
CS 6260
Applied Cryptography
Alexandra (Sasha) Boldyreva

Block ciphers, pseudorandom
functions and permutations

Building blocks for symmetric encryption.

Examples: DES, 3DES, AES...

• A block cipher is a function family E:{0,1}k×{0,1}n→{0,1}n,
where k-key length, n-input and output lengths are the
parameters

• Notation: for every K∈{0,1}k EK(M)=E(K,M)

• For every K∈{0,1}k, EK(⋅) is a permutation (one-to-one and

onto function). For every C∈{0,1}n there is a single M∈{0,1}n
s.t. C=EK(M)

• Thus each block cipher has an inverse for every key: EK
-1(⋅)

s.t. EK(EK
-1(M))=C for all M,C∈{0,1}n

• For every K∈{0,1}k, EK(⋅),EK
-1(⋅):{0,1}n→{0,1}n

Block ciphers

M→ EK →C

DES

• Key length k=56, input and output length n=64

• 1973. NBS (National Bureau of Standards) announced a
search for a data protection algorithm to be standardized

• 1974. IBM submits a design based on “Lucifer” algorithm

• 1975. The proposed DES is published

• 1976. DES approved as a federal standard

• DES is highly efficient: ≈2.5⋅107 DES computations per
second

Security of block ciphers

• Any block cipher E is subject to exhaustive key-search:
given (M1,C1=E(K,M1),...,(Mq,Cq=E(K,Mq)) an adversary
can recover K (or another key consistent with the given
pairs) as follows:

EKSE((M1,C1),...(Mq,Cq))

 For i=1,...,2k do
if E(Ti,M1)=C1 then //Ti is i-th k-bit string//

if E(Ti,Mj)=Cj for all 2≤j≤q then return Ti EndIf
EndIf

EndFor

1

2

3

4

Security of block ciphers

• Exhaustive key search takes 2k block cipher computations in
the worst case.

• On the average:

• DES has a property that , this speeds
up exhaustive search by a factor of 2

• For DES (k=56) exhaustive search takes

255/2⋅2.5⋅107 that is about 23 years

Bellare and Rogaway 9

feed the oracle M1 and get back C1 = EK(M1). It can then decide on a value M2,
feed the oracle this, and get back C2, and so on.

Clearly a chosen-message attack gives the adversary much more power, but is
also less realistic in practice.

The most obvious attack strategy is exhaustive key search. The adversary goes
through all possible keys K ′ ∈ {0, 1}k until it finds one that explains the input-
output pairs. Here is the attack in detail, using q = 1, meaning one input-output
example. For i = 1, . . . , 2k let Ti denote the i-th k-bit string (in lexicographic order).

EKSE(M1, C1)
for i = 1, . . . , 2k do

if E(Ti, M1) = C1 then return Ti fi

This attack always returns a key consistent with the given input-output example
(M1, C1). Whether or not it is the target key depends on the block cipher, and
in particular on its key length and block length, and in some cases the probability
of this is too small. The likelihood of the attack returning the target key can be
increased by testing against more input-output examples:

EKSE((M1, C1), . . . , (Mq, Cq))
for i = 1, . . . , 2k do

if E(Ti, M1) = C1 then
if (E(Ti, M2) = C2 AND · · · AND E(Ti, Mq) = Cq) then return Ti fi

A fairly small vaue of q, say somewhat more than k/n, is enough that this attack
will usually return the target key itself. For DES, q = 2 is enough.

Thus, no block cipher is perfectly secure. It is always possible for an attacker
to recover the key. A good block cipher, however, is designed to make this task
computationally prohibitive.

How long does exhaustive key-search take? Since q is small we can neglect the
difference in running time between the two versions of the attack above, and focus
for simplicity on the first attack. In the worst case, it uses 2k computations of the
block cipher. However it could be less since one could get lucky. For example if the
target key is in the first half of the search space, only 2k−1 computations would be
used. So a better measure is how long it takes on the average. This is

2k∑
i=1

i · Pr[K = Ti] =
2k∑
i=1

i

2k
=

1
2k

·
2k∑
i=1

i =
1
2k

· 2k(2k + 1)
2

=
2k + 1

2
≈ 2k−1

computations of the block cipher. This is because the target key is chosen at random,
so with probability 1/2k equals Ti, and in that case the attack uses i E-computations
to find it.

Thus to make key-recovery by exhaustive search computationally prohibitive,
one must make the key-length k of the block cipher large enough.

Let’s look at DES. We noted above that there is VLSI chip that can compute
it at the rate of 1.6 Gbits/sec. How long would key-recovery via exhaustive search

Bellare and Rogaway 9

feed the oracle M1 and get back C1 = EK(M1). It can then decide on a value M2,
feed the oracle this, and get back C2, and so on.

Clearly a chosen-message attack gives the adversary much more power, but is
also less realistic in practice.

The most obvious attack strategy is exhaustive key search. The adversary goes
through all possible keys K ′ ∈ {0, 1}k until it finds one that explains the input-
output pairs. Here is the attack in detail, using q = 1, meaning one input-output
example. For i = 1, . . . , 2k let Ti denote the i-th k-bit string (in lexicographic order).

EKSE(M1, C1)
for i = 1, . . . , 2k do

if E(Ti, M1) = C1 then return Ti fi

This attack always returns a key consistent with the given input-output example
(M1, C1). Whether or not it is the target key depends on the block cipher, and
in particular on its key length and block length, and in some cases the probability
of this is too small. The likelihood of the attack returning the target key can be
increased by testing against more input-output examples:

EKSE((M1, C1), . . . , (Mq, Cq))
for i = 1, . . . , 2k do

if E(Ti, M1) = C1 then
if (E(Ti, M2) = C2 AND · · · AND E(Ti, Mq) = Cq) then return Ti fi

A fairly small vaue of q, say somewhat more than k/n, is enough that this attack
will usually return the target key itself. For DES, q = 2 is enough.

Thus, no block cipher is perfectly secure. It is always possible for an attacker
to recover the key. A good block cipher, however, is designed to make this task
computationally prohibitive.

How long does exhaustive key-search take? Since q is small we can neglect the
difference in running time between the two versions of the attack above, and focus
for simplicity on the first attack. In the worst case, it uses 2k computations of the
block cipher. However it could be less since one could get lucky. For example if the
target key is in the first half of the search space, only 2k−1 computations would be
used. So a better measure is how long it takes on the average. This is

2k∑
i=1

i · Pr[K = Ti] =
2k∑
i=1

i

2k
=

1
2k

·
2k∑
i=1

i =
1
2k

· 2k(2k + 1)
2

=
2k + 1

2
≈ 2k−1

computations of the block cipher. This is because the target key is chosen at random,
so with probability 1/2k equals Ti, and in that case the attack uses i E-computations
to find it.

Thus to make key-recovery by exhaustive search computationally prohibitive,
one must make the key-length k of the block cipher large enough.

Let’s look at DES. We noted above that there is VLSI chip that can compute
it at the rate of 1.6 Gbits/sec. How long would key-recovery via exhaustive search

20 BLOCK CIPHERS

by saying: “But, clearly, DES and AES are not designed like this.” True. But that
is missing the point. The point is that security against key-recovery alone does not
make a “good” block cipher.

But then what does make a good block cipher? This questions turns out to
not be so easy to answer. Certainly one can list various desirable properties. For
example, the ciphertext should not reveal half the bits of the plaintext. But that is
not enough either. As we see more usages of ciphers, we build up a longer and longer
list of security properties SP1, SP2, SP3, . . . that are necessary for the security of
some block cipher based application.

Such a long list of necessary but not sufficient properties is no way to treat
security. What we need is one single “MASTER” property of a block cipher which,
if met, guarantees security of lots of natural usages of the cipher.

Such a property is that the block cipher be a pseudorandom permutation (PRF),
a notion explored in another chapter.

2.7 Problems

Problem 2.1 Show that for all K ∈ {0, 1}56 and all x ∈ {0, 1}64

DESK(x) = DESK(x) .

This is called the key-complementation property of DES.

Problem 2.2 Explain how to use the key-complementation property of DES to
speed up exhaustive key search by about a factor of two. Explain any assumptions
that you make.

Problem 2.3 Find a key K such that DESK(·) = DES−1
K (·). Such a key is some-

times called a “weak” key.

