a^{-1}\right)^{i}$
- The order of a group is its size
- Fact. Let \mathbf{G} be a group and let $m=|\mathbf{G}|$ be its order. Then $a^{m}=1$ for all $a \in \mathbf{G}$
- Fact. Let \mathbf{G} be a group and let $\mathrm{m}=|\mathbf{G}|$ be its order. Then $a^{i}=a^{i} \bmod m$ for all $a \in \mathbf{G}$ and all $i \in \mathbf{Z}$.
- Example. Let us work in the group $\mathbf{Z}_{21}^{*}=\{1,2,4,5,8,10$, $11,13,16,17,19,20\}$ under the operation of multiplication modulo 21. $\mathrm{m}=12$.
$5^{86} \bmod 21=5^{86} \bmod 12 \bmod 21=5^{2 \bmod 12} \bmod 21=$ $25 \bmod 21=4$
- If \mathbf{G} is a group, a set $\mathbf{S} \subseteq \mathbf{G}$ is called a subgroup if it is a group in its own right, under the same operation as that under which \mathbf{G} is a group.
- If we already know that \mathbf{G} is a group, there is a simple way to test whether \mathbf{S} is a subgroup:
- it is one if and only if $x \cdot y^{-1} \in \mathbf{S}$ for all $x, y \in \mathbf{S}$. Here y^{-1} is the inverse of y in \mathbf{G}.
- Fact. Let \mathbf{G} be a group and let S be a subgroup of \mathbf{G}. Then the order of \mathbf{S} divides the order of \mathbf{G}.

Algorithms and their running times

- Since in cryptography we will be working with BIG numbers, the complexity of algorithms taking numbers as inputs is measured as a function of the bit-length of the numbers.
- E.g. PrintinBinary (A), where $A=2^{k}$ takes k operations

Some basic algorithms

Algorithm	Input	Output	Running Time	
INT-DIV	a, N	$(N>0)$	(q, r) with $a=N q+r$ and $0 \leq r<N$	$O(\|a\| \cdot\|N\|)$
MOD	a, N	$(N>0)$	$a \bmod N$	$O(\|a\| \cdot\|N\|)$
EXT-GCD	a, b	$((a, b) \neq(0,0))$	$(d, \bar{a}, \bar{b}) \operatorname{with} d=\operatorname{gcd}(a, b)=a \bar{a}+b \bar{b}$	$O(\|a\| \cdot\|b\|)$
MOD-ADD	a, b, N	$\left(a, b \in \mathbf{Z}_{N}\right)$	$(a+b) \bmod N$	$O(\|N\|)$
MOD-MULT	a, b, N	$\left(a, b \in \mathbf{Z}_{N}\right)$	$a b \bmod N$	$O\left(\|N\|^{2}\right)$
MOD-INV	a, N	$\left(a \in \mathbf{Z}_{N}^{*}\right)$	$b \in \mathbf{Z}_{N}^{*} \operatorname{with} a b \equiv 1 \quad(\bmod N)$	$O\left(\|N\|^{2}\right)$
MOD-EXP	a, n, N	$\left(a \in \mathbf{Z}_{N}\right)$	$a^{n} \bmod N$	$O\left(\|n\| \cdot\|N\|^{2}\right)$
EXP_{G}	a, n	$(a \in G)$	$a^{n} \in G$	$2\|n\| G-$-operations

