CS 6260 Some number theory

Let $\mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ denote the set of integers. Let $\mathbf{Z} + = \{1, 2, \ldots\}$ denote the set of positive integers and $\mathbf{N} = \{0, 1, 2, \ldots\}$ the set of non-negative integers.

If a, N are integers with N > 0 then there are unique integers r, q such that a = Nq + r and $0 \le r < N$.

We associate to any positive integer N the following two sets: $\mathbf{Z_N} = \{0, 1, \dots, N-1\}, \mathbf{Z_N}^* = \{i \in Z : 1 \le i \le N-1 \text{ and } \gcd(i,N)=1\}$

Groups

- <u>Def</u>. Let G be a non-empty set and let · denote a binary operation on G. We say that G is a group if it has the following properties:
 - Closure: For every a, b ∈ G it is the case that a · b is also in G.
 - 2. Associativity: For every a, b, $c \in G$ it is the case that $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
 - 3. Identity: There exists an element $1 \in G$ such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in G$.
 - 4. Invertibility: For every $a \in G$ there exists a unique $b \in G$ such that $a \cdot b = b \cdot a = 1$.

inverse, denoted a⁻¹

- Fact. Let N be a positive integer. Then $\mathbf{Z_N}$ is a group under addition modulo N, and $\mathbf{Z_N^*}$ is a group under multiplication modulo N.
- In any group, we can define an exponentiation operation: if i=0 then a^i is defined to be 1, if i>0 then $a^i=a\cdot a\cdot \cdot \cdot \cdot a$ (i times) if i<0 then $a^i=a^{-1}\cdot a^{-1}\cdot \cdot \cdot a^{-1}$ (j=-i times)
- For all $a \in G$ and all $i,j \in Z$:

•
$$a^{i+j} = a^i \cdot a^j$$

•
$$(a^i)^j = a^{ij}$$

•
$$a^{-i} = (a^i)^{-1} = (a^{-1})^i$$

- The order of a group is its size
- Fact. Let **G** be a group and let $m = |\mathbf{G}|$ be its order. Then $a^{m} = 1$ for all $a \in \mathbf{G}$
- <u>Fact</u>. Let **G** be a group and let $m = |\mathbf{G}|$ be its order. Then $a^i = a^i \mod m$ for all $a \in \mathbf{G}$ and all $i \in \mathbf{Z}$.
- Example. Let us work in the group $\mathbf{Z}_{21}^* = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$ under the operation of multiplication modulo 21. m=12.

$$5^{86} \mod 21 = 5^{86} \mod 12 \mod 21 = 5^{2} \mod 12 \mod 21 = 25 \mod 21 = 4$$

If G is a group, a set S ⊆ G is called a subgroup if it is a group in its own right, under the same operation as that under which G is a group.

- If we already know that **G** is a group, there is a simple way to test whether **S** is a subgroup:
 - it is one if and only if $x \cdot y^{-1} \in \mathbf{S}$ for all $x, y \in \mathbf{S}$. Here y^{-1} is the inverse of y in \mathbf{G} .
- <u>Fact</u>. Let **G** be a group and let S be a subgroup of **G**. Then the order of **S** divides the order of **G**.

Algorithms and their running times

- Since in cryptography we will be working with BIG numbers, the complexity of algorithms taking numbers as inputs is measured as a function of the bit-length of the numbers.
- E.g. PrintinBinary (A), where A=2^k takes k operations

Some basic algorithms

Algorithm	Input		Output	Running Time
INT-DIV	a, N	(N > 0)	(q,r) with $a = Nq + r$ and $0 \le r < N$	$O(a \cdot N)$
MOD	a, N	(N > 0)	$a \bmod N$	$O(a \cdot N)$
EXT-GCD	a, b	$((a,b)\neq (0,0))$	$(d, \overline{a}, \overline{b})$ with $d = \gcd(a, b) = a\overline{a} + b\overline{b}$	$O(a \cdot b)$
MOD-ADD	a, b, N	$(a, b \in \mathbf{Z}_N)$	$(a+b) \bmod N$	O(N)
MOD-MULT	a, b, N	$(a, b \in \mathbf{Z}_N)$	$ab \bmod N$	$O(N ^2)$
MOD-INV	a, N	$(a \in \mathbf{Z}_N^*)$	$b \in \mathbf{Z}_N^*$ with $ab \equiv 1 \pmod{N}$	$O(N ^2)$
MOD-EXP	a, n, N	$(a \in \mathbf{Z}_N)$	$a^n \mod N$	$O(n \cdot N ^2)$
EXP_G	a, n	$(a \in G)$	$a^n \in G$	2 n G-operations

