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Let Z = {. . . , −2, −1, 0, 1, 2, . . .} denote the set of integers. 
Let Z+ = {1, 2, . . .} denote the set of positive integers and       
N = {0, 1, 2, . . .} the set of non-negative integers.

If a, N are integers with N > 0 then there are unique integers r, q 
such that a = Nq + r and 0 ≤ r < N. 

We associate to any positive integer N the following two sets:   
ZN ={0, 1, . . . , N − 1}, ZN={ i∈Z : 1≤i≤N−1 and gcd(i,N)=1 }∗



Groups
• Def. Let G be a non-empty set and let · denote a 

binary operation on G. We say that G is a group if it 
has the following properties: 

1. Closure: For every a, b ∈ G it is the case that a · b 
is also in G. 

2. Associativity: For every a, b, c ∈ G it is the case 
that (a · b) · c = a · (b · c). 

3. Identity: There exists an element 1 ∈ G such that 
a · 1 = 1 · a = a for all a ∈ G. 

4. Invertibility: For every a ∈ G there exists a unique 
b ∈ G such that a · b = b · a = 1. 

inverse, denoted a-1



• Fact. Let N be a positive integer. Then ZN is a group under 

addition modulo N, and ZN is a group under multiplication 

modulo N. 

• In any group, we can define an exponentiation operation:  

if i = 0 then ai is defined to be 1,                                     

if i > 0 then ai = a · a · · · a (i times)                               

if i < 0 then ai = a-1 · a-1 · · · a-1 (j=-i times)

• For all a ∈ G and all i,j ∈ Z: 

• ai+j = ai · aj 

• (ai)j  = aij 

• a-i  = (ai)-1= (a-1)i 

*



• The order of a group is its size

• Fact. Let G be a group and let m = |G| be its order.         

Then am = 1 for all a ∈ G 

• Fact. Let G be a group and let m = |G| be its order.         

Then ai = ai mod m  for all a ∈ G and all i ∈ Z.

• Example. Let us work in the group Z21 ={1, 2, 4, 5, 8, 10, 

11, 13, 16, 17, 19, 20} under the operation of multiplication 
modulo 21. m=12.

  586 mod 21 = 586 mod 12 mod 21 = 52 mod 12 mod 21 =    
25 mod 21 = 4 

*



• If G is a group, a set S ⊆ G is called a subgroup if it is a group 
in its own right, under the same operation as that under 
which G is a group. 

• If we already know that G is a group, there is a simple way to 
test whether S is a subgroup: 

• it is one if and only if x · y-1 ∈ S for all x, y ∈ S. Here y-1 
is the inverse of y in G. 

• Fact. Let G be a group and let S be a subgroup of G. Then the 
order of S divides the order of G.



Algorithms and their running times

• Since in cryptography we will be working with 
BIG numbers, the complexity of algorithms 
taking numbers as inputs is measured as a 
function of the bit-length of the numbers.

• E.g. PrintinBinary (A), where A=2k takes k 
operations



Some basic algorithms
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Algorithm Input Output Running Time

INT-DIV a,N (N > 0) (q, r) with a = Nq + r and 0 ≤ r < N O(|a| · |N |)

MOD a,N (N > 0) a mod N O(|a| · |N |)

EXT-GCD a, b ((a, b) "= (0, 0)) (d, a, b) with d = gcd(a, b) = aa + bb O(|a| · |b|)

MOD-ADD a, b,N (a, b ∈ ZN ) (a + b) mod N O(|N |)

MOD-MULT a, b,N (a, b ∈ ZN ) ab mod N O(|N |2)

MOD-INV a,N (a ∈ Z∗

N
) b ∈ Z∗

N
with ab ≡ 1 (mod N) O(|N |2)

MOD-EXP a, n,N (a ∈ ZN ) an mod N O(|n| · |N |2)

EXPG a, n (a ∈ G) an ∈ G 2|n| G-operations
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Cyclic groups and generators
• If g ∈ G is any member of the group, the order of g is defined to be 

the least positive integer n such that gn = 1.                              

We let <g> = { gi : i ∈ Zn } = {g0,g1,..., gn-1} denote the set of 

group elements generated by g. This is a subgroup of order n. 

• Def. An element g of the group is called a generator of G if <g>=G, 
or, equivalently, if its order is m=|G|.

• Def. A group is cyclic if it contains a generator.

• If g is a generator of G, then for every a ∈ G there is a unique 

integer i ∈ Zm such that gi = a. This i is called the discrete 

logarithm of a to base g, and we denote it by DLogG,g(a). 

• DLogG,g(a) is a function that maps G to Zm, and moreover this 

function is a bijection.

• The function of Zm to G defined by i → gi is called the discrete 

exponentiation function



• Example. Let p = 11. Then Z11 = {1,2,3,4,5,6,7,8,9,10} has 

order p − 1 = 10. We find the subgroups generated by group 
elements 2 and 5. We raise them to the powers 0,...,9. 