Cyclic groups and generators

- If $\mathrm{g} \in \mathbf{G}$ is any member of the group, the order of g is defined to be the least positive integer n such that $g^{n}=1$.
We let $\langle g\rangle=\left\{g^{i}: i \in \mathbf{Z}_{\mathbf{n}}\right\}=\left\{g^{0}, g^{1}, \ldots, g^{n-1}\right\}$ denote the set of group elements generated by g . This is a subgroup of order n .
- Def. An element g of the group is called a generator of \mathbf{G} if $\langle\mathrm{g}\rangle=\mathbf{G}$, or, equivalently, if its order is $\mathrm{m}=|\mathbf{G}|$.
- Def. A group is cyclic if it contains a generator.
- If g is a generator of \mathbf{G}, then for every $\mathrm{a} \in \mathbf{G}$ there is a unique integer $i \in \mathbf{Z}_{\mathbf{m}}$ such that $g^{i}=a$. This i is called the discrete logarithm of a to base g , and we denote it by $\operatorname{DLog}_{\mathbf{G}, \mathrm{g}}(\mathrm{a})$.
- $\operatorname{DLog}_{\mathbf{G}, \mathrm{g}}(\mathrm{a})$ is a function that maps \mathbf{G} to $\mathbf{Z}_{\mathbf{m}^{\prime}}$ and moreover this function is a bijection.
- The function of $\mathbf{Z}_{\mathbf{m}}$ to \mathbf{G} defined by $\mathrm{i} \rightarrow \mathrm{g}^{\mathrm{i}}$ is called the discrete exponentiation function

Choosing cyclic group and generators

- The discrete log function is conjectured to be one-way (hard to compute) for some cyclic groups \mathbf{G}. Due to this fact we often seek cyclic groups.
- Examples of cyclic groups:
- $\mathbf{Z}_{\mathbf{p}}^{*}$ for a prime p ,
- a group of prime order
- We will also need generators. How to chose a candidate and test it?
- Fact. Let \mathbf{G} be a cyclic group and let $m=|\mathbf{G}|$. Let $p_{1}^{\alpha} 1 . \cdots p_{n}^{\alpha}{ }_{n}$ be the prime factorization of m and let $m_{i}=m / p_{i}$ for $i=1, \ldots, n$.
Then $\mathrm{g} \in \mathbf{G}$ is a generator of \mathbf{G} if and only if for all $\mathrm{i}=1, \ldots, n: \mathrm{g}^{\mathrm{m}_{\mathrm{i}} \neq 1}$.
- Fact. Let \mathbf{G} be a cyclic group of order m, and let g be a generator of G. Then $\operatorname{Gen}(\mathbf{G})=\left\{\mathrm{g}^{\mathrm{i}} \in \mathrm{G}: \mathrm{i} \in \mathbf{Z}_{\mathbf{m}}^{*}\right\}$ and $|\operatorname{Gen}(\mathbf{G})|=\phi(\mathrm{m})$.
- Example. Let $p=11$. Then $\mathbf{z}_{11}^{*}=\{1,2,3,4,5,6,7,8,9,10\}$ has order p-1 = 10. We find the subgroups generated by group elements 2 and 5 . We raise them to the powers $0, \ldots, 9$.
-
-
-

i	0	1	2	3	4	5	6	7	8	9
$2^{i} \bmod 11$	1	2	4	8	5	10	9	7	3	6
$5^{i} \bmod 11$	1	5	3	4	9	1	5	3	4	9

$<2>=\{1,2,3,4,5,6,7,8,9,10\}=\mathbf{z}_{\mathbf{1 1}}^{*} \quad<5>=\{1,3,4,5,9\}$
2 is a generator and thus \mathbf{Z}_{11}^{*} is cyclic.

a	1	2	3	4	5	6	7	8	9	10
$\operatorname{DLog}_{\mathbf{Z}_{11}^{*}, 2}(a)$	0	1	8	2	4	9	7	3	6	5

- Example. Let us determine all the generators of the group $\mathbf{Z}_{\mathbf{1 1}}^{*}$. Its size is $m=\phi(11)=10$, and the prime factorization of 10 is $2^{1} \cdot 5^{1}$. Thus, the test for whether a given $\mathrm{a} \in \mathbf{Z}_{\mathbf{1 1}}^{*}$ is a generator is that $a^{2} \neq 1(\bmod 11)$ and $a^{5} \neq 1(\bmod 11)$.
-
- \quad| a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a^{2} \bmod 11$ | 1 | 4 | 9 | 5 | 3 | 3 | 5 | 9 | 4 | 1 |
| $a^{5} \bmod 11$ | 1 | 10 | 1 | 1 | 1 | 10 | 10 | 10 | 1 | 10 |
- $\operatorname{Gen}\left(\mathbf{Z}_{\mathbf{1 1}}^{*}\right)=\{2,6,7,8\}$.
- Double-checking: $\left|\mathbf{Z}_{\mathbf{1 1}}^{*}\right|=10, \mathbf{Z}_{\mathbf{1 0}}^{*}=\{1,3,7,9\}$

