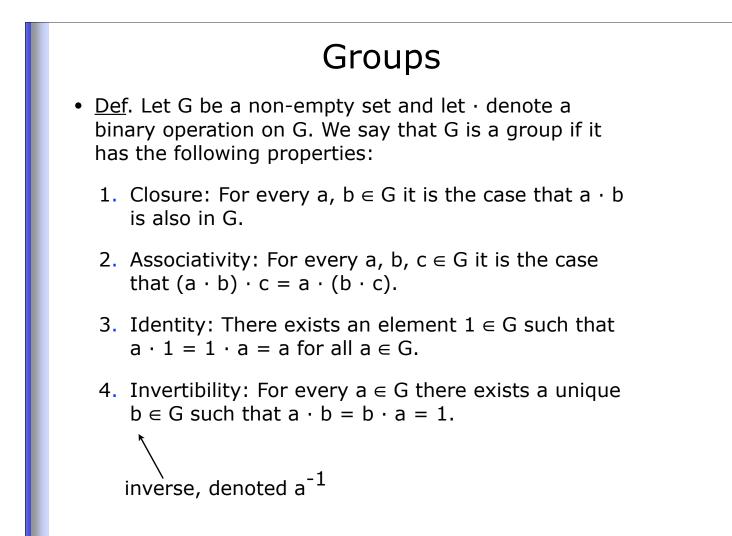


Let $\mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ denote the set of integers. Let $\mathbf{Z} + = \{1, 2, \ldots\}$ denote the set of positive integers and $\mathbf{N} = \{0, 1, 2, \ldots\}$ the set of non-negative integers.

If a, N are integers with N > 0 then there are unique integers r, q such that a = Nq + r and $0 \le r < N$.

We associate to any positive integer N the following two sets: $\mathbf{Z}_{\mathbf{N}} = \{0, 1, ..., N - 1\}, \mathbf{Z}_{\mathbf{N}}^* = \{i \in \mathbb{Z} : 1 \le i \le N-1 \text{ and } gcd(i,N)=1 \}$



- Fact. Let N be a positive integer. Then ${\bf Z}_N$ is a group under addition modulo N, and ${\bf Z}_N^*$ is a group under multiplication modulo N.
- In any group, we can define an exponentiation operation: if i = 0 then aⁱ is defined to be 1, if i > 0 then aⁱ = a · a · · · a (i times) if i < 0 then aⁱ = a⁻¹ · a⁻¹ · · · a⁻¹ (j=-i times)
- For all $a \in G$ and all $i, j \in Z$:

•
$$a^{i+j} = a^i \cdot a^j$$

•
$$(a^{i})^{j} = a^{ij}$$

•
$$a^{-i} = (a^i)^{-1} = (a^{-1})^i$$

- The order of a group is its size
- <u>Fact</u>. Let **G** be a group and let $m = |\mathbf{G}|$ be its order. Then $a^{m} = 1$ for all $a \in \mathbf{G}$
- Fact. Let G be a group and let m = |G| be its order. Then aⁱ = a^{i mod m} for all a ∈ G and all i ∈ Z.
- Example. Let us work in the group $Z_{21}^* = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$ under the operation of multiplication modulo 21. m=12.

 $5^{86} \mod 21 = 5^{86} \mod 12 \mod 21 = 5^{2} \mod 12 \mod 21 = 25 \mod 21 = 4$

- If G is a group, a set S ⊆ G is called a subgroup if it is a group in its own right, under the same operation as that under which G is a group.
- If we already know that **G** is a group, there is a simple way to test whether **S** is a subgroup:
 - it is one if and only if $x \cdot y^{-1} \in S$ for all $x, y \in S$. Here y^{-1} is the inverse of y in **G**.
- <u>Fact</u>. Let **G** be a group and let S be a subgroup of **G**. Then the order of **S** divides the order of **G**.