•

•

•

<2> = {1,2,3,4,5,6,7,8,9,10}=Z11        <5> = {1,3,4,5,9}

2 is a generator and thus Z11 is cyclic.

*
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Fig. 9.1. (The input a is not required to be relatively prime to N even though it usually will be, so
is listed as coming from ZN .) In that case, each group operation is implemented via MOD-MULT
and takes O(|N |2) time, so the running time of the algorithm is O(|n| · |N |2). Since n is usually
in ZN , this comes to O(|N |3). The salient fact to remember is that modular exponentiation is a
cubic time algorithm.

9.3 Cyclic groups and generators

Let G be a group, let 1 denote its identity element, and let m = |G| be the order of G. If g ∈ G
is any member of the group, the order of g is defined to be the least positive integer n such that
gn = 1. We let

〈g〉 = { gi : i ∈ Zn } = {g0, g1, . . . , gn−1}

denote the set of group elements generated by g. A fact we do not prove, but is easy to verify, is
that this set is a subgroup of G. The order of this subgroup (which, by definition, is its size) is just
the order of g. Fact 9.6 tells us that the order n of g divides the order m of the group. An element
g of the group is called a generator of G if 〈g〉 = G, or, equivalently, if its order is m. If g is a
generator of G then for every a ∈ G there is a unique integer i ∈ Zm such that gi = a. This i is
called the discrete logarithm of a to base g, and we denote it by DLogG,g(a). Thus, DLogG,g(·) is
a function that maps G to Zm, and moreover this function is a bijection, meaning one-to-one and
onto. The function of Zm to G defined by i $→ gi is called the discrete exponentiation function,
and the discrete logarithm function is the inverse of the discrete exponentiation function.

Example 9.9 Let p = 11, which is prime. Then Z∗

11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} has order p− 1 =
10. Let us find the subgroups generated by group elements 2 and 5. We raise them to the powers
i = 0, . . . , 9. We get:

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

5i mod 11 1 5 3 4 9 1 5 3 4 9

Looking at which elements appear in the row corresponding to 2 and 5, respectively, we can deter-
mine the subgroups these group elements generate:

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

〈5〉 = {1, 3, 4, 5, 9} .

Since 〈2〉 equals Z∗

11, the element 2 is a generator. Since a generator exists, Z∗

11 is cyclic. On the
other hand, 〈5〉 '= Z∗

11, so 5 is not a generator. The order of 2 is 10, while the order of 5 is 5.
Note that these orders divide the order 10 of the group. The table also enables us to determine the
discrete logarithms to base 2 of the different group elements:

a 1 2 3 4 5 6 7 8 9 10

DLogZ∗

11
,2(a) 0 1 8 2 4 9 7 3 6 5

Later we will see a way of identifying all the generators given that we know one of them.

The discrete exponentiation function is conjectured to be one-way (meaning the discrete loga-
rithm function is hard to compute) for some cyclic groups G. Due to this fact we often seek cyclic

*

*
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Choosing cyclic group and generators
• The discrete log function is conjectured to be one-way (hard to 

compute) for some cyclic groups G. Due to this fact we often seek 
cyclic groups.

• Examples of cyclic groups:

• Zp  for a prime p,

• a group of prime order

• We will also need generators. How to chose a candidate and test it?

• Fact. Let G be a cyclic group and let m = |G|. Let p1 · · ·pn  be the 

prime factorization of m and let mi = m/pi for i = 1,...,n.           

Then g ∈ G is a generator of G if and only if                                
for all i = 1, . . . , n: g    ≠ 1.

• Fact. Let G be a cyclic group of order m, and let g be a generator of 

G. Then Gen(G) = { gi ∈ G : i ∈ Zm } and |Gen(G)| = φ(m).

*

α1 αn

mi 

∗



• Example. Let us determine all the generators of the group Z11. Its 

size is m = φ(11) = 10, and the prime factorization of 10 is 21· 51. 
Thus, the test for whether a given a ∈ Z11 is a generator is that    

a2 ≠ 1 (mod 11) and a5 ≠ 1 (mod 11).

•

•

•

• Gen(Z11) = {2,6,7,8} .

• Double-checking: |Z11|=10,  Z10 ={1,3,7,9}                                                 

{ 2i ∈ G : i ∈ Z10 }={ 21, 23, 27, 29 (mod 11)} = {2,6,7,8}

∗

∗

Bellare and Rogaway 11

Since g is a generator, it must be that ij ≡ 0 (mod m), meaning m divides ij. But i ∈ Z∗

m so
gcd(i, m) = 1. So it must be that m divides j. But j ∈ Zm and the only member of this set
divisible by m is 0, so j = 0 as desired.