Problem 2.4 As with AES, suppose we are working in the finite field with 28

elements, representing field points using the irreducible polynomial m(x) = x8 +
x4 + x3 + x + 1. Compute the byte that is the result of multiplying bytes:

{e1} · {05}

Problem 2.5 For AES, we have given two different descriptions of mix-cols: one
using matric multiplication (in GF(28)) and one based on multiplying by a fixed
polynomial c(x) modulo a second fixed polynomial, d(x) = x4 + 1. Show that these
two methods are equivalent.

Security of DES

• There are more sophisticated attacks known:

• differential cryptoanalysis: finds the key given about 247
chosen plaintexts and the corresponding ciphertexts

• linear cryptoanalysis: finds the key given about 242 known
plaintext and ciphertext pairs

• These attacks require too many data, hence exhaustive key
search is the best known attack. And it can be mounted in
parallel!

• A machine for DES exhaustive key search was built for
$250,000. It finds the key in about 56 hours on average.

• A new block cipher was needed....

• Triple-DES: 3DES(K1||K2,M)=DES(K2, DES-1(K1, DES(K2,M)).

• 3DES’s keys are 112-bit long. Good, but needs 3 DES
computations

Advanced Encryption Standard (AES)

• 1998. NIST announced a search for a new block cipher.

• 15 algorithms from different countries were submitted

• 2001. NIST announces the winner: an algorithm Rijndael,
designed by Joan Daemen and Vincent Rijmen from Belgium.

• AES: block length n=128, key length k is variable: 128, 192
or 256 bits.

• Exhaustive key search is believed infeasible

Limitations of key-recovery based security

• A classical approach to block cipher security: key
recovery should be infeasible.

• I.e. given (M1,E(K,M1),...,Mq,E(K,Mq)), where K is
chosen at random and M1,...Mq are chosen at random
(or by an adversary), the adversary cannot compute K
in time t with probability ε.

• Necessary, but is it sufficient?

• Consider E’(K,M1||M2)=E(K,M1)||M2 for some “good”
E. Key recovery is hard for E’ as well, but it does not
look secure.

• Q. What property of a block cipher as a building block
would ensure various security properties of different
constructions?

5

6

7

8

Intuition

• We want that (informally)

• key search is hard

• a ciphertext does not leak bits of the plaintext

• a ciphertext does not leak any function of a plaintexts

•

• there is a “master” property of a block cipher as a building
block that enables security analysis of protocols based on
block ciphers

• It is good if ciphertexts “look” random

• Pseudorandom functions (PRFs) and permutations (PRPs) are
very important tools in cryptography. Let’s start with the
notion of function families:

• A function family F is a map Keys(F)×Dom(F) → Range(F).

• For any K∈Keys(F) we define FK=F(K,M), call it an instance

of F.

• Notation f F is the shorthand for K Keys(F); f←FK

• Block cipher E is a function family with

Dom(E)=Range(E)={0,1}n and Keys(K)={0,1}k

$←

1

$←

1

• Let Func(l,L) denote the set of all functions from {0,1}l to

{0,1}L.

• It’s a function family where a key specifying an instance is a
description of this instance function.

• Q. How large is the key space?

• A.

• We will often consider the case when l=L

• Let’s try to understand how a random function (a random
instance f of Func(l,L)) behaves

2
L2

l

• g F(l,L)
• We are interested in the input-output behavior of a random

function. Let’s imagine that we have access to a subroutine
that implements such a function:

g(Xε{0,1}l)
global array T
If T[X] is not defined then

 T[X] {0,1}L EndIf
Return T[X]

Random functions

$←

1

$←

1

9

10

11

12

“Black box” access

g(⋅)
global array T
If T[X] is not defined then

 T[X] {0,1}L EnIf
Return Y=T[X]

X

Y

Note that for any Xε{0,1}l and Yε{0,1}L Pr[g(X)=Y]=2-L

$←

1

Random permutations

• Perm(l) is the set of all permutations on {0,1}l

• Q. How large is the key space?

• A.

• We are interested in a random instance π Perm(l)

π(Xε{0,1}l)
global array T, S; S←∅
If T[X] is not defined then

 T[X] {0,1}l-∅; S←S∪{T[X]} EndIf
Return T[X]

l!
$←

1

$←

1

“Black box” access

π(⋅)
global array T, S; S←∅
If T[X] is not defined then

 T[X] {0,1}l-∅; S←S∪{T[X]} EndIf
Return Y=T[X]

X

Y

For any Xε{0,1}l and Yε{0,1}l Pr[π(X)=Y]=2-l

$←

1

Random functions vs permutations

f-random function permutation

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(!,L), meaning that we have executed the operation f $← Func(!,L).

1. Fix X ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on !. Nor does it depend on the
values of X, Y .

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 #= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =
{

2−2L if X1 #= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y] =

2−L if X1 #= X2

0 if X1 = X2 and Y #= 0L

1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}!, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(!,L), meaning that we have executed the operation f $← Func(!,L).

1. Fix X ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on !. Nor does it depend on the
values of X, Y .

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 #= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =
{

2−2L if X1 #= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y] =

2−L if X1 #= X2

0 if X1 = X2 and Y #= 0L

1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}!, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(!,L), meaning that we have executed the operation f $← Func(!,L).

1. Fix X ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on !. Nor does it depend on the
values of X, Y .

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 #= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =
{

2−2L if X1 #= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y] =

2−L if X1 #= X2

0 if X1 = X2 and Y #= 0L

1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}!, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(!,L), meaning that we have executed the operation f $← Func(!,L).

1. Fix X ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on !. Nor does it depend on the
values of X, Y .

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 #= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =
{

2−2L if X1 #= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y] =

2−L if X1 #= X2

0 if X1 = X2 and Y #= 0L

1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}!, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(!,L), meaning that we have executed the operation f $← Func(!,L).

1. Fix X ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on !. Nor does it depend on the
values of X, Y .

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 #= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =
{

2−2L if X1 #= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y] =

2−L if X1 #= X2

0 if X1 = X2 and Y #= 0L

1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}!, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(!,L), meaning that we have executed the operation f $← Func(!,L).

1. Fix X ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on !. Nor does it depend on the
values of X, Y .

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 #= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =
{

2−2L if X1 #= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y] =

2−L if X1 #= X2

0 if X1 = X2 and Y #= 0L

1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}!, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(!,L), meaning that we have executed the operation f $← Func(!,L).

1. Fix X ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on !. Nor does it depend on the
values of X, Y .

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 #= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =
{

2−2L if X1 #= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y] =

2−L if X1 #= X2

0 if X1 = X2 and Y #= 0L

1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}!, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(!,L), meaning that we have executed the operation f $← Func(!,L).

1. Fix X ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on !. Nor does it depend on the
values of X, Y .

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 #= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =
{

2−2L if X1 #= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y] =

2−L if X1 #= X2

0 if X1 = X2 and Y #= 0L

1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}!, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(!,L), meaning that we have executed the operation f $← Func(!,L).

1. Fix X ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on !. Nor does it depend on the
values of X, Y .

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 #= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =
{

2−2L if X1 #= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y] =

2−L if X1 #= X2

0 if X1 = X2 and Y #= 0L

1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}!, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .

6 PSEUDORANDOM FUNCTIONS

if T [X] is not defined
then Y $← D − S ; T [X] ← Y ; S ← S ∪ {T [X]}

fi
return T [X]

The answer on any point is random, but not independent of the answers on other
points, since it is distinct from those.

Example 3.5 Random permutations are somewhat harder to work with than ran-
dom functions, due to the lack of independence between values on different points.
Let’s look at some probabilistic computations involving them. In all of the following,
the probability is taken over a random choice of π from Perm("), meaning that we
have executed the operation π $← Perm(").

1. Fix X, Y ∈ {0, 1}!. Then:

Pr [π(X) = Y] = 2−! .

This is the same as if π had been selected at random from Func(",") rather than
from Perm("). However, the similarity vanishes when more than one point is to
be considered.

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 %= X2. Then

Pr [π(X1) = Y1 | π(X2) = Y2] =

1

2! − 1
if Y1 %= Y2

0 if Y1 = Y2

The above is a conditional probability, and says that if we know the value of π
on X1, its value on a different point X2 is equally likely to be any L-bit string
other than π(X1). So there are 2! − 1 choices for π(X2), all equally likely, if
Y1 %= Y2.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [π(X1) = Y and π(X2) = Y] =
{

0 if X1 %= X2

2−! if X1 = X2

This is true because a permutation can never map distinct X1 and X2 to the
same point.

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}!. Then:

Pr [π(X1) ⊕ π(X2) = Y] =

1
2! − 1

if X1 %= X2 and Y %= 0!

0 if X1 %= X2 and Y = 0!