$$
\left\{2^{i} \in G: i \in \mathbf{Z}_{\mathbf{1 0}}^{*}\right\}=\left\{2^{1}, 2^{3}, 2^{7}, 2^{9}(\bmod 11)\right\}=\{2,6,7,8\}
$$

Algorithm for finding a generator

- The most common choice of a group in crypto is $\mathbf{Z}_{\mathbf{p}}^{*}$ for a prime p.
- Idea. Pick a random element and test it. Chose p s.t. the prime factorization of the order of the group ($p-1$) is known. E.g., chose a prime p s.t. $p=2 q+1$ for some prime q.
- Algorithm FIND-GEN(p)
$q \leftarrow(p-1) / 2$
- found $\leftarrow 0$

While (found $\neq 1$) do

- $g \stackrel{\leftrightarrow}{\leftarrow} \mathbf{Z}_{p}^{*}-\{1, p-1\}$
- If $\left(g^{2} \bmod p \neq 1\right)$ and $\left(g^{q} \bmod p \neq 1\right)$ then found $\leftarrow 1$

EndWhile

- Return g
- The probability that an iteration of the algorithm is successful in finding a generator is

$$
\frac{\left|\operatorname{Gen}\left(\mathbf{Z}_{p}^{*}\right)\right|}{\left|\mathbf{Z}_{p}^{*}\right|-2}=\frac{\varphi(p-1)}{p-3}=\frac{\varphi(2 q)}{2 q-2}=\frac{q-1}{2 q-2}=\frac{1}{2}
$$

- Example. $\mathrm{QR}\left(\mathbf{Z}_{11}^{*}\right)$?

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4	9	5	3	3	5	9	4	1

$\operatorname{QR}\left(\mathbf{Z}_{\mathbf{1 1}}^{*}\right)=\{1,3,4,5,9\}$
Recall that $\mathbf{Z}_{\mathbf{1 1}}^{*}$ is cyclic and 2 is a generator.
Fact. A generator is always a non-square. (But not all non-squares are generators).

a	1	2	3	4	5	6	7	8	9	10
$\operatorname{DLog}_{\mathbf{Z}_{1}^{*}, 2}(a)$	0	1	8	2	4	9	7	3	6	5
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

- Fact. Let $p \geq 3$ be a prime and let g be a generator of $\mathbf{Z}_{\mathbf{p}}^{*}$. Then $Q R\left(\mathbf{Z}_{\mathbf{p}}^{*}\right)=\left\{g^{i}: i \in \mathbf{Z}_{\mathbf{p}-\mathbf{1}}\right.$ and i is even $\}$, and $\left|Q R\left(\mathbf{Z}_{\mathbf{p}}^{*}\right)\right|=(p-1) / 2$

Squares and non-squares

- Def. An element a of a group \mathbf{G} is called a square, or quadratic residue if it has a square root, meaning there is some $b \in G$ such that $\mathrm{b}^{2}=\mathrm{a}$ in \mathbf{G}.
- We let $\operatorname{QR}(\mathbf{G})=\{\mathrm{g} \in \mathbf{G}: \mathrm{g}$ is quadratic residue in $\mathbf{G}\}$
- We are mostly interested in the case where the group \mathbf{G} is $\mathbf{Z}_{\mathbf{N}}^{*}$ for some integer N .
- Defs. An integer a is called a square mod N or quadratic residue $\bmod N$ if $a \bmod N$ is a member of $Q R\left(\mathbf{Z}_{\mathbf{N}}^{*}\right)$. If $b^{2}=a(\bmod N)$ then b is called a square-root of a mod N. An integer a is called a nonsquare $\bmod \mathrm{N}$ or quadratic non-residue $\bmod \mathrm{N}$ if a $\bmod \mathrm{N}$ is a member of $\mathbf{Z}_{\mathbf{N}}^{*}-\mathbf{Q R}\left(\mathbf{Z}_{\mathbf{N}}^{*}\right)$.
- Def. Let p be a prime. Define the Legendre symbol of a
$J_{p}(a)=\left\{\begin{aligned} 1 & \text { if } a \text { is a square } \bmod p \\ 0 & \text { if } a \bmod p=0 \\ -1 & \text { otherwise. }\end{aligned}\right.$