Next, suppose i ∈ Zm−Z∗

m and let h = gi. To show that h is not a generator it suffices to show that
there is some non-zero j ∈ Zm such that hj = 1. Let d = gcd(i, m). Our assumption i ∈ Zm − Z∗

m

implies that d > 1. Let j = m/d, which is a non-zero integer in Zm because d > 1. Then the
following shows that hj = 1, completing the proof:

hj = gij = gi·m/d = gm·i/d = (gm)i/d = 1i/d = 1.

We used here the fact that d divides i and that gm = 1.

Example 9.15 Let us determine all the generators of the group Z∗

11. Let us first use Proposition 9.13.
The size of Z∗

11 is m = ϕ(11) = 10, and the prime factorization of 10 is 21 · 51. Thus, the test for
whether a given a ∈ Z∗

11 is a generator is that a2 $≡ 1 (mod 11) and a5 $≡ 1 (mod 11). Let us
compute a2 mod 11 and a5 mod 11 for all group elements a. We get:

a 1 2 3 4 5 6 7 8 9 10

a2 mod 11 1 4 9 5 3 3 5 9 4 1

a5 mod 11 1 10 1 1 1 10 10 10 1 10

The generators are those a for which the corresponding column has no entry equal to 1, meaning
in both rows, the entry for this column is different from 1. So

Gen(Z∗

11) = {2, 6, 7, 8} .

Now, let us use Proposition 9.14 and double-check that we get the same thing. We saw in
Example 9.9 that 2 was a generator of Z∗

11. As per Proposition 9.14, the set of generators is

Gen(Z∗

11) = { 2i mod 11 : i ∈ Z∗

10 } .

This is because the size of the group is m = 10. Now, Z∗

10 = {1, 3, 7, 9}. The values of 2i mod 11
as i ranges over this set can be obtained from the table in Example 9.9 where we computed all the
powers of 2. So

{ 2i mod 11 : i ∈ Z∗

10 } = {21 mod 11, 23 mod 11, 27 mod 11, 29 mod 11}

= {2, 6, 7, 8} .

This is the same set we obtained above via Proposition 9.13. If we try to find a generator by picking
group elements at random and then testing using Proposition 9.13, each trial has probability of
success ϕ(10)/10 = 4/10, so we would expect to find a generator in 10/4 trials. We can optimize
slightly by noting that 1 and −1 can never be generators, and thus we only need pick candidates
randomly from Z∗

11−{1, 10}. In that case, each trial has probability of success ϕ(10)/8 = 4/8 = 1/2,
so we would expect to find a generator in 2 trials.

When we want to work in a cyclic group in cryptography, the most common choice is to work
over Z∗

p for a suitable prime p. The algorithm for finding a generator would be to repeat the process
of picking a random group element and testing it, halting when a generator is found. In order to
make this possible we choose p in such a way that the prime factorization of the order p − 1 of

∗

∗∗

∗



Algorithm for finding a generator
• The most common choice of a group in crypto is Zp for a prime p.

• Idea. Pick a random element and test it. Chose p s.t. the prime 
factorization of the order of the group (p-1) is known. E.g., chose 
a prime p s.t. p=2q+1 for some prime q.

•

•

•

•

•

• The probability that an iteration of the algorithm is successful in 
finding a generator is 

∗
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Z∗

p is known. In order to make the testing fast, we choose p so that p − 1 has few prime factors.
Accordingly, it is common to choose p to equal 2q + 1 for some prime q. In this case, the prime
factorization of p−1 is 21q1, so we need raise a candidate to only two powers to test whether or not
it is a generator. In choosing candidates, we optimize slightly by noting that 1 and −1 are never
generators, and accordingly pick the candidates from Z∗

p − {1, p − 1} rather than from Z∗

p. So the
algorithm is as follows:

Algorithm FIND-GEN(p)
q ← (p − 1)/2
found ← 0
While (found #= 1) do

g $← Z∗

p − {1, p − 1}
If (g2 mod p #= 1) and (gq mod p #= 1) then found ← 1

EndWhile
Return g

Proposition 9.13 tells us that the group element g returned by this algorithm is always a generator
of Z∗

p. By Proposition 9.14, the probability that an iteration of the algorithm is successful in finding
a generator is

|Gen(Z∗

p)|

|Z∗

p|− 2
=

ϕ(p − 1)

p − 3
=

ϕ(2q)

2q − 2
=

q − 1

2q − 2
=

1

2
.

Thus the expected number of iterations of the while loop is 2. Above, we used that fact that
ϕ(2q) = q − 1 which is true because q is prime.

9.4 Squares and non-squares

An element a of a group G is called a square, or quadratic residue if it has a square root, meaning
there is some b ∈ G such that b2 = a in G. We let

QR(G) = { g ∈ G : g is quadratic residue in G }

denote the set of all squares in the group G. We leave to the reader to check that this set is a
subgroup of G.