Algorithms and their running times

- Since in cryptography we will be working with BIG numbers, the complexity of algorithms taking numbers as inputs is measured as a function of the bit-length of the numbers.
- E.g. PrintinBinary (A), where A=2^k takes k operations

Some basic algorithms

Algorithm	Input		Output	Running Time
INT-DIV	a, N	(N > 0)	(q, r) with $a = Nq + r$ and $0 \le r < N$	$O(a \cdot N)$
MOD	a, N	(N > 0)	$a \mod N$	$O(a \cdot N)$
EXT-GCD	a,b	$((a,b) \neq (0,0))$	$(d,\overline{a},\overline{b})$ with $d = \gcd(a,b) = a\overline{a} + b\overline{b}$	$O(a \cdot b)$
MOD-ADD	a,b,N	$(a,b\in \mathbf{Z}_N)$	$(a+b) \mod N$	O(N)
MOD-MULT	a, b, N	$(a, b \in \mathbf{Z}_N)$	$ab \mod N$	$O(N ^2)$
MOD-INV	a, N	$(a\in \mathbf{Z}_N^*)$	$b \in \mathbf{Z}_N^*$ with $ab \equiv 1 \pmod{N}$	$O(N ^2)$
MOD-EXP	a, n, N	$(a \in \mathbf{Z}_N)$	$a^n \mod N$	$O(n \cdot N ^2)$
EXP_G	a, n	$(a\in G)$	$a^n \in G$	2 n <i>G</i> -operations

Cyclic groups and generators

- If g ∈ G is any member of the group, the order of g is defined to be the least positive integer n such that gⁿ = 1.
 We let <g> = { gⁱ : i ∈ Z_n } = {g⁰,g¹,..., gⁿ⁻¹} denote the set of group elements generated by g. This is a subgroup of order n.
- <u>Def</u>. An element g of the group is called a generator of G if <g>=G, or, equivalently, if its order is m=|G|.
- <u>Def</u>. A group is cyclic if it contains a generator.
- If g is a generator of G, then for every a ∈ G there is a unique integer i ∈ Z_m such that gⁱ = a. This i is called the discrete logarithm of a to base g, and we denote it by DLog_{G,g}(a).
- $DLog_{G,g}(a)$ is a function that maps G to $Z_{m'}$ and moreover this function is a bijection.
- The function of $\mathbf{Z}_{\mathbf{m}}$ to **G** defined by $i \rightarrow g^{i}$ is called the discrete exponentiation function

• Example. Let p = 11. Then $z_{11}^* = \{1,2,3,4,5,6,7,8,9,10\}$ has order p - 1 = 10. We find the subgroups generated by group elements 2 and 5. We raise them to the powers 0,...,9.

i	0	1	2	3	4	5	6	7	8	9
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6
$5^i \mod 11$	1	5	3	4	9	1	5	3	4	9

 $<2> = \{1,2,3,4,5,6,7,8,9,10\} = \mathbb{Z}_{11}^{*} \qquad <5> = \{1,3,4,5,9\}$

2 is a generator and thus z_{11}^{*} is cyclic.

a	1	2	3	4	5	6	7	8	9	10
$\operatorname{DLog}_{\mathbf{Z}_{11}^*,2}(a)$	0	1	8	2	4	9	7	3	6	5

Choosing cyclic group and generators

- The discrete log function is conjectured to be one-way (hard to compute) for some cyclic groups **G**. Due to this fact we often seek cyclic groups.
- Examples of cyclic groups:
 - $\mathbf{Z}_{\mathbf{p}}^{*}$ for a prime p,
 - a group of prime order
- We will also need generators. How to chose a candidate and test it?
- <u>Fact</u>. Let **G** be a cyclic group and let m = |**G**|. Let p₁^α¹· · ·p_n^αⁿ be the prime factorization of m and let m_i = m/p_i for i = 1,...,n. Then g ∈ **G** is a generator of **G** if and only if for all i = 1, ..., n: g^mi ≠ **1**.
- Fact. Let G be a cyclic group of order m, and let g be a generator of G. Then Gen(G) = { gⁱ ∈ G : i ∈ Z_m^{*} } and |Gen(G)| = φ(m).