0 if X1 = X2 and Y %= 0!

1 if X1 = X2 and Y = 0!

In the case X1 %= X2 and Y %= 0! this is computed as follows:

Pr [π(X1) ⊕ π(X2) = Y]

6 PSEUDORANDOM FUNCTIONS

if T [X] is not defined
then Y $← D − S ; T [X] ← Y ; S ← S ∪ {T [X]}

fi
return T [X]

The answer on any point is random, but not independent of the answers on other
points, since it is distinct from those.

Example 3.5 Random permutations are somewhat harder to work with than ran-
dom functions, due to the lack of independence between values on different points.
Let’s look at some probabilistic computations involving them. In all of the following,
the probability is taken over a random choice of π from Perm("), meaning that we
have executed the operation π $← Perm(").

1. Fix X, Y ∈ {0, 1}!. Then:

Pr [π(X) = Y] = 2−! .

This is the same as if π had been selected at random from Func(",") rather than
from Perm("). However, the similarity vanishes when more than one point is to
be considered.

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 %= X2. Then

Pr [π(X1) = Y1 | π(X2) = Y2] =

1

2! − 1
if Y1 %= Y2

0 if Y1 = Y2

The above is a conditional probability, and says that if we know the value of π
on X1, its value on a different point X2 is equally likely to be any L-bit string
other than π(X1). So there are 2! − 1 choices for π(X2), all equally likely, if
Y1 %= Y2.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [π(X1) = Y and π(X2) = Y] =
{

0 if X1 %= X2

2−! if X1 = X2

This is true because a permutation can never map distinct X1 and X2 to the
same point.

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}!. Then:

Pr [π(X1) ⊕ π(X2) = Y] =

1
2! − 1

if X1 %= X2 and Y %= 0!

0 if X1 %= X2 and Y = 0!

0 if X1 = X2 and Y %= 0!

1 if X1 = X2 and Y = 0!

In the case X1 %= X2 and Y %= 0! this is computed as follows:

Pr [π(X1) ⊕ π(X2) = Y]

6 PSEUDORANDOM FUNCTIONS

if T [X] is not defined
then Y $← D − S ; T [X] ← Y ; S ← S ∪ {T [X]}

fi
return T [X]

The answer on any point is random, but not independent of the answers on other
points, since it is distinct from those.

Example 3.5 Random permutations are somewhat harder to work with than ran-
dom functions, due to the lack of independence between values on different points.
Let’s look at some probabilistic computations involving them. In all of the following,
the probability is taken over a random choice of π from Perm("), meaning that we
have executed the operation π $← Perm(").

1. Fix X, Y ∈ {0, 1}!. Then:

Pr [π(X) = Y] = 2−! .

This is the same as if π had been selected at random from Func(",") rather than
from Perm("). However, the similarity vanishes when more than one point is to
be considered.

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 %= X2. Then

Pr [π(X1) = Y1 | π(X2) = Y2] =

1

2! − 1
if Y1 %= Y2

0 if Y1 = Y2

The above is a conditional probability, and says that if we know the value of π
on X1, its value on a different point X2 is equally likely to be any L-bit string
other than π(X1). So there are 2! − 1 choices for π(X2), all equally likely, if
Y1 %= Y2.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [π(X1) = Y and π(X2) = Y] =
{

0 if X1 %= X2

2−! if X1 = X2

This is true because a permutation can never map distinct X1 and X2 to the
same point.

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}!. Then:

Pr [π(X1) ⊕ π(X2) = Y] =

1
2! − 1

if X1 %= X2 and Y %= 0!

0 if X1 %= X2 and Y = 0!

0 if X1 = X2 and Y %= 0!

1 if X1 = X2 and Y = 0!

In the case X1 %= X2 and Y %= 0! this is computed as follows:

Pr [π(X1) ⊕ π(X2) = Y]

l = L

1

6 PSEUDORANDOM FUNCTIONS

if T [X] is not defined
then Y $← D − S ; T [X] ← Y ; S ← S ∪ {T [X]}

fi
return T [X]

The answer on any point is random, but not independent of the answers on other
points, since it is distinct from those.

Example 3.5 Random permutations are somewhat harder to work with than ran-
dom functions, due to the lack of independence between values on different points.
Let’s look at some probabilistic computations involving them. In all of the following,
the probability is taken over a random choice of π from Perm("), meaning that we
have executed the operation π $← Perm(").

1. Fix X, Y ∈ {0, 1}!. Then:

Pr [π(X) = Y] = 2−! .

This is the same as if π had been selected at random from Func(",") rather than
from Perm("). However, the similarity vanishes when more than one point is to
be considered.

2. Fix X1, X2 ∈ {0, 1}! and Y1, Y2 ∈ {0, 1}L, and assume X1 %= X2. Then

Pr [π(X1) = Y1 | π(X2) = Y2] =

1

2! − 1
if Y1 %= Y2

0 if Y1 = Y2

The above is a conditional probability, and says that if we know the value of π
on X1, its value on a different point X2 is equally likely to be any L-bit string
other than π(X1). So there are 2! − 1 choices for π(X2), all equally likely, if
Y1 %= Y2.

3. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}L. Then:

Pr [π(X1) = Y and π(X2) = Y] =
{

0 if X1 %= X2

2−! if X1 = X2

This is true because a permutation can never map distinct X1 and X2 to the
same point.

4. Fix X1, X2 ∈ {0, 1}! and Y ∈ {0, 1}!. Then:

Pr [π(X1) ⊕ π(X2) = Y] =

1
2! − 1

if X1 %= X2 and Y %= 0!

0 if X1 %= X2 and Y = 0!

0 if X1 = X2 and Y %= 0!

1 if X1 = X2 and Y = 0!

In the case X1 %= X2 and Y %= 0! this is computed as follows:

Pr [π(X1) ⊕ π(X2) = Y]

13

14

15

16

Pseudorandom functions (PRFs)

• Informally, a function family F is a PRF if the input-output
behavior of its random instance is computationally
indistinguishable from that of a random function.

• Def. Fix a function family F: Keys(F) × Dom(F) → Range(F)

•

•

•

•

F is a secure PRF if for any adversary with “reasonable”
resources its prf-advantage is “small”.

PRFs

The prf-advantage of an adversary A is

Experiment Experiment

g Func(Dom(F),Range(F))

A

↔ g

→ b

Return b

K Keys(F)

↔ FK

→ b

Return b

A

Bellare and Rogaway 9

Experiment Expprf-1
F (A)

K $←K
b $← AFK

Return b

Experiment Expprf-0
F (A)

g $← Func(D,R)
b $← Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[
Expprf-1

F (A) = 1
]
− Pr

[
Expprf-0

F (A) = 1
]

.

It should be noted that the family F is public. The adversary A, and anyone else,
knows the description of the family and is capable, given values K, X, of comput-
ing F (K, X).

The worlds are captured by what we call experiments. The first experiment picks
a random instance FK of family F and then runs adversary A with oracle g = FK .
Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The experiment returns the same bit. The second
experiment picks a random function g: D → R and runs A with this as oracle, again
returning A’s guess bit. Each experiment has a certain probability of returning 1.
The probability is taken over the random choices made in the experiment. Thus,
for the first experiment, the probability is over the choice of K and any random
choices that A might make, for A is allowed to be a randomized algorithm. In the
second experiment, the probability is over the random choice of g and any random
choices that A makes. These two probabilities should be evaluated separately; the
two experiments are completely different.

To see how well A does at determining which world it is in, we look at the
difference in the probabilities that the two experiments return 1. If A is doing a
good job at telling which world it is in, it would return 1 more often in the first
experiment than in the second. So the difference is a measure of how well A is doing.
We call this measure the prf-advantage of A. Think of it as the probability that A
“breaks” the scheme F , with “break” interpreted in a specific, technical way based
on the definition.

Different adversaries will have different advantages. There are two reasons why
one adversary may achieve a greater advantage than another. One is that it is more
“clever” in the questions it asks and the way it processes the replies to determine
its output. The other is simply that it asks more questions, or spends more time
processing the replies. Indeed, we expect that as an adversary sees more and more
input-output examples of g, or spends more computing time, its ability to tell which
world it is in should go up.

The “security” of family F as a pseudorandom function must thus be thought
of as depending on the resources allowed to the attacker. We may want to want to
know, for any given resource limitations, what is the prf-advantage achieved by the
most “clever” adversary amongst all those who are restricted to the given resource
limits.