We are mostly interested in the case where the group G is Z∗

N for some integer N . An integer a
is called a square mod N or quadratic residue mod N if a mod N is a member of QR(Z∗

N ). If b2 ≡ a
(mod N) then b is called a square-root of a mod N . An integer a is called a non-square mod N or
quadratic non-residue mod N if a mod N is a member of Z∗

N − QR(Z∗

N ). We will begin by looking
at the case where N = p is a prime. In this case we define a function Jp: Z → {−1, 1} by

Jp(a) =




1 if a is a square mod p

0 if a mod p = 0

−1 otherwise.

for all a ∈ Z. We call Jp(a) the Legendre symbol of a. Thus, the Legendre symbol is simply a
compact notation for telling us whether or not its argument is a square modulo p.

Before we move to developing the theory, it may be useful to look at an example.
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Squares and non-squares
• Def. An element a of a group G is called a square, or quadratic 

residue if it has a square root, meaning there is some b ∈ G such 

that b2 = a in G. 

• We let QR(G) = { g ∈ G : g is quadratic residue in G }

• We are mostly interested in the case where the group G is ZN for 

some integer N. 

• Defs. An integer a is called a square mod N or quadratic residue 

mod N if a mod N is a member of QR(ZN). If b2 = a (mod N) then 

b is called a square-root of a mod N. An integer a is called a non-
square mod N or quadratic non-residue mod N if a mod N is a 
member of ZN − QR(ZN). 

• Def. Let p be a prime. Define the Legendre symbol of a

∗

∗

∗ ∗
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• Example. QR(Z11)?

•

•

QR(Z11)={1, 3, 4, 5, 9}

Recall that Z11 is cyclic and 2 is a generator.

Fact. A generator is always a non-square. (But not all non-squares are 
generators).

• Fact. Let p ≥ 3 be a prime and let g be a generator of Zp. Then 

QR(Zp) = { gi : i ∈ Zp−1 and i is even } , and |QR(Zp)| = (p − 1)/2 

∗
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Example 9.16 Let p = 11, which is prime. Then Z∗

11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} has order p−1 =
10. A simple way to determine QR(Z∗

11) is to square all the group elements in turn:

a 1 2 3 4 5 6 7 8 9 10

a2 mod 11 1 4 9 5 3 3 5 9 4 1

The squares are exactly those elements that appear in the second row, so

QR(Z∗

11) = {1, 3, 4, 5, 9} .

The number of squares is 5, which we notice equals (p− 1)/2. This is not a coincidence, as we will
see. Also notice that each square has exactly two different square roots. (The square roots of 1 are
1 and 10; the square roots of 3 are 5 and 6; the square roots of 4 are 2 and 9; the square roots of 5
are 4 and 7; the square roots of 9 are 3 and 8.)

Since 11 is prime, we know that Z∗

11 is cyclic, and as we saw in Example 9.9, 2 is a generator.
(As a side remark, we note that a generator must be a non-square. Indeed, if a = b2 is a square,
then a5 = b10 = 1 modulo 11 because 10 is the order of the group. So aj = 1 modulo 11 for
some positive j < 10, which means a is not a generator. However, not all non-squares need be
generators.) Below, we reproduce from that example the table of discrete logarithms of the group
elements. We also add below it a row providing the Legendre symbols, which we know because,
above, we identified the squares. We get:

a 1 2 3 4 5 6 7 8 9 10

DLogZ∗

11
,2(a) 0 1 8 2 4 9 7 3 6 5

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

We observe that the Legendre symbol of a is 1 if its discrete logarithm is even, and −1 if the discrete
logarithm is odd, meaning the squares are exactly those group elements whose discrete logarithm
is even. It turns out that this fact is true regardless of the choice of generator.

As we saw in the above example, the fact that Z∗

p is cyclic is useful in understanding the
structure of the subgroup of quadratic residues QR(Z∗

p). The following Proposition summarizes
some important elements of this connection.

Proposition 9.17 Let p ≥ 3 be a prime and let g be a generator of Z∗

p. Then

QR(Z∗

p) = { gi : i ∈ Zp−1 and i is even } , (9.2)

and the number of squares mod p is ∣∣∣QR(Z∗

p)
∣∣∣ =

p − 1

2
.

Furthermore, every square mod p has exactly two different square roots mod p.

Proof of Proposition 9.17: Let

E = { gi : i ∈ Zp−1 and i is even } .

We will prove that E = QR(Z∗

p) by showing first that E ⊆ QR(Z∗

p) and second that QR(Z∗

p) ⊆ E.

To show that E ⊆ QR(Z∗

p), let a ∈ E. We will show that a ∈ QR(Z∗

p). Let i = DLogZ∗

p,g(a). Since

∗

∗

Bellare and Rogaway 13

Example 9.16 Let p = 11, which is prime. Then Z∗

11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} has order p−1 =
10. A simple way to determine QR(Z∗

11) is to square all the group elements in turn:

a 1 2 3 4 5 6 7 8 9 10

a2 mod 11 1 4 9 5 3 3 5 9 4 1

The squares are exactly those elements that appear in the second row, so

QR(Z∗

11) = {1, 3, 4, 5, 9} .

