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Some number theory




let2={...,-2,-1,0,1, 2,...} denote the set of integers.
Let Z+ = {1, 2, . . .} denote the set of positive integers and
N =0, 1, 2, ...} the set of non-negative integers.

If a, N are integers with N > 0 then there are unique integersr, g
suchthata=Ng+rand 0 <r < N.

We associate to any positive integer N the following two sets:
Zy ={0,1,...,N=1%} Zl\f={ i€eZ : 1<i<N-1 and gcd(i,N)=1 }




Groups

e Def. Let G be a non-empty set and let - denote a
binary operation on G. We say that G is a group if it
has the following properties:

1. Closure: Forevery a, be Gitisthe casethata:b
is also in G.

2. Associativity: For every a, b, c € G it is the case
that (a-b)-c=a:(b:- ).

3. Identity: There exists an element 1 € G such that
ar-l=1-a=aforallaegG.

4. Invertibility: For every a € G there exists a unique
beGsuchthata:-b=b-a=1.

inverse, denoted a’l




« Fact. Let N be a positive integer. Then Zy; is a group under
addition modulo N, and Z;T is @ group under multiplication
modulo N.

e In any group, we can define an exponentiation operation:
if i = 0 then a' is defined to be 1,
ifi>0thena'=a-a---a(itimes)

ifi<Othena' =al.a1...371 (j=-i times)

e Forallae Gandalli,je Z:

S+ _ gl o

. (ai)j _ aij




* The order of a group is its size

e Fact. Let G be a group and let m = |G| be its order.
Thena™ = 1forallaec G

e Fact. Let G be a group and let m = |G| be its order.
Then a' = a mod m forallae G and alli € Z.

« Example. Let us work in the group Zz*l ={1,2,4,5, 8, 10,

11, 13, 16, 17, 19, 20} under the operation of multiplication
modulo 21. m=12.

586 mod 21 = 586 Mod 12 459 = g2 mod 12 459 =
25 mod 21 =4




e If Gisagroup, asetS c Gis called a subgroup if it is a group
in its own right, under the same operation as that under
which G is a group.

e If we already know that G is a group, there is a simple way to
test whether S is a subgroup:

1 1

itisoneifandonlyifx-y ~eSforall x,yeS. Herey™

is the inverse of y in G.

e Fact. Let G be a group and let S be a subgroup of G. Then the
order of S divides the order of G.




Algorithms and their running times

e Since in cryptography we will be working with
BIG numbers, the complexity of algorithms
taking numbers as inputs is measured as a
function of the bit-length of the numbers.

* E.g. PrintinBinary (A), where A=2K takes k
operations




Some basic algorithms

Algorithm Input Output Running Time
INT-DIV a, N (¢,7) witha=Ng+rand 0<r <N | O(a| - |N])

MOD a, N a mod N O(lal - |NY)
EXT-GCD a,b (a,b) # (0,0)) | (d,a,b) with d = ged(a,b) = aa + bb O(lal - 10])
MOD-ADD | a,b,N (a +b) mod N O(|N])
MOD-MULT | a,b, N ab mod N O(|N]?)
MOD-INV a, N beZy withab=1 O(|N|?)
MOD-EXP a,n, N a™ mod N O(|n| - |N|?)
EXPg a,n a” € G 2|n| G-operations




Cyclic groups and generators

If g € G is any member of the group, the order of g is defined to be
the least positive integer n such that gn = 1.
We let <g> ={ g' rie Z ¥ = {go,gl,..., gn'l} denote the set of

group elements generated by g. This is a subgroup of order n.

Def. An element g of the group is called a generator of G if <g>=G,
or, equivalently, if its order is m=|G|.

Def. A group is cyclic if it contains a generator.

If g is a generator of G, then for every a € G there is a unique
integeri e Z such that g' = a. This i is called the discrete
logarithm of a to base g, and we denote it by DLogg g(a).

DlLogg g(a) is a function that maps G to Z_, and moreover this
function is a bijection.

The function of Z toG defined by i — gi is called the discrete
exponentiation function




Example. Let p = 11. Then Zl*1 ={1,2,3,4,5,6,7,8,9,10} has

order p - 1 = 10. We find the subgroups generated by group
elements 2 and 5. We raise them to the powers 0,...,9.
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<2> = {1[2[3[41516I7I8I9110}=Zikl

2 is a generator and thus Zi‘l is cyclic.

<5> ={1,3,4,5,9;




Choosing cyclic group and generators

* The discrete log function is conjectured to be one-way (hard to
compute) for some cyclic groups G. Due to this fact we often seek
cyclic groups.

