CS 6260 Applied Cryptography Alexandra (Sasha) Boldyreva Block ciphers, pseudorandom functions and permutations

Block ciphers

Examples: DES, 3DES, AES...

- A block cipher is a function family $\mathrm{E}:\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$, where k-key length, n-input and output lengths are the parameters
- Notation: for every $K \in\{0,1\}^{k} \quad E_{K}(M)=E(K, M)$
- For every $\mathrm