The number of squares is 5, which we notice equals (p− 1)/2. This is not a coincidence, as we will
see. Also notice that each square has exactly two different square roots. (The square roots of 1 are
1 and 10; the square roots of 3 are 5 and 6; the square roots of 4 are 2 and 9; the square roots of 5
are 4 and 7; the square roots of 9 are 3 and 8.)

Since 11 is prime, we know that Z∗

11 is cyclic, and as we saw in Example 9.9, 2 is a generator.
(As a side remark, we note that a generator must be a non-square. Indeed, if a = b2 is a square,
then a5 = b10 = 1 modulo 11 because 10 is the order of the group. So aj = 1 modulo 11 for
some positive j < 10, which means a is not a generator. However, not all non-squares need be
generators.) Below, we reproduce from that example the table of discrete logarithms of the group
elements. We also add below it a row providing the Legendre symbols, which we know because,
above, we identified the squares. We get:

a 1 2 3 4 5 6 7 8 9 10

DLogZ∗

11
,2(a) 0 1 8 2 4 9 7 3 6 5

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

We observe that the Legendre symbol of a is 1 if its discrete logarithm is even, and −1 if the discrete
logarithm is odd, meaning the squares are exactly those group elements whose discrete logarithm
is even. It turns out that this fact is true regardless of the choice of generator.

As we saw in the above example, the fact that Z∗

p is cyclic is useful in understanding the
structure of the subgroup of quadratic residues QR(Z∗

p). The following Proposition summarizes
some important elements of this connection.

Proposition 9.17 Let p ≥ 3 be a prime and let g be a generator of Z∗

p. Then

QR(Z∗

p) = { gi : i ∈ Zp−1 and i is even } , (9.2)

and the number of squares mod p is ∣∣∣QR(Z∗

p)
∣∣∣ =

p − 1

2
.

Furthermore, every square mod p has exactly two different square roots mod p.

Proof of Proposition 9.17: Let

E = { gi : i ∈ Zp−1 and i is even } .

We will prove that E = QR(Z∗

p) by showing first that E ⊆ QR(Z∗

p) and second that QR(Z∗

p) ⊆ E.

To show that E ⊆ QR(Z∗

p), let a ∈ E. We will show that a ∈ QR(Z∗

p). Let i = DLogZ∗

p,g(a). Since

∗

∗ ∗



Facts. Let p ≥ 3 be a prime. Then

•                                         for any a ∈ Zp

•                                       for any generator g of Zp

•                                             for any a ∈ Zp

•

for any generator g of Zp and any x,y ∈ Zp-1

•                                                         =3/4 

for any generator g of Zp 
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a ∈ E we know that i is even. Let j = i/2 and note that j ∈ Zp−1. Clearly

(gj)2 ≡ g2j mod p−1 ≡ g2j ≡ gi (mod p) ,

so gj is a square root of a = gi. So a is a square.

To show that QR(Z∗

p) ⊆ E, let b be any element of Z∗

p. We will show that b2 ∈ E. Let j =
DLogZ∗

p,g(b). Then

b2 ≡ (gj)2 ≡ g2j mod p−1 ≡ g2j (mod p) ,

the last equivalence being true because the order of the group Z∗

p is p− 1. This shows that b2 ∈ E.

The number of even integers in Zp−1 is exactly (p − 1)/2 since p − 1 is even. The claim about the
size of QR(Z∗

p) thus follows from Equation (9.2). It remains to justify the claim that every square
mod p has exactly two square roots mod p. This can be seen by a counting argument, as follows.

Suppose a is a square mod p. Let i = DLogZ∗

p,g(a). We know from the above that i is even. Let

x = i/2 and let y = x + (p − 1)/2 mod (p − 1). Then gx is a square root of a. Furthermore

(gy)2 ≡ g2y ≡ g2x+(p−1) ≡ g2xgp−1 ≡ a · 1 ≡ a (mod p) ,

so gy is also a square root of a. Since i is an even number in Zp−1 and p−1 is even, it must be that
0 ≤ x < (p − 1)/2. It follows that (p − 1)/2 ≤ y < p − 1. Thus x &= y. This means that a has as
least two square roots. This is true for each of the (p− 1)/2 squares mod p. So the only possibility
is that each of these squares has exactly two square roots.

Suppose we are interested in knowing whether or not a given a ∈ Z∗

p is a square mod p, meaning
we want to know the value of the Legendre symbol Jp(a). Proposition 9.17 tells us that

Jp(a) = (−1)
DLogZ∗

p,g(a)
,

where g is any generator of Z∗

p. This however is not very useful in computing Jp(a), because it
requires knowing the discrete logarithm of a, which is hard to compute. The following Proposition
says that the Legendre symbols of a modulo an odd prime p can be obtained by raising a to the
power (p − 1)/2, and helps us compute the Legendre symbol.