The choice of resources to consider can vary. One resource of interest is the
time-complexity t of A. Another resource of interest is the number of queries q

Bellare and Rogaway 9

Experiment Expprf-1
F (A)

K $←K
b $← AFK

Return b

Experiment Expprf-0
F (A)

g $← Func(D,R)
b $← Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[
Expprf-1

F (A) = 1
]
− Pr

[
Expprf-0

F (A) = 1
]

.

It should be noted that the family F is public. The adversary A, and anyone else,
knows the description of the family and is capable, given values K, X, of comput-
ing F (K, X).

The worlds are captured by what we call experiments. The first experiment picks
a random instance FK of family F and then runs adversary A with oracle g = FK .
Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The experiment returns the same bit. The second
experiment picks a random function g: D → R and runs A with this as oracle, again
returning A’s guess bit. Each experiment has a certain probability of returning 1.
The probability is taken over the random choices made in the experiment. Thus,
for the first experiment, the probability is over the choice of K and any random
choices that A might make, for A is allowed to be a randomized algorithm. In the
second experiment, the probability is over the random choice of g and any random
choices that A makes. These two probabilities should be evaluated separately; the
two experiments are completely different.

To see how well A does at determining which world it is in, we look at the
difference in the probabilities that the two experiments return 1. If A is doing a
good job at telling which world it is in, it would return 1 more often in the first
experiment than in the second. So the difference is a measure of how well A is doing.
We call this measure the prf-advantage of A. Think of it as the probability that A
“breaks” the scheme F , with “break” interpreted in a specific, technical way based
on the definition.

Different adversaries will have different advantages. There are two reasons why
one adversary may achieve a greater advantage than another. One is that it is more
“clever” in the questions it asks and the way it processes the replies to determine
its output. The other is simply that it asks more questions, or spends more time
processing the replies. Indeed, we expect that as an adversary sees more and more
input-output examples of g, or spends more computing time, its ability to tell which
world it is in should go up.

The “security” of family F as a pseudorandom function must thus be thought
of as depending on the resources allowed to the attacker. We may want to want to
know, for any given resource limitations, what is the prf-advantage achieved by the
most “clever” adversary amongst all those who are restricted to the given resource
limits.

The choice of resources to consider can vary. One resource of interest is the
time-complexity t of A. Another resource of interest is the number of queries q

Bellare and Rogaway 9

Experiment Expprf-1
F (A)

K $←K
b $← AFK

Return b

Experiment Expprf-0
F (A)

g $← Func(D,R)
b $← Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[
Expprf-1

F (A) = 1
]
− Pr

[
Expprf-0

F (A) = 1
]

.

It should be noted that the family F is public. The adversary A, and anyone else,
knows the description of the family and is capable, given values K, X, of comput-
ing F (K, X).

The worlds are captured by what we call experiments. The first experiment picks
a random instance FK of family F and then runs adversary A with oracle g = FK .
Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The experiment returns the same bit. The second
experiment picks a random function g: D → R and runs A with this as oracle, again
returning A’s guess bit. Each experiment has a certain probability of returning 1.
The probability is taken over the random choices made in the experiment. Thus,
for the first experiment, the probability is over the choice of K and any random
choices that A might make, for A is allowed to be a randomized algorithm. In the
second experiment, the probability is over the random choice of g and any random
choices that A makes. These two probabilities should be evaluated separately; the
two experiments are completely different.

To see how well A does at determining which world it is in, we look at the
difference in the probabilities that the two experiments return 1. If A is doing a
good job at telling which world it is in, it would return 1 more often in the first
experiment than in the second. So the difference is a measure of how well A is doing.
We call this measure the prf-advantage of A. Think of it as the probability that A
“breaks” the scheme F , with “break” interpreted in a specific, technical way based
on the definition.

Different adversaries will have different advantages. There are two reasons why
one adversary may achieve a greater advantage than another. One is that it is more
“clever” in the questions it asks and the way it processes the replies to determine
its output. The other is simply that it asks more questions, or spends more time
processing the replies. Indeed, we expect that as an adversary sees more and more
input-output examples of g, or spends more computing time, its ability to tell which
world it is in should go up.

The “security” of family F as a pseudorandom function must thus be thought
of as depending on the resources allowed to the attacker. We may want to want to
know, for any given resource limitations, what is the prf-advantage achieved by the
most “clever” adversary amongst all those who are restricted to the given resource
limits.

The choice of resources to consider can vary. One resource of interest is the
time-complexity t of A. Another resource of interest is the number of queries q

Bellare and Rogaway 9

Experiment Expprf-1
F (A)

K $←K
b $← AFK

Return b

Experiment Expprf-0
F (A)

g $← Func(D,R)
b $← Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[
Expprf-1

F (A) = 1
]
− Pr

[
Expprf-0

F (A) = 1
]

.

It should be noted that the family F is public. The adversary A, and anyone else,
knows the description of the family and is capable, given values K, X, of comput-
ing F (K, X).

The worlds are captured by what we call experiments. The first experiment picks
a random instance FK of family F and then runs adversary A with oracle g = FK .
Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The experiment returns the same bit. The second
experiment picks a random function g: D → R and runs A with this as oracle, again
returning A’s guess bit. Each experiment has a certain probability of returning 1.
The probability is taken over the random choices made in the experiment. Thus,
for the first experiment, the probability is over the choice of K and any random
choices that A might make, for A is allowed to be a randomized algorithm. In the
second experiment, the probability is over the random choice of g and any random
choices that A makes. These two probabilities should be evaluated separately; the
two experiments are completely different.

To see how well A does at determining which world it is in, we look at the
difference in the probabilities that the two experiments return 1. If A is doing a
good job at telling which world it is in, it would return 1 more often in the first
experiment than in the second. So the difference is a measure of how well A is doing.
We call this measure the prf-advantage of A. Think of it as the probability that A
“breaks” the scheme F , with “break” interpreted in a specific, technical way based
on the definition.

Different adversaries will have different advantages. There are two reasons why
one adversary may achieve a greater advantage than another. One is that it is more
“clever” in the questions it asks and the way it processes the replies to determine
its output. The other is simply that it asks more questions, or spends more time
processing the replies. Indeed, we expect that as an adversary sees more and more
input-output examples of g, or spends more computing time, its ability to tell which
world it is in should go up.

The “security” of family F as a pseudorandom function must thus be thought
of as depending on the resources allowed to the attacker. We may want to want to
know, for any given resource limitations, what is the prf-advantage achieved by the
most “clever” adversary amongst all those who are restricted to the given resource
limits.

The choice of resources to consider can vary. One resource of interest is the
time-complexity t of A. Another resource of interest is the number of queries q

Bellare and Rogaway 9

Experiment Expprf-1
F (A)

K $←K
b $← AFK

Return b

Experiment Expprf-0
F (A)

g $← Func(D,R)
b $← Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[
Expprf-1

F (A) = 1
]
− Pr

[
Expprf-0

F (A) = 1
]

.

It should be noted that the family F is public. The adversary A, and anyone else,
knows the description of the family and is capable, given values K, X, of comput-
ing F (K, X).

The worlds are captured by what we call experiments. The first experiment picks
a random instance FK of family F and then runs adversary A with oracle g = FK .
Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The experiment returns the same bit. The second
experiment picks a random function g: D → R and runs A with this as oracle, again
returning A’s guess bit. Each experiment has a certain probability of returning 1.
The probability is taken over the random choices made in the experiment. Thus,
for the first experiment, the probability is over the choice of K and any random
choices that A might make, for A is allowed to be a randomized algorithm. In the
second experiment, the probability is over the random choice of g and any random
choices that A makes. These two probabilities should be evaluated separately; the
two experiments are completely different.

To see how well A does at determining which world it is in, we look at the
difference in the probabilities that the two experiments return 1. If A is doing a
good job at telling which world it is in, it would return 1 more often in the first
experiment than in the second. So the difference is a measure of how well A is doing.
We call this measure the prf-advantage of A. Think of it as the probability that A
“breaks” the scheme F , with “break” interpreted in a specific, technical way based
on the definition.

Different adversaries will have different advantages. There are two reasons why
one adversary may achieve a greater advantage than another. One is that it is more
“clever” in the questions it asks and the way it processes the replies to determine
its output. The other is simply that it asks more questions, or spends more time
processing the replies. Indeed, we expect that as an adversary sees more and more
input-output examples of g, or spends more computing time, its ability to tell which
world it is in should go up.

The “security” of family F as a pseudorandom function must thus be thought
of as depending on the resources allowed to the attacker. We may want to want to
know, for any given resource limitations, what is the prf-advantage achieved by the
most “clever” adversary amongst all those who are restricted to the given resource
limits.