Facts. Let $\mathrm{p} \geq 3$ be a prime. Then

- $J_{p}(a) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)$ for any $\mathrm{a} \in \mathbf{Z}_{\mathbf{p}}^{*}$
- $g^{\frac{p-1}{2}} \equiv-1 \quad(\bmod p) \quad$ for any generator g of $\mathbf{Z}_{\mathbf{p}}^{*}$
- $J_{p}(a b \bmod p)=J_{p}(a) \cdot J_{p}(b)$ for any $\mathrm{a} \in \mathbf{Z}_{\mathbf{p}}^{*}$
- $J_{p}\left(g^{x y} \bmod p\right)=1 \quad$ if and only if $\quad J_{p}\left(g^{x} \bmod p\right)=1$ or $J_{p}\left(g^{y} \bmod p\right)=1$ for any generator g of $\mathbf{Z}_{\mathbf{p}}^{*}$ and any $\mathrm{x}, \mathrm{y} \in \mathbf{Z}_{\mathbf{p}-\mathbf{1}}$
- $\operatorname{Pr}\left[x \stackrel{\S}{\leftarrow} \mathbf{Z}_{p-1} ; y \stackrel{\&}{\leftarrow} \mathbf{Z}_{p-1}: J_{p}\left(g^{x y}\right)=1\right]=3 / 4$
for any generator g of $\mathbf{Z}_{\mathbf{p}}^{*}$

Groups of prime order

- Def. An element h of a group \mathbf{G} is called non-trivial if it is not equal to the identity element of the group.
- Fact. Any non-trivial member of a group of prime order is a generator of the group.
- Fact. Let $\mathrm{q} \geq 3$ be a prime such that $\mathrm{p}=2 \mathrm{q}+1$ is also prime. Then $\mathrm{QR}\left(\mathbf{Z}_{\mathbf{p}}^{*}\right)$ is a group of prime order q . Furthermore, if g is any generator of $\mathbf{Z}_{\mathbf{p}^{\prime}}^{*}$ then $g^{2} \bmod p$ is a generator of $\operatorname{QR}\left(\mathbf{Z}_{\mathbf{p}}^{*}\right)$.
- Fact. Let g be a generator of a group of prime order q . Then for any element Z of the group

$$
\operatorname{Pr}\left[x \stackrel{\unlhd}{\leftarrow} \mathbf{Z}_{q} ; y \stackrel{\uplus}{\hookleftarrow} \mathbf{Z}_{q}: g^{x y}=Z\right]=\left\{\begin{array}{l}
\frac{1}{q}\left(1-\frac{1}{q}\right) \quad \text { if } Z \neq \mathbf{1} \\
\frac{1}{q}\left(2-\frac{1}{q}\right) \quad \text { if } Z=\mathbf{1}
\end{array}\right.
$$

- Example. Let $q=5$ and $p=2 q+1=11$.
- $\operatorname{QR}\left(\mathbf{Z}_{11}^{*}\right)=\{1,3,4,5,9\}$

We know that 2 is a generator of $\mathbf{Z}_{\mathbf{1 1}}^{*}$
Let's verify that $4=2^{2}$ is a generator of $\operatorname{QR}\left(\mathbf{Z}_{\mathbf{1} 1}^{*}\right)$.

i	0	1	2	3	4
$4^{i} \bmod 11$	1	4	5	9	3