Proposition 9.18 Let p ≥ 3 be a prime. Then

Jp(a) ≡ a
p−1

2 (mod p)

for any a ∈ Z∗

p.

Now one can determine whether or not a is a square mod p by running the algorithm MOD-EXP
on inputs a, (p− 1)/2, p. If the algorithm returns 1 then a is a square mod p, and if it returns p− 1
(which is the same as −1 mod p) then a is a non-square mod p. Thus, the Legendre symbol can be
computed in time cubic in the length of p.

Towards the proof of Proposition 9.18, we begin with the following lemma which is often useful
in its own right.

Lemma 9.19 Let p ≥ 3 be a prime. Then

g
p−1

2 ≡ −1 (mod p)

for any generator g of Z∗

p.
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p−1
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Proof of Lemma 9.19: We begin by observing that 1 and −1 are both square roots of 1 mod
p, and are distinct. (It is clear that squaring either of these yields 1, so they are square roots of 1.
They are distinct because −1 equals p−1 mod p, and p−1 "= 1 because p ≥ 3.) By Proposition 9.17,
these are the only square roots of 1. Now let

b = g
p−1

2 mod p .

Then b2 ≡ 1 (mod p), so b is a square root of 1. By the above b can only be 1 or −1. However,
since g is a generator, b cannot be 1. (The smallest positive value of i such that gi is 1 mod p is
i = p − 1.) So the only choice is that b ≡ −1 (mod p), as claimed.

Proof of Proposition 9.18: By definition of the Legendre symbol, we need to show that

a
p−1

2 ≡




1 (mod p) if a is a square mod p

−1 (mod p) otherwise.

Let g be a generator of Z∗

p and let i = DLogZ∗

p,g(a). We consider separately the cases of a being a
square and a being a non-square.

Suppose a is a square mod p. Then Proposition 9.17 tells us that i is even. In that case

a
p−1

2 ≡ (gi)
p−1

2 ≡ gi· p−1

2 ≡ (gp−1)i/2 ≡ 1 (mod p) ,

as desired.

Now suppose a is a non-square mod p. Then Proposition 9.17 tells us that i is odd. In that case

a
p−1

2 ≡ (gi)
p−1

2 ≡ gi· p−1

2 ≡ g(i−1)· p−1

2
+ p−1

2 ≡ (gp−1)(i−1)/2 · g
p−1

2 ≡ g
p−1

2 (mod p) .

However Lemma 9.19 tells us that the last quantity is −1 modulo p, as desired.

The following Proposition says that ab mod p is a square if and only if either both a and b are
squares, or if both are non-squares. But if one is a square and the other is not, then ab mod p is
a non-square. This can be proved by using either Proposition 9.17 or Proposition 9.18. We use
the latter in the proof. You might try, as an exercise, to reprove the result using Proposition 9.17
instead.

Proposition 9.20 Let p ≥ 3 be prime. Then

Jp(ab mod p) = Jp(a) · Jp(b)

for all a, b ∈ Z∗

p.

Proof of Proposition 9.20: Using Proposition 9.18 we get

Jp(ab mod p) ≡ (ab)
p−1

2 ≡ a
p−1

2 b
p−1

2 ≡ Jp(a) · Jp(b) (mod p) .

The two quantities we are considering both being either 1 or −1, and equal modulo p, must then
be actually equal.

A quantity of cryptographic interest is the Diffie-Hellman (DH) key. Having fixed a cyclic group
G and generator g for it, the DH key associated to elements X = gx and Y = gy of the group is
the group element gxy. The following Proposition tells us that the DH key is a square if either X
or Y is a square, and otherwise is a non-square.
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Proposition 9.21 Let p ≥ 3 be a prime and let g be a generator of Z∗

p. Then

Jp(g
xy mod p) = 1 if and only if Jp(g

x mod p) = 1 or Jp(g
y mod p) = 1 ,

for all x, y ∈ Zp−1.

Proof of Proposition 9.21: By Proposition 9.17, it suffices to show that

xy mod (p − 1) is even if and only if x is even or y is even .

But since p − 1 is even, xy mod (p − 1) is even exactly when xy is even, and clearly xy is even
exactly if either x or y is even.

With a cyclic group G and generator g of G fixed, we will be interested in the distribution of the
DH key gxy in G, under random choices of x, y from Zm, where m = |G|. One might at first think
that in this case the DH key is a random group element. The following proposition tells us that
in the group Z∗

p of integers modulo a prime, this is certainly not true. The DH key is significantly
more likely to be a square than a non-square, and in particular is thus not even almost uniformly
distributed over the group.

Proposition 9.22 Let p ≥ 3 be a prime and let g be a generator of Z∗

p. Then

Pr
[
x $← Zp−1 ; y $← Zp−1 : Jp(g

xy) = 1
]

equals 3/4.