The choice of resources to consider can vary. One resource of interest is the
time-complexity t of A. Another resource of interest is the number of queries q

• Def. Fix a function family F: Keys(F) × Dom(F) → Range(F)

•

•

•

•

F is a secure PRF if for any adversary with “reasonable”
resources its prf-advantage is “small”.

PRFs

The prf-advantage of an adversary A is

Bellare and Rogaway 9

Experiment Expprf-1
F (A)

K $←K
b $← AFK

Return b

Experiment Expprf-0
F (A)

g $← Func(D,R)
b $← Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[
Expprf-1

F (A) = 1
]
− Pr

[
Expprf-0

F (A) = 1
]

.

It should be noted that the family F is public. The adversary A, and anyone else,
knows the description of the family and is capable, given values K, X, of comput-
ing F (K, X).

The worlds are captured by what we call experiments. The first experiment picks
a random instance FK of family F and then runs adversary A with oracle g = FK .
Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The experiment returns the same bit. The second
experiment picks a random function g: D → R and runs A with this as oracle, again
returning A’s guess bit. Each experiment has a certain probability of returning 1.
The probability is taken over the random choices made in the experiment. Thus,
for the first experiment, the probability is over the choice of K and any random
choices that A might make, for A is allowed to be a randomized algorithm. In the
second experiment, the probability is over the random choice of g and any random
choices that A makes. These two probabilities should be evaluated separately; the
two experiments are completely different.

To see how well A does at determining which world it is in, we look at the
difference in the probabilities that the two experiments return 1. If A is doing a
good job at telling which world it is in, it would return 1 more often in the first
experiment than in the second. So the difference is a measure of how well A is doing.
We call this measure the prf-advantage of A. Think of it as the probability that A
“breaks” the scheme F , with “break” interpreted in a specific, technical way based
on the definition.

Different adversaries will have different advantages. There are two reasons why
one adversary may achieve a greater advantage than another. One is that it is more
“clever” in the questions it asks and the way it processes the replies to determine
its output. The other is simply that it asks more questions, or spends more time
processing the replies. Indeed, we expect that as an adversary sees more and more
input-output examples of g, or spends more computing time, its ability to tell which
world it is in should go up.

The “security” of family F as a pseudorandom function must thus be thought
of as depending on the resources allowed to the attacker. We may want to want to
know, for any given resource limitations, what is the prf-advantage achieved by the
most “clever” adversary amongst all those who are restricted to the given resource
limits.

The choice of resources to consider can vary. One resource of interest is the
time-complexity t of A. Another resource of interest is the number of queries q

Bellare and Rogaway 9

Experiment Expprf-1
F (A)

K $←K
b $← AFK

Return b

Experiment Expprf-0
F (A)

g $← Func(D,R)
b $← Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[
Expprf-1

F (A) = 1
]
− Pr

[
Expprf-0

F (A) = 1
]

.

It should be noted that the family F is public. The adversary A, and anyone else,
knows the description of the family and is capable, given values K, X, of comput-
ing F (K, X).

The worlds are captured by what we call experiments. The first experiment picks
a random instance FK of family F and then runs adversary A with oracle g = FK .
Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The experiment returns the same bit. The second
experiment picks a random function g: D → R and runs A with this as oracle, again
returning A’s guess bit. Each experiment has a certain probability of returning 1.
The probability is taken over the random choices made in the experiment. Thus,
for the first experiment, the probability is over the choice of K and any random
choices that A might make, for A is allowed to be a randomized algorithm. In the
second experiment, the probability is over the random choice of g and any random
choices that A makes. These two probabilities should be evaluated separately; the
two experiments are completely different.

To see how well A does at determining which world it is in, we look at the
difference in the probabilities that the two experiments return 1. If A is doing a
good job at telling which world it is in, it would return 1 more often in the first
experiment than in the second. So the difference is a measure of how well A is doing.
We call this measure the prf-advantage of A. Think of it as the probability that A
“breaks” the scheme F , with “break” interpreted in a specific, technical way based
on the definition.

Different adversaries will have different advantages. There are two reasons why
one adversary may achieve a greater advantage than another. One is that it is more
“clever” in the questions it asks and the way it processes the replies to determine
its output. The other is simply that it asks more questions, or spends more time
processing the replies. Indeed, we expect that as an adversary sees more and more
input-output examples of g, or spends more computing time, its ability to tell which
world it is in should go up.

The “security” of family F as a pseudorandom function must thus be thought
of as depending on the resources allowed to the attacker. We may want to want to
know, for any given resource limitations, what is the prf-advantage achieved by the
most “clever” adversary amongst all those who are restricted to the given resource
limits.

The choice of resources to consider can vary. One resource of interest is the
time-complexity t of A. Another resource of interest is the number of queries q

Resources of an adversary

• Time-complexity is measured in some fixed RAM model of
computation and includes the maximum of the running-times
of A in the experiments, plus the size of the code for A.

• The number of queries A makes.

• The total length of all queries.

17

18

19

20

Pseudorandom permutations (PRPs)

• Informally, a function family F is a PRF if the input-output
behavior of its random instance is computationally
indistinguishable from that of a random permutation.

PRPs under chosen-plaintext attacks (CPA)
• Def. Fix a function family F: Keys(F) × Dom(F) → Dom(F)

F is a secure PRP under CPA if for any adversary with
“reasonable” resources its prf-cpa-advantage is “small”.

The prp-cpa-advantage of an adversary A is

Bellare and Rogaway 11

3.4 Pseudorandom permutations

A family of functions F : K× D → D is a pseudorandom permutation if the input-
output behavior of a random instance of the family is “computationally indistin-
guishable” from that of a random permutation on D.

In this setting, there are two kinds of attacks that one can consider. One, as
before, is that the adversary gets an oracle for the function g being tested. How-
ever when F is a family of permutations, one can also consider the case where the
adversary gets, in addition, an oracle for g−1. We consider these settings in turn.
The first is the setting of chosen-plaintext attacks while the second is the setting of
chosen-ciphertext attacks.

3.4.1 PRP under CPA

We fix a family of functions F : K × D → D. (You may want to think K = {0, 1}k

and D = {0, 1}!, since this is the most common case. We do not mandate that F be
a family of permutations although again this is the most common case.) As before,
we consider an adversary A that is placed in a room where it has oracle access to a
function g chosen in one of two ways.

World 0: The function g is drawn at random from Perm(D), namely, we choose g

according to g $← Perm(D).

World 1: The function g is drawn at random from F , namely g $← F . (Recall this
means that a key is chosen via K $←K and then g is set to FK .)

Notice that World 1 is the same in the PRF setting, but World 0 has changed. As
before the task facing the adversary A is to determine in which world it was placed
based on the input-output behavior of g.

Definition 3.7 Let F : K × D → D be a family of functions, and let A be an
algorithm that takes an oracle for a function g: D → D, and returns a bit. We
consider two experiments:

Experiment Expprp-cpa-1
F (A)

K $←K
b $← AFK

Return b

Experiment Expprp-cpa-0
F (A)

g $← Perm(D)
b $← Ag

Return b

The prp-cpa-advantage of A is defined as

Advprp-cpa
F (A) = Pr

[
Expprp-cpa-1

F (A) = 1
]
− Pr

[
Expprp-cpa-0

F (A) = 1
]

.

The intuition is similar to that for Definition 3.6. The difference is that here the
“ideal” object that F is being compared with is no longer the family of random
functions, but rather the family of random permutations.

Bellare and Rogaway 11

3.4 Pseudorandom permutations

A family of functions F : K× D → D is a pseudorandom permutation if the input-
output behavior of a random instance of the family is “computationally indistin-
guishable” from that of a random permutation on D.

In this setting, there are two kinds of attacks that one can consider. One, as
before, is that the adversary gets an oracle for the function g being tested. How-
ever when F is a family of permutations, one can also consider the case where the
adversary gets, in addition, an oracle for g−1. We consider these settings in turn.
The first is the setting of chosen-plaintext attacks while the second is the setting of
chosen-ciphertext attacks.

3.4.1 PRP under CPA

We fix a family of functions F : K × D → D. (You may want to think K = {0, 1}k

and D = {0, 1}!, since this is the most common case. We do not mandate that F be
a family of permutations although again this is the most common case.) As before,
we consider an adversary A that is placed in a room where it has oracle access to a
function g chosen in one of two ways.

World 0: The function g is drawn at random from Perm(D), namely, we choose g

according to g $← Perm(D).