* Examples of cyclic groups:

. Z; for a prime p,

* a group of prime order
* We will also need generators. How to chose a candidate and test it?

o Fact. Let G be a cyclic group and let m = |G]. Let poil- - -pﬁn be the
prime factorization of m and let m; = m/pi fori=1,...,n.
Then g € G is a generator of G if and only if
foralli=1,...,n:gMi+1.

* Fact. Let G be a cyclic group of order m, and let g be a generator of
G. Then Gen(G) = { g' € G: ie Z* } and |Gen(G)| = ¢(m).




Example. Let us determine all the generators of the group Zikl. Its

sizeism = ¢(11) = 10, and the prime factorization of 10 is 21- 51.

Thus, the test for whether a given a € Z"l‘1 is @ generator is that
32 5

=1 (mod 11) and a~ # 1 (mod 11).

alll1] 2131456718910
a?mod11 (1|4 (19|53 3 |59 |41
a®>mod11 |/ 1|10|1|1]1]10]10|10|1]10

Gen(Zfl) = {2,6,7,8} .

Double-checking: |Zi‘l|=10, Z>’1‘0 ={1,3,7,9}
{2'eGiezfyr={2%, 23 27, 2% (mod 11)} = {2,6,7,8}




Algorithm for finding a generator

The most common choice of a group in crypto is Z; for a prime p.

Idea. Pick a random element and test it. Chose p s.t. the prime
factorization of the order of the group (p-1) is known. E.g., chose
a prime p s.t. p=2qg+1 for some prime q.
Algorithm FIND-GEN(p)
g+ (p—1)/2
found «— 0
While (found # 1) do
g Zy—{1,p—1}
If (g2 mod p # 1) and (g? mod p # 1) then found « 1
EndWhile
Return g

The probability that an iteration of the algorithm is successful in
finding a generator is

Gen(Zp)| _ p(p—1) _ p(20) _ q—1 _ 1
Z;| — 2 p—3 2q—2  29—-2 2




Squares and non-squares

Def. An element a of a group G is called a square, or quadratic
residue if it has a square root, meaning there is some b € G such

that b2 = a in G.
We let QR(G) = { g € G : g is quadratic residue in G }

We are mostly interested in the case where the group G is Z;I for

some integer N.

Defs. An integer a is called a square mod N or quadratic residue
mod N if a mod N is a member of QR(Zl*\I)' If b2 = a (mod N) then

b is called a square-root of a mod N. An integer a is called a non-
square mod N or quadratic non-residue mod N if a mod N is a
member of ZI*\I - QR(Z{Q).

Def. Let p be a prime. Define the Legendre symbol of a

1 if a is a square mod p
Jp(a) = 0 famodp=0

—1 otherwise.




« Example. QR(Zikl)?
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QR(z)={1, 3, 4, 5, 9}

Recall that Z7, is cyclic and 2 is a generator.

Fact. A generator is always a non-square. (But not all non-squares are

generators).
alll| 2 |34 6 | 7|8 [9]10
DLogz: »(a) |0 1 |8]2 9 | 713 1|65
Jii(a) [[1|—-1]1[1 —1|-1|-1]1|-1

o Fact. Let p = 3 be a prime and let g be a generator of Z;‘;. Then

QR(zl";) = { gi :i€Z, qandiiseven}, and |QR(Z;)| = (p-1)/2




Facts. Let p = 3 be a prime. Then

p—1

e Jp(a)=a"2 (modp) foranyac Z;;

—1
. ng —1 (mod p) for any generator g of Z;

o Jp(abmod p) = Jp(a) - Jp(b) forany ae z3

* Jp(g®™modp)=1 ifand onlyif Jy(¢* modp)=1or J,(¢¥ modp) =1
for any generator g of Zi’; and any x,y € Z,1
i Pr[wﬁzp—l; yﬁzp—l . Jp(gxy):].] =3/4

for any generator g of Z;




Groups of prime order

Def. An element h of a group G is called non-trivial if it is not equal
to the identity element of the group.

Fact. Any non-trivial member of a group of prime order is a
generator of the group.

Fact. Let g = 3 be a prime such that p = 2g + 1 is also prime.
Then QR(ZI";) is a group of prime order q. Furthermore, if g is any

generator of Z:;, then 92 mod p is a generator of QR(Z;).

Fact. Let g be a generator of a group of prime order q. Then for
any element Z of the group
(1 - 1) it 741
q

(2-2) itz=1
q

Pr[mﬁzq;yizq : gxy:Z] =

Q= Q=




* Example. Letg=5andp=2g+ 1 = 11.

* QR( 1) = {173747579}

We know that 2 is a generator of Zikl

2

Let's verify that 4 = 2“ is a generator of QR(Z 7).

illol1]12]3]|4
4" mod11||1(4|!5|9]3