Proof of Proposition 9.22: By Proposition 9.22 we need only show that

Pr
[
x $← Zp−1 ; y $← Zp−1 : Jp(g

x) = 1 or Jp(g
y) = 1

]
equals 3/4. The probability in question is 1 − α where

α = Pr
[
x $← Zp−1 ; y $← Zp−1 : Jp(g

x) = −1 and Jp(g
y) = −1

]

= Pr
[
x $← Zp−1 : Jp(g

x) = −1
]
· Pr

[
y $← Zp−1 : Jp(g

y) = −1
]

=
|QR(Z∗

p)|

|Z∗

p|
·
|QR(Z∗

p)|

|Z∗

p|

=
(p − 1)/2

p − 1
·
(p − 1)/2

p − 1

=
1

2
·
1

2

=
1

4
.

Thus 1−α = 3/4 as desired. Here we used Proposition 9.17 which told us that |QR(Z∗

p)| = (p−1)/2.

The above Propositions, combined with Proposition 9.18 (which tells us that quadratic residu-
osity modulo a prime can be efficiently tested), will later lead us to pinpoint weaknesses in certain
cryptographic schemes in Z∗

p.
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Groups of prime order
• Def. An element h of a group G is called non-trivial if it is not equal 

to the identity element of the group.

• Fact. Any non-trivial member of a group of prime order is a 
generator of the group.

• Fact. Let q ≥ 3 be a prime such that p = 2q + 1 is also prime. 
Then QR(Zp) is a group of prime order q. Furthermore, if g is any 

generator of Zp, then g2 mod p is a generator of QR(Zp).

• Fact. Let g be a generator of a group of prime order q. Then for 
any element Z of the group

∗∗

∗
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base g range in the set Zm where m = |G| is the order of G. This means that arithmetic in these
exponents is modulo m. If G has prime order, then m is prime. This means that any non-zero

exponent has a multiplicative inverse modulo m. In other words, in working in the exponents, we
can divide. It is this that turns out to be useful.

As an example illustrating how we use this, let us return to the problem of the distribution of
the DH key that we looked at in Section 9.4. Recall the question is that we draw x, y independently
at random from Zm and then ask how gxy is distributed over G. We saw that when G = Z∗

p for a
prime p ≥ 3, this distribution was noticebly different from uniform. In a group of prime order, the
distribution of the DH key, in contrast, is very close to uniform over G. It is not quite uniform,
because the identity element of the group has a slightly higher probability of being the DH key than
other group elements, but the deviation is small enough to be negligible for groups of reasonably
large size. The following proposition summarizes the result.

Proposition 9.26 Suppose G is a group of order q where q is a prime, and let g be a generator of
G. Then for any Z ∈ G we have

Pr
[
x $← Zq ; y $← Zq : gxy = Z

]
=




1

q

(
1 −

1

q

)
if Z %= 1

1

q

(
2 −

1

q

)
if Z = 1,

where 1 denotes the identity element of G.

Proof of Proposition 9.26: First suppose Z = 1. The DH key gxy is 1 if and only if either x
or y is 0 modulo q. Each is 0 with probability 1/q and these probabilities are independent, so the
probability that either x or y is 0 is 2/q − 1/q2, as claimed.

Now suppose Z %= 1. Let z = DLogG,g(Z), meaning z ∈ Z∗

q and gz = Z. We will have gxy ≡ Z
(mod p) if and only if xy ≡ z (mod q), by the uniqueness of the discrete logarithm. For any fixed
x ∈ Z∗

q , there is exactly one y ∈ Zq for which xy ≡ z (mod q), namely y = x−1z mod q, where
x−1 is the multiplicative inverse of x in the group Z∗

q . (Here we are making use of the fact that
q is prime, since otherwise the inverse of x modulo q may not exist.) Now, suppose we choose x
at random from Zq. If x = 0 then, regardless of the choice of y ∈ Zq, we will not have xy ≡ z
(mod q), because z %≡ 0 (mod q). On the other hand, if x %= 0 then there is exactly 1/q probability
that the randomly chosen y is such that xy ≡ z (mod q). So the probability that xy ≡ z (mod q)
when both x and y are chosen at random in Zq is

q − 1

q
·
1

q
=

1

q

(
1 −

1

q

)

as desired. Here, the first term is because when we choose x at random from Zq, it has probability
(q − 1)/q of landing in Z∗

q .

9.6 Historical Notes

9.7 Exercises and Problems



• Example. Let q = 5 and p = 2q + 1 = 11.

•

We know that 2 is a generator of Z11    

Let’s verify that 4 = 22 is a generator of QR(Z11).
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9.5 Groups of prime order

A group of prime order is a group G whose order m = |G| is a prime number. Such a group is
always cyclic. These groups turn out to be quite useful in cryptography, so let us take a brief look
at them and some of their properties.

An element h of a group G is called non-trivial if it is not equal to the identity element of the
group.

Proposition 9.23 Suppose G is a group of order q where q is a prime, and h is any non-trivial
member of G. Then h is a generator of G.