World 1: The function g is drawn at random from F , namely g $← F . (Recall this
means that a key is chosen via K $←K and then g is set to FK .)

Notice that World 1 is the same in the PRF setting, but World 0 has changed. As
before the task facing the adversary A is to determine in which world it was placed
based on the input-output behavior of g.

Definition 3.7 Let F : K × D → D be a family of functions, and let A be an
algorithm that takes an oracle for a function g: D → D, and returns a bit. We
consider two experiments:

Experiment Expprp-cpa-1
F (A)

K $←K
b $← AFK

Return b

Experiment Expprp-cpa-0
F (A)

g $← Perm(D)
b $← Ag

Return b

The prp-cpa-advantage of A is defined as

Advprp-cpa
F (A) = Pr

[
Expprp-cpa-1

F (A) = 1
]
− Pr

[
Expprp-cpa-0

F (A) = 1
]

.

The intuition is similar to that for Definition 3.6. The difference is that here the
“ideal” object that F is being compared with is no longer the family of random
functions, but rather the family of random permutations.

• Since an inverse function is defined for each instance, we can
also consider the case when an adversary gets, in addition, an

oracle for g-1

• Def. Fix a permutation family F: Keys(F) × Dom(F) →Dom(F)

• F is a secure PRP under CCA if for any adversary with
“reasonable” resources its prf-cca-advantage is “small”.

PRPs under chosen-ciphertext attacks (CCA)

The prp-cca-advantage of an adversary A is

12 PSEUDORANDOM FUNCTIONS

Experiment Expprp-cpa-1
F (A) is actually identical to Expprf-1

F (A). The probabil-
ity is over the random choice of key K and also over the coin tosses of A if the latter
happens to be randomized. The experiment returns the same bit that A returns. In
Experiment Expprp-cpa-0

F (A), a permutation g: D → D is chosen at random, and
the result bit of A’s computation with oracle g is returned. The probability is over
the choice of g and the coins of A if any. As before, the measure of how well A did
at telling the two worlds apart, which we call the prp-cpa-advantage of A, is the
difference between the probabilities that the experiments return 1.

Conventions regarding resource measures also remain the same as before. Infor-
mally, a family F is a secure PRP under CPA if Advprp-cpa

F (A) is “small” for all
adversaries using a “practical” amount of resources.

3.4.2 PRP under CCA

We fix a family of permutations F : K×D → D. (You may want to think K = {0, 1}k

and D = {0, 1}!, since this is the most common case. This time, we do mandate
that F be a family of permutations.) As before, we consider an adversary A that
is placed in a room, but now it has oracle access to two functions, g and its inverse
g−1. The manner in which g is chosen is the same as in the CPA case, and once g
is chosen, g−1 is automatically defined, so we do not have to say how it is chosen.

World 0: The function g is drawn at random from Perm(D), namely via g $← Perm(D).
(So g is just a random permutation on D.)

World 1: The function g is drawn at random from F , namely g $← F .

In World 1 we let g−1 = F−1
K be the inverse of the chosen instance, while in World 0

it is the inverse of the chosen random permutation. As before the task facing the
adversary A is to determine in which world it was placed based on the input-output
behavior of its oracles.

Definition 3.8 Let F : K × D → D be a family of permutations, and let A be an
algorithm that takes an oracle for a function g: D → D, and also an oracle for the
function g−1: D → D, and returns a bit. We consider two experiments:

Experiment Expprp-cca-1
F (A)

K $←K
b $← AFK ,F−1

K

Return b

Experiment Expprp-cca-0
F (A)

g $← Perm(D)
b $← Ag,g−1

Return b

The prp-cca-advantage of A is defined as

Advprp-cca
F (A) = Pr

[
Expprp-cca-1

F (A) = 1
]
− Pr

[
Expprp-cca-0

F (A) = 1
]

.

The intuition is similar to that for Definition 3.6. The difference is that here the
adversary has more power: not only can it query g, but it can directly query g−1.

12 PSEUDORANDOM FUNCTIONS

Experiment Expprp-cpa-1
F (A) is actually identical to Expprf-1

F (A). The probabil-
ity is over the random choice of key K and also over the coin tosses of A if the latter
happens to be randomized. The experiment returns the same bit that A returns. In
Experiment Expprp-cpa-0

F (A), a permutation g: D → D is chosen at random, and
the result bit of A’s computation with oracle g is returned. The probability is over
the choice of g and the coins of A if any. As before, the measure of how well A did
at telling the two worlds apart, which we call the prp-cpa-advantage of A, is the
difference between the probabilities that the experiments return 1.

Conventions regarding resource measures also remain the same as before. Infor-
mally, a family F is a secure PRP under CPA if Advprp-cpa

F (A) is “small” for all
adversaries using a “practical” amount of resources.

3.4.2 PRP under CCA

We fix a family of permutations F : K×D → D. (You may want to think K = {0, 1}k

and D = {0, 1}!, since this is the most common case. This time, we do mandate
that F be a family of permutations.) As before, we consider an adversary A that
is placed in a room, but now it has oracle access to two functions, g and its inverse
g−1. The manner in which g is chosen is the same as in the CPA case, and once g
is chosen, g−1 is automatically defined, so we do not have to say how it is chosen.

World 0: The function g is drawn at random from Perm(D), namely via g $← Perm(D).
(So g is just a random permutation on D.)

World 1: The function g is drawn at random from F , namely g $← F .

In World 1 we let g−1 = F−1
K be the inverse of the chosen instance, while in World 0

it is the inverse of the chosen random permutation. As before the task facing the
adversary A is to determine in which world it was placed based on the input-output
behavior of its oracles.

Definition 3.8 Let F : K × D → D be a family of permutations, and let A be an
algorithm that takes an oracle for a function g: D → D, and also an oracle for the
function g−1: D → D, and returns a bit. We consider two experiments:

Experiment Expprp-cca-1
F (A)

K $←K
b $← AFK ,F−1

K

Return b

Experiment Expprp-cca-0
F (A)

g $← Perm(D)
b $← Ag,g−1

Return b

The prp-cca-advantage of A is defined as

Advprp-cca
F (A) = Pr

[
Expprp-cca-1

F (A) = 1
]
− Pr

[
Expprp-cca-0

F (A) = 1
]

.

The intuition is similar to that for Definition 3.6. The difference is that here the
adversary has more power: not only can it query g, but it can directly query g−1.

PRP-CCA ⇒ PRP-CPA

• Theorem. Let F:Keys×D→D be a permutation family. Then
for any adversary A that runs in time t and makes q chosen-
plaintext queries these totalling μ bits there exists an
adversary B that also runs in time t and makes q chosen-
plaintext queries these totalling μ bits and no chosen-
ciphertext queries such that

Bellare and Rogaway 13

Conventions regarding resource measures also remain the same as before. However,
we will be interested in some additional resource parameters. Specifically, since there
are now two oracles, we can count separately the number of queries, and total length
of these queries, for each. As usual, informally, a family F is a secure PRP under
CCA if Advprp-cca

F (A) is “small” for all adversaries using a “practical” amount of
resources.

3.4.3 Relations between the notions

If an adversary does not query g−1 the oracle might as well not be there, and
the adversary is effectively mounting a chosen-plaintext attack. Thus we have the
following:

Proposition 3.9 [PRP-CCA implies PRP-CPA] Let F : K × D → D be a
family of permutations and let A be a (PRP-CPA attacking) adversary. Suppose
that A runs in time t, asks q queries, and these queries total µ bits. Then there exists
a (PRP-CCA attacking) adversary B that runs in time t, asks q chosen-plaintext
queries, these queries totaling µ bits, and asks no chosen-ciphertext queries, where

Advprp-cca
F (B) ≥ Advprp-cpa

F (A) .

Though the technical result is easy, it is worth stepping back to explain its inter-
pretation. The theorem says that if you have an adversary A that breaks F in the
PRP-CPA sense, then you have some other adversary B breaks F in the PRP-CCA
sense. Furthermore, the adversary B will be just as efficient as the adversary A was.
As a consequence, if you think there is no reasonable adversary B that breaks F
in the PRP-CCA sense, then you have no choice but to believe that there is no
reasonable adversary A that breaks F in the PRP-CPA sense. The inexistence of a
reasonable adversary B that breaks F in the PRP-CCA sense means that F is PRP-
CCA secure, while the inexistence of a reasonable adversary A that breaks F in the
PRP-CPA sense means that F is PRP-CPA secure. So PRP-CCA security implies
PRP-CPA security, and a statement like the proposition above is how, precisely, one
makes such a statement.