• Example. Let us determine all the generators of the group \mathbf{Z}_{11}^* . Its size is $m = \phi(11) = 10$, and the prime factorization of 10 is $2^1 \cdot 5^1$. Thus, the test for whether a given $a \in \mathbf{Z}_{11}^*$ is a generator is that $a^2 \neq 1 \pmod{11}$ and $a^5 \neq 1 \pmod{11}$.

•	a	1	2	3	4	5	6	7	8	9	10
•	$a^2 \mod 11$	1	4	9	5	3	3	5	9	4	1
•	$a^5 \mod 11$	1	10	1	1	1	10	10	10	1	10

•
$$\operatorname{Gen}(\mathbf{Z}_{11}^*) = \{2, 6, 7, 8\}$$
.

• Double-checking: $|\mathbf{Z}_{11}^*| = 10$, $\mathbf{Z}_{10}^* = \{1, 3, 7, 9\}$ $\{2^i \in G : i \in \mathbf{Z}_{10}^*\} = \{2^1, 2^3, 2^7, 2^9 \pmod{11}\} = \{2, 6, 7, 8\}$

Algorithm for finding a generator

- The most common choice of a group in crypto is $\mathbf{Z}_{\mathbf{p}}^{*}$ for a prime p. •
- Idea. Pick a random element and test it. Chose p s.t. the prime ٠ factorization of the order of the group (p-1) is known. E.g., chose a prime p s.t. p=2q+1 for some prime q.
- Algorithm FIND-GEN(p) $q \leftarrow (p-1)/2$
- found $\leftarrow 0$ While (found $\neq 1$) do
- $\begin{array}{l} g \xleftarrow{\hspace{0.1em}\$} \mathbf{Z}_p^* \{1, p-1\} \\ \text{If } (g^2 \mod p \neq 1) \text{ and } (g^q \mod p \neq 1) \text{ then found} \leftarrow 1 \end{array}$ EndWhile
- Return g
- The probability that an iteration of the algorithm is successful in ٠ finding a generator is

$$\frac{|\mathsf{Gen}(\mathbf{Z}_p^*)|}{|\mathbf{Z}_p^*| - 2} \; = \; \frac{\varphi(p-1)}{p-3} \; = \; \frac{\varphi(2q)}{2q-2} \; = \; \frac{q-1}{2q-2} \; = \; \frac{1}{2}$$

Squares and non-squares

- Def. An element a of a group **G** is called a square, or quadratic residue if it has a square root, meaning there is some $b \in G$ such that $b^2 = a$ in **G**.
- We let $QR(\mathbf{G}) = \{ g \in \mathbf{G} : g \text{ is quadratic residue in } \mathbf{G} \}$
- We are mostly interested in the case where the group ${\boldsymbol{G}}$ is ${\boldsymbol{Z}}_{{\boldsymbol{N}}}^{*}$ for some integer N.

• <u>Defs</u>. An integer a is called a square mod N or quadratic residue mod N if a mod N is a member of $QR(\mathbf{Z}_{\mathbf{N}}^*)$. If $b^2 = a \pmod{N}$ then b is called a square-root of a mod N. An integer a is called a nonsquare mod N or quadratic non-residue mod N if a mod N is a member of $\mathbf{Z}_{\mathbf{N}}^{*}$ – QR($\mathbf{Z}_{\mathbf{N}}^{*}$).

Def. Let p be a prime. Define the Legendre symbol of a ٠

 $J_p(a) = \begin{cases} 1 & \text{if } a \text{ is a square mod } p \\ 0 & \text{if } a \mod p = 0 \\ -1 & \text{otherwise.} \end{cases}$

• Example. $QR(\mathbf{Z}_{11}^*)$?