Cyclic groups and generators

- If $g \in \mathbf{G}$ is any member of the group, the order of g is defined to be the least positive integer n such that $g^n = 1$. We let $\langle g \rangle = \{ g^i : i \in \mathbf{Z_n} \} = \{ g^0, g^1, ..., g^{n-1} \}$ denote the set of group elements generated by g. This is a subgroup of order n.
- <u>Def.</u> An element g of the group is called a generator of **G** if <g>=**G**, or, equivalently, if its order is m=|**G**|.
- Def. A group is cyclic if it contains a generator.
- If g is a generator of \mathbf{G} , then for every $\mathbf{a} \in \mathbf{G}$ there is a unique integer $i \in \mathbf{Z_m}$ such that $g^i = \mathbf{a}$. This i is called the discrete logarithm of a to base g, and we denote it by $\mathsf{DLog}_{\mathbf{G},q}(\mathbf{a})$.
- DLog $_{{f G},g}(a)$ is a function that maps ${f G}$ to ${f Z}_{{f m}'}$ and moreover this function is a bijection.
- The function of $\mathbf{Z_m}$ to G defined by i \rightarrow g i is called the discrete exponentiation function

• Example. Let p = 11. Then $\mathbf{z}_{11}^* = \{1,2,3,4,5,6,7,8,9,10\}$ has order p – 1 = 10. We find the subgroups generated by group elements 2 and 5. We raise them to the powers 0,...,9.

•	i	0	1	2	3	4	5	6	7	8	9
•	$2^i \bmod 11$	1	2	4	8	5	10	9	7	3	6
•	$5^i \bmod 11$	1	5	3	4	9	1	5	3	4	9

$$\langle 2 \rangle = \{1,2,3,4,5,6,7,8,9,10\} = \mathbb{Z}_{11}^* \qquad \langle 5 \rangle = \{1,3,4,5,9\}$$

2 is a generator and thus \mathbf{Z}_{11}^* is cyclic.

a	1	2	3	4	5	6	7	8	9	10
$\mathrm{DLog}_{\mathbf{Z}_{11}^*,2}(a)$	0	1	8	2	4	9	7	3	6	5

Choosing cyclic group and generators

- The discrete log function is conjectured to be one-way (hard to compute) for some cyclic groups **G**. Due to this fact we often seek cyclic groups.
- Examples of cyclic groups:
 - $\mathbf{Z}_{\mathbf{p}}^*$ for a prime p,
 - a group of prime order
- We will also need generators. How to chose a candidate and test it?
- Fact. Let ${\bf G}$ be a cyclic group and let $m=|{\bf G}|$. Let $p_1^{\alpha_1} \cdots p_n^{\alpha_n}$ be the prime factorization of m and let $m_i=m/p_i$ for i=1,...,n. Then $g\in {\bf G}$ is a generator of ${\bf G}$ if and only if for all $i=1,\ldots,n$: $g^m i\neq {\bf 1}$.
- Fact. Let **G** be a cyclic group of order m, and let g be a generator of **G**. Then $Gen(G) = \{ g^i \in G : i \in \mathbf{Z_m^*} \}$ and $|Gen(G)| = \phi(m)$.

• Example. Let us determine all the generators of the group \mathbf{Z}_{11}^* . Its size is $m=\phi(11)=10$, and the prime factorization of 10 is $2^1\cdot 5^1$. Thus, the test for whether a given $a\in \mathbf{Z}_{11}^*$ is a generator is that $a^2\neq 1\pmod{11}$ and $a^5\neq 1\pmod{11}$.

•	a	1	2	3	4	5	6	7	8	9	10
•	$a^2 \bmod 11$	1	4	9	5	3	3	5	9	4	1
•	$a^5 \bmod 11$	1	10	1	1	1	10	10	10	1	10

- $Gen(\mathbf{Z}_{11}^*) = \{2,6,7,8\}$.
- Double-checking: $|\mathbf{Z}_{11}^*| = 10$, $\mathbf{Z}_{10}^* = \{1,3,7,9\}$ $\{\ 2^i \in G: i \in \mathbf{Z}_{10}^*\ \} = \{\ 2^1,\ 2^3,\ 2^7,\ 2^9 \ (\text{mod } 11)\} = \{2,6,7,8\}$

Algorithm for finding a generator

- The most common choice of a group in crypto is $\mathbf{Z}_{\mathbf{n}}^*$ for a prime p.
- Idea. Pick a random element and test it. Chose p s.t. the prime factorization of the order of the group (p-1) is known. E.g., chose a prime p s.t. p=2q+1 for some prime q.
- Algorithm FIND-GEN(p)

$$q \leftarrow (p-1)/2$$

• found $\leftarrow 0$

While (found $\neq 1$) do

$$g \stackrel{\$}{\leftarrow} \mathbf{Z}_p^* - \{1, p-1\}$$

- $g \overset{\$}{\leftarrow} \mathbf{Z}_p^* \{1, p-1\}$ If $(g^2 \bmod p \neq 1)$ and $(g^q \bmod p \neq 1)$ then found $\leftarrow 1$ EndWhile
- Return q
- The probability that an iteration of the algorithm is successful in finding a generator is

$$\frac{|\mathsf{Gen}(\mathbf{Z}_p^*)|}{|\mathbf{Z}_p^*|-2} \ = \ \frac{\varphi(p-1)}{p-3} \ = \ \frac{\varphi(2q)}{2q-2} \ = \ \frac{q-1}{2q-2} \ = \ \frac{1}{2}$$

Example. QR(Z₁₁*)?