3.5 Modeling block ciphers

One of the primary motivations for the notions of pseudorandom functions (PRFs)
and pseudorandom permutations (PRPs) is to model block ciphers and thereby
enable the security analysis of protocols that use block ciphers.

As discussed in Section ??, classically the security of DES or other block ciphers
has been looked at only with regard to key recovery. That is, analysis of a block
cipher F has focused on the following question: Given some number of input-output
examples

(X1, FK(X1)), . . . , (Xq, FK(Xq))

21

22

23

24

• Want a “master” property that a block cipher be PRP-CPA or
PRP-CCA secure.

• Conjectures:

• DES and AES are PRP-CCA (thus also PRP-CPA) secure.

• For any B running time t and making q queries

Modeling block ciphers

14 PSEUDORANDOM FUNCTIONS

where K is a random, unknown key, how hard is it to find K? The block cipher is
taken as “secure” if the resources required to recover the key are prohibitive. Yet, as
we saw, even a cursory glance at common block cipher usages shows that hardness
of key recovery is not sufficient for security. We had discussed wanting a master
security property of block ciphers under which natural usages of block ciphers could
be proven secure. We suggest that this master property is that the block cipher be
a secure PRP, under either CPA or CCA.

We cannot prove that specific block ciphers have this property. The best we
can do is assume they do, and then go on to use them. For quantitative security
assessments, we would make specific conjectures about the advantage functions of
various block ciphers. For example we might conjecture something like:

Advprp-cpa
DES (At,q) ≤ c1 · t/TDES

255
+ c2 · q

240

for any adversary At,q that runs in time at most t and asks at most q 64-bit oracle
queries. Here TDES is the time to do one DES computation on our fixed RAM model
of computation, and c1, c2 are some constants depending only on this model. In other
words, we are conjecturing that the best attacks are either exhaustive key search
or linear cryptanalysis. We might be bolder with regard to AES and conjecture
something like

Advprp-cpa
AES (Bt,q) ≤ c1 · t/TAES

2128
+ c2 · q

2128
.

for any adversary Bt,q that runs in time at most t and asks at most q 128-bit oracle
queries. We could also make similar conjectures regarding the strength of block
ciphers as PRPs under CCA rather than CPA.

More interesting is Advprf
DES(t, q). Here we cannot do better than assume that

Advprf
DES(At,q) ≤ c1 · t/TDES

255
+

q2

264

Advprf
AES(Bt,q) ≤ c1 · t/TAES

2128
+

q2

2128
.

for any adversaries At,q, Bt,q running in time at most t and making at most q oracle
queries. This is due to the birthday attack discussed later. The second term in
each formula arises simply because the object under consideration is a family of
permutations.

We stress that these are all conjectures. There could exist highly effective attacks
that break DES or AES as a PRF without recovering the key. So far, we do not
know of any such attacks, but the amount of cryptanalytic effort that has focused
on this goal is small. Certainly, to assume that a block cipher is a PRF is a much
stronger assumption than that it is secure against key recovery. Nonetheless, the
motivation and arguments we have outlined in favor of the PRF assumption stay,
and our view is that if a block cipher is broken as a PRF then it should be considered
insecure, and a replacement should be sought.

14 PSEUDORANDOM FUNCTIONS

where K is a random, unknown key, how hard is it to find K? The block cipher is
taken as “secure” if the resources required to recover the key are prohibitive. Yet, as
we saw, even a cursory glance at common block cipher usages shows that hardness
of key recovery is not sufficient for security. We had discussed wanting a master
security property of block ciphers under which natural usages of block ciphers could
be proven secure. We suggest that this master property is that the block cipher be
a secure PRP, under either CPA or CCA.

We cannot prove that specific block ciphers have this property. The best we
can do is assume they do, and then go on to use them. For quantitative security
assessments, we would make specific conjectures about the advantage functions of
various block ciphers. For example we might conjecture something like:

Advprp-cpa
DES (At,q) ≤ c1 · t/TDES

255
+ c2 · q

240

for any adversary At,q that runs in time at most t and asks at most q 64-bit oracle
queries. Here TDES is the time to do one DES computation on our fixed RAM model
of computation, and c1, c2 are some constants depending only on this model. In other
words, we are conjecturing that the best attacks are either exhaustive key search
or linear cryptanalysis. We might be bolder with regard to AES and conjecture
something like

Advprp-cpa
AES (Bt,q) ≤ c1 · t/TAES

2128
+ c2 · q

2128
.

for any adversary Bt,q that runs in time at most t and asks at most q 128-bit oracle
queries. We could also make similar conjectures regarding the strength of block
ciphers as PRPs under CCA rather than CPA.

More interesting is Advprf
DES(t, q). Here we cannot do better than assume that

Advprf
DES(At,q) ≤ c1 · t/TDES

255
+

q2

264

Advprf
AES(Bt,q) ≤ c1 · t/TAES

2128
+

q2

2128
.

for any adversaries At,q, Bt,q running in time at most t and making at most q oracle
queries. This is due to the birthday attack discussed later. The second term in
each formula arises simply because the object under consideration is a family of
permutations.

We stress that these are all conjectures. There could exist highly effective attacks
that break DES or AES as a PRF without recovering the key. So far, we do not
know of any such attacks, but the amount of cryptanalytic effort that has focused
on this goal is small. Certainly, to assume that a block cipher is a PRF is a much
stronger assumption than that it is secure against key recovery. Nonetheless, the
motivation and arguments we have outlined in favor of the PRF assumption stay,
and our view is that if a block cipher is broken as a PRF then it should be considered
insecure, and a replacement should be sought.

The “birthday” attack

• Theorem. For any block cipher E with domain and range

{0,1}l and any A that makes q queries s.t.

• Lemma. If we throw (at random) q balls into N≥q bins and
if then the probability of a collision

Bellare and Rogaway 23

the birthday paradox. If you are not familiar with this, you may want to look at
Appendix ??, and then come back to the following.

This tells us that an instance of a block cipher can be distinguished from a
random function based on seeing a number of input-output examples which is ap-
proximately 2!/2. This has important consequences for the security of block cipher
based protocols.

Proposition 3.16 Let E: {0, 1}k × {0, 1}! → {0, 1}! be a family of permutations.
Suppose q satisfies 2 ≤ q ≤ 2(!+1)/2. Then there is an adversary A, making q oracle
queries and having running time about that to do q computations of E, such that

Advprf
E (A) ≥ 0.3 · q(q − 1)

2!
. (3.5)

Proof of Proposition 3.16: Adversary A is given an oracle g: {0, 1}! → {0, 1}!

and works like this:

Adversary Ag

for i = 1, . . . , q do
Let xi be the i-th l-bit string in lexicographic order
yi ← g(xi)

if y1, . . . , yq are all distinct then return 1, else return 0

Let us now justify Equation (3.5). Letting N = 2l, we claim that

Pr
[
Expprf-1

E (A) = 1
]

= 1 (3.6)

Pr
[
Expprf-0

E (A) = 1
]

= 1 − C(N, q) . (3.7)

Here C(N, q), as defined in Appendix ??, is the probability that some bin gets two
or more balls in the experiment of randomly throwing q balls into N bins. We will
justify these claims shortly, but first let us use them to conclude. Subtracting, we
get

Advprf
E (A) = Pr

[
Expprf-1

E (A) = 1
]
− Pr

[
Expprf-0

E (A) = 1
]

= 1 − [1 − C(N, q)]

= C(N, q)

≥ 0.3 · q(q − 1)
2l

.

The last line is by Proposition ??. It remains to justify Equations (3.6) and (3.7).

Equation (3.6) is clear because in World 1, g = EK for some key K, and since E is a
family of permutations, g is a permutation, and thus y1, . . . , yq are all distinct. Now,

Bellare and Rogaway 23

the birthday paradox. If you are not familiar with this, you may want to look at
Appendix ??, and then come back to the following.

This tells us that an instance of a block cipher can be distinguished from a
random function based on seeing a number of input-output examples which is ap-
proximately 2!/2. This has important consequences for the security of block cipher
based protocols.