Proof of Proposition 9.23: It suffices to show that the order of h is q. We know that the
order of any group element must divide the order of the group. Since the group has prime order
q, the only possible values for the order of h are 1 and q. But h does not have order 1 since it is
non-trivial, so it must have order q.

A common way to obtain a group of prime order for cryptographic schemes is as a subgroup of a
group of integers modulo a prime. We pick a prime p having the property that q = (p−1)/2 is also
prime. It turns out that the subgroup of quadratic residues modulo p then has order q, and hence
is a group of prime order. The following proposition summarizes the facts for future reference.

Proposition 9.24 Let q ≥ 3 be a prime such that p = 2q + 1 is also prime. Then QR(Z∗

p) is a
group of prime order q. Furthermore, if g is any generator of Z∗

p, then g2 mod p is a generator of
QR(Z∗

p).

Note that the operation under which QR(Z∗

p) is a group is multiplication modulo p, the same
operation under which Z∗

p is a group.

Proof of Proposition 9.24: We know that QR(Z∗

p) is a subgroup, hence a group in its own
right. Proposition 9.17 tells us that |QR(Z∗

p)| is (p−1)/2, which equals q in this case. Now let g be
a generator of Z∗

p and let h = g2 mod p. We want to show that h is a generator of QR(Z∗

p). As per
Proposition 9.23, we need only show that h is non-trivial, meaning h #= 1. Indeed, we know that
g2 #≡ 1 (mod p), because g, being a generator, has order p and our assumptions imply p > 2.

Example 9.25 Let q = 5 and p = 2q + 1 = 11. Both p and q are primes. We know from
Example 9.16 that

QR(Z∗

11) = {1, 3, 4, 5, 9} .

This is a group of prime order 5. We know from Example 9.9 that 2 is a generator of Z∗

p.
Proposition 9.24 tells us that 4 = 22 is a generator of QR(Z∗

11). We can verify this by raising
4 to the powers i = 0, . . . , 4:

i 0 1 2 3 4

4i mod 11 1 4 5 9 3

We see that the elements of the last row are exactly those of the set QR(Z∗

11).

Let us now explain what we perceive to be the advantage conferred by working in a group of
prime order. Let G be a cyclic group, and g a generator. We know that the discrete logarithms to

∗
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9.5 Groups of prime order

A group of prime order is a group G whose order m = |G| is a prime number. Such a group is
always cyclic. These groups turn out to be quite useful in cryptography, so let us take a brief look
at them and some of their properties.

An element h of a group G is called non-trivial if it is not equal to the identity element of the
group.

Proposition 9.23 Suppose G is a group of order q where q is a prime, and h is any non-trivial
member of G. Then h is a generator of G.

Proof of Proposition 9.23: It suffices to show that the order of h is q. We know that the
order of any group element must divide the order of the group. Since the group has prime order
q, the only possible values for the order of h are 1 and q. But h does not have order 1 since it is
non-trivial, so it must have order q.

A common way to obtain a group of prime order for cryptographic schemes is as a subgroup of a
group of integers modulo a prime. We pick a prime p having the property that q = (p−1)/2 is also
prime. It turns out that the subgroup of quadratic residues modulo p then has order q, and hence
is a group of prime order. The following proposition summarizes the facts for future reference.

Proposition 9.24 Let q ≥ 3 be a prime such that p = 2q + 1 is also prime. Then QR(Z∗

p) is a
group of prime order q. Furthermore, if g is any generator of Z∗

p, then g2 mod p is a generator of
QR(Z∗

p).

Note that the operation under which QR(Z∗

p) is a group is multiplication modulo p, the same
operation under which Z∗

p is a group.

Proof of Proposition 9.24: We know that QR(Z∗

p) is a subgroup, hence a group in its own
right. Proposition 9.17 tells us that |QR(Z∗

p)| is (p−1)/2, which equals q in this case. Now let g be
a generator of Z∗

p and let h = g2 mod p. We want to show that h is a generator of QR(Z∗

p). As per
Proposition 9.23, we need only show that h is non-trivial, meaning h #= 1. Indeed, we know that
g2 #≡ 1 (mod p), because g, being a generator, has order p and our assumptions imply p > 2.

Example 9.25 Let q = 5 and p = 2q + 1 = 11. Both p and q are primes. We know from
Example 9.16 that

QR(Z∗

11) = {1, 3, 4, 5, 9} .

This is a group of prime order 5. We know from Example 9.9 that 2 is a generator of Z∗

p.
Proposition 9.24 tells us that 4 = 22 is a generator of QR(Z∗

11). We can verify this by raising
4 to the powers i = 0, . . . , 4:

i 0 1 2 3 4

4i mod 11 1 4 5 9 3

We see that the elements of the last row are exactly those of the set QR(Z∗

11).

Let us now explain what we perceive to be the advantage conferred by working in a group of
prime order. Let G be a cyclic group, and g a generator. We know that the discrete logarithms to