• a	1	2	3	4	5	6	7	8	9	10
• $a^2 \mod 11$	1	4	9	5	3	3	5	9	4	1

 $QR(\mathbf{Z}_{11}^*) = \{1, 3, 4, 5, 9\}$

Recall that \mathbf{Z}_{11}^{*} is cyclic and 2 is a generator.

<u>Fact</u>. A generator is always a non-square. (But not all non-squares are generators).

a	1	2	3	4	5	6	7	8	9	10
$\operatorname{DLog}_{\mathbf{Z}_{11}^*,2}(a)$	0	1	8	2	4	9	7	3	6	5
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

• <u>Fact</u>. Let $p \ge 3$ be a prime and let g be a generator of $\mathbf{Z}_{\mathbf{p}}^*$. Then $QR(\mathbf{Z}_{\mathbf{p}}^*) = \{ g^i : i \in \mathbf{Z}_{\mathbf{p}-1} \text{ and } i \text{ is even } \}$, and $|QR(\mathbf{Z}_{\mathbf{p}}^*)| = (p - 1)/2$ <u>Facts</u>. Let $p \ge 3$ be a prime. Then

- $J_p(a) \equiv a^{\frac{p-1}{2}} \pmod{p}$ for any $a \in \mathbf{Z}_p^*$
- $g^{\frac{p-1}{2}} \equiv -1 \pmod{p}$ for any generator g of $\mathbf{Z}^*_{\mathbf{p}}$
- $J_p(ab \mod p) = J_p(a) \cdot J_p(b)$ for any $a \in \mathbf{Z}_p^*$
- $J_p(g^{xy} \mod p) = 1$ if and only if $J_p(g^x \mod p) = 1$ or $J_p(g^y \mod p) = 1$ for any generator g of \mathbf{Z}_p^* and any $x, y \in \mathbf{Z_{p-1}}$

•
$$\Pr\left[x \stackrel{\$}{\leftarrow} \mathbf{Z}_{p-1}; y \stackrel{\$}{\leftarrow} \mathbf{Z}_{p-1}: J_p(g^{xy}) = 1\right] = 3/4$$

for any generator g of $\mathbf{Z}_{\mathbf{p}}^{*}$

Groups of prime order

- <u>Def</u>. An element h of a group **G** is called non-trivial if it is not equal to the identity element of the group.
- <u>Fact</u>. Any non-trivial member of a group of prime order is a generator of the group.
- <u>Fact</u>. Let $q \ge 3$ be a prime such that p = 2q + 1 is also prime. Then $QR(\mathbf{Z}_{\mathbf{p}}^*)$ is a group of prime order q. Furthermore, if g is any generator of $\mathbf{Z}_{\mathbf{p}'}^*$ then $g^2 \mod p$ is a generator of $QR(\mathbf{Z}_{\mathbf{p}}^*)$.
- <u>Fact</u>. Let g be a generator of a group of prime order q. Then for any element Z of the group

$$\Pr\left[x \stackrel{\$}{\leftarrow} \mathbf{Z}_q; y \stackrel{\$}{\leftarrow} \mathbf{Z}_q: g^{xy} = Z\right] = \begin{cases} \frac{1}{q} \left(1 - \frac{1}{q}\right) & \text{if } Z \neq \mathbf{1} \\ \frac{1}{q} \left(2 - \frac{1}{q}\right) & \text{if } Z = \mathbf{1} \end{cases}$$

- Example. Let q = 5 and p = 2q + 1 = 11.
- $QR(\mathbf{Z}_{11}^*) = \{1, 3, 4, 5, 9\}$

We know that 2 is a generator of \mathbf{Z}_{11}^{*}

Let's verify that $4 = 2^2$ is a generator of QR(\mathbf{Z}_{11}^*).

i	0	1	2	3	4
$4^i \mod 11$	1	4	5	9	3