Proposition 3.16 Let E: {0, 1}k × {0, 1}! → {0, 1}! be a family of permutations.
Suppose q satisfies 2 ≤ q ≤ 2(!+1)/2. Then there is an adversary A, making q oracle
queries and having running time about that to do q computations of E, such that

Advprf
E (A) ≥ 0.3 · q(q − 1)

2!
. (3.5)

Proof of Proposition 3.16: Adversary A is given an oracle g: {0, 1}! → {0, 1}!

and works like this:

Adversary Ag

for i = 1, . . . , q do
Let xi be the i-th l-bit string in lexicographic order
yi ← g(xi)

if y1, . . . , yq are all distinct then return 1, else return 0

Let us now justify Equation (3.5). Letting N = 2l, we claim that

Pr
[
Expprf-1

E (A) = 1
]

= 1 (3.6)

Pr
[
Expprf-0

E (A) = 1
]

= 1 − C(N, q) . (3.7)

Here C(N, q), as defined in Appendix ??, is the probability that some bin gets two
or more balls in the experiment of randomly throwing q balls into N bins. We will
justify these claims shortly, but first let us use them to conclude. Subtracting, we
get

Advprf
E (A) = Pr

[
Expprf-1

E (A) = 1
]
− Pr

[
Expprf-0

E (A) = 1
]

= 1 − [1 − C(N, q)]

= C(N, q)

≥ 0.3 · q(q − 1)
2l

.

The last line is by Proposition ??. It remains to justify Equations (3.6) and (3.7).

Equation (3.6) is clear because in World 1, g = EK for some key K, and since E is a
family of permutations, g is a permutation, and thus y1, . . . , yq are all distinct. Now,

Appendix A

The Birthday Problem

The setting is that we have q balls. View them as numbered, 1, . . . , q. We also have
N bins, where N ≥ q. We throw the balls at random into the bins, one by one,
beginning with ball 1. At random means that each ball is equally likely to land in
any of the N bins, and the probabilities for all the balls are independent. A collision
is said to occur if some bin ends up containing at least two balls. We are interested
in C(N, q), the probability of a collision.

The birthday paradox is the case where N = 365. We are asking what is the
chance that, in a group of q people, there are two people with the same birthday,
assuming birthdays are randomly and independently distributed over the days of
the year. It turns out that when q hits

√
365 the chance of a birthday collision is

already quite high, around 1/2.
This fact can seem surprising when first heard. The reason it is true is that the

collision probability C(N, q) grows roughly proportional to q2/N . This is the fact to
remember. The following gives a more exact rendering, providing both upper and
lower bounds on this probability.

Theorem A.1 [Birthday bound] Let C(N, q) denote the probability of at least
one collision when we throw q ≥ 1 balls at random into N ≥ q buckets. Then

C(N, q) ≤ q(q − 1)
2N

and

C(N, q) ≥ 1 − e−q(q−1)/2N .

Also if 1 ≤ q ≤ √
2N then

C(N, q) ≥ 0.3 · q(q − 1)
N

.

1

Appendix A

The Birthday Problem

The setting is that we have q balls. View them as numbered, 1, . . . , q. We also have
N bins, where N ≥ q. We throw the balls at random into the bins, one by one,
beginning with ball 1. At random means that each ball is equally likely to land in
any of the N bins, and the probabilities for all the balls are independent. A collision
is said to occur if some bin ends up containing at least two balls. We are interested
in C(N, q), the probability of a collision.

The birthday paradox is the case where N = 365. We are asking what is the
chance that, in a group of q people, there are two people with the same birthday,
assuming birthdays are randomly and independently distributed over the days of
the year. It turns out that when q hits

√
365 the chance of a birthday collision is

already quite high, around 1/2.
This fact can seem surprising when first heard. The reason it is true is that the

collision probability C(N, q) grows roughly proportional to q2/N . This is the fact to
remember. The following gives a more exact rendering, providing both upper and
lower bounds on this probability.

Theorem A.1 [Birthday bound] Let C(N, q) denote the probability of at least
one collision when we throw q ≥ 1 balls at random into N ≥ q buckets. Then

C(N, q) ≤ q(q − 1)
2N

and

C(N, q) ≥ 1 − e−q(q−1)/2N .

Also if 1 ≤ q ≤ √
2N then

C(N, q) ≥ 0.3 · q(q − 1)
N

.

1

Proof of the Lemma

1 − C(N, q) = 1 ·

N − 1

N
·

N − 2

N
. . .

N − q + 1

N

= (1 −

1

N
) · (1 −

2

N
) · . . . (1 −

q − 1

N
)

// Using that

≤ e
−

1
N · . . . e−

q−1
N = e

−

q(q−1)
N

// Using that 1 − e−x ≥ (1 − e−1)x
q(q − 1)

2N
≤ 1if

≤ 1 − (1 −
1

e
) ·

q(q − 1)

2N

C(N, q) ≥ (1 −
1

e
) ·

q(q − 1)

2N
≥ 0.3 ·

q(q − 1)

N
Thus

2 THE BIRTHDAY PROBLEM

In the proof we will find the following inequalities useful to make estimates.

Proposition A.2 The inequality(
1 − 1

e

)
· x ≤ 1 − e−x ≤ x .

is true for any real number x with 0 ≤ x ≤ 1.

Proof of Theorem A.1: Let Ci be the event that the i-th ball collides with one
of the previous ones. Then Pr [Ci] is at most (i − 1)/N , since when the i-th ball is
thrown in, there are at most i−1 different occupied slots and the i-th ball is equally
likely to land in any of them. Now

C(N, q) = Pr [C1 ∨ C2 ∨ · · · ∨ Cq]

≤ Pr [C1] + Pr [C2] + · · · + Pr [Cq]

≤ 0
N

+
1
N

+ · · · + q − 1
N

=
q(q − 1)

2N
.

This proves the upper bound. For the lower bound we let Di be the event that
there is no collision after having thrown in the i-th ball. If there is no collision after
throwing in i balls then they must all be occupying different slots, so the probability
of no collision upon throwing in the (i + 1)-st ball is exactly (N − i)/N . That is,

Pr [Di+1 | Di] =
N − i

N
= 1 − i

N
.

Also note Pr [D1] = 1. The probability of no collision at the end of the game can
now be computed via

1 − C(N, q) = Pr [Dq]

= Pr [Dq | Dq−1] · Pr [Dq−1]
...

...

=
q−1∏
i=1

Pr [Di+1 | Di]

=
q−1∏
i=1

(
1 − i

N

)
.

Note that i/N ≤ 1. So we can use the inequality 1 − x ≤ e−x for each term of the
above expression. This means the above is not more than

q−1∏
i=1

e−i/N = e−1/N−2/N−···−(q−1)/N = e−q(q−1)/2N .

Proof of the Theorem

• Adversary Ag

For i=1,..q do yi←g(<xi>) EndFor

If yi,...yq are all distinct return 1, else return 0

EndIf

Bellare and Rogaway 23

the birthday paradox. If you are not familiar with this, you may want to look at
Appendix ??, and then come back to the following.

This tells us that an instance of a block cipher can be distinguished from a
random function based on seeing a number of input-output examples which is ap-
proximately 2!/2. This has important consequences for the security of block cipher
based protocols.

Proposition 3.16 Let E: {0, 1}k × {0, 1}! → {0, 1}! be a family of permutations.
Suppose q satisfies 2 ≤ q ≤ 2(!+1)/2. Then there is an adversary A, making q oracle
queries and having running time about that to do q computations of E, such that

Advprf
E (A) ≥ 0.3 · q(q − 1)

2!
. (3.5)

Proof of Proposition 3.16: Adversary A is given an oracle g: {0, 1}! → {0, 1}!

and works like this:

Adversary Ag

for i = 1, . . . , q do
Let xi be the i-th l-bit string in lexicographic order
yi ← g(xi)

if y1, . . . , yq are all distinct then return 1, else return 0

Let us now justify Equation (3.5). Letting N = 2l, we claim that

Pr
[
Expprf-1

E (A) = 1
]

= 1 (3.6)

Pr
[
Expprf-0

E (A) = 1
]

= 1 − C(N, q) . (3.7)

Here C(N, q), as defined in Appendix ??, is the probability that some bin gets two
or more balls in the experiment of randomly throwing q balls into N bins. We will
justify these claims shortly, but first let us use them to conclude. Subtracting, we
get

Advprf
E (A) = Pr

[
Expprf-1

E (A) = 1
]
− Pr

[
Expprf-0

E (A) = 1
]

= 1 − [1 − C(N, q)]

= C(N, q)

≥ 0.3 · q(q − 1)
2l

.

The last line is by Proposition ??. It remains to justify Equations (3.6) and (3.7).

Equation (3.6) is clear because in World 1, g = EK for some key K, and since E is a
family of permutations, g is a permutation, and thus y1, . . . , yq are all distinct. Now,

i-th l-bit string

25

26

27

28