• a	1	2	3	4	5	6	7	8	9	10
$a^2 \mod 11$	1	4	9	5	3	3	5	9	4	1

$$QR(\mathbf{Z}_{11}^*) = \{1, 3, 4, 5, 9\}$$

Recall that \mathbf{Z}_{11}^* is cyclic and 2 is a generator.

Fact. A generator is always a non-square. (But not all non-squares are generators).

a	1	2	3	4	5	6	7	8	9	10
$\mathrm{DLog}_{\mathbf{Z}_{11}^*,2}(a)$	0	1	8	2	4	9	7	3	6	5
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

• Fact. Let $p \ge 3$ be a prime and let g be a generator of $\mathbf{Z}_{\mathbf{n}}^*$. Then

$$\text{QR}(\boldsymbol{Z_p^*})$$
 = { g^i : i $\in \boldsymbol{Z_{p-1}}$ and i is even } , and |QR($\boldsymbol{Z_p^*})$ | = (p - 1)/2

Squares and non-squares

- <u>Def.</u> An element a of a group **G** is called a square, or quadratic residue if it has a square root, meaning there is some $b \in G$ such that $b^2 = a$ in **G**.
- We let $QR(G) = \{ g \in G : g \text{ is quadratic residue in } G \}$
- We are mostly interested in the case where the group G is Z_N^* for some integer N.
- Defs. An integer a is called a square mod N or quadratic residue mod N if a mod N is a member of $QR(\mathbf{Z}_{\mathbf{N}}^*)$. If $b^2 = a \pmod{N}$ then b is called a square-root of a mod N. An integer a is called a nonsquare mod N or quadratic non-residue mod N if a mod N is a member of $\mathbf{Z}_{\mathbf{N}}^*$ – $\mathsf{QR}(\mathbf{Z}_{\mathbf{N}}^*)$.
- Def. Let p be a prime. Define the Legendre symbol of a

$$J_p(a) = \begin{cases} 1 & \text{if } a \text{ is a square mod } p \\ 0 & \text{if } a \text{ mod } p = 0 \\ -1 & \text{otherwise.} \end{cases}$$

Facts. Let $p \ge 3$ be a prime. Then

- $J_p(a) \equiv a^{\frac{p-1}{2}} \pmod{p}$ for any $a \in \mathbf{Z}_{\mathbf{p}}^*$
- $g^{\frac{p-1}{2}} \equiv -1 \pmod{p}$ for any generator g of $\mathbf{Z}_{\mathbf{p}}^*$
- $J_p(ab \bmod p) = J_p(a) \cdot J_p(b)$ for any $a \in \mathbf{Z_p^*}$
- $J_p(g^{xy} \mod p) = 1$ if and only if $J_p(g^x \mod p) = 1$ or $J_p(g^y \mod p) = 1$ for any generator g of $\mathbf{Z}_{\mathbf{p}}^*$ and any $x,y \in \mathbf{Z}_{\mathbf{p-1}}$
- $\Pr\left[x \overset{\$}{\leftarrow} \mathbf{Z}_{p-1} ; y \overset{\$}{\leftarrow} \mathbf{Z}_{p-1} : J_p(g^{xy}) = 1\right] = 3/4$ for any generator g of $\mathbf{Z_n^*}$

Groups of prime order

- <u>Def.</u> An element h of a group **G** is called non-trivial if it is not equal to the identity element of the group.
- <u>Fact</u>. Any non-trivial member of a group of prime order is a generator of the group.
- Fact. Let $q \ge 3$ be a prime such that p = 2q + 1 is also prime. Then $QR(\mathbf{Z}_{\mathbf{p}}^*)$ is a group of prime order q. Furthermore, if g is any generator of $\mathbf{Z}_{\mathbf{p}}^*$, then g^2 mod p is a generator of $QR(\mathbf{Z}_{\mathbf{p}}^*)$.
- <u>Fact</u>. Let g be a generator of a group of prime order q. Then for any element Z of the group

$$\Pr\left[x \overset{\$}{\leftarrow} \mathbf{Z}_q \; ; \; y \overset{\$}{\leftarrow} \mathbf{Z}_q \; : \; g^{xy} = Z \; \right] = \begin{cases} \frac{1}{q} \left(1 - \frac{1}{q}\right) & \text{if } Z \neq \mathbf{1} \\ \frac{1}{q} \left(2 - \frac{1}{q}\right) & \text{if } Z = \mathbf{1} \end{cases}$$

- Example. Let q = 5 and p = 2q + 1 = 11.
- $QR(\mathbf{Z}_{11}^*) = \{1, 3, 4, 5, 9\}$

We know that 2 is a generator of \mathbf{Z}_{11}^{*}

Let's verify that $4 = 2^2$ is a generator of $QR(\mathbf{Z}_{11}^*)$.

i	0	1	2	3	4
$4^i \bmod 11$	1	4	5	9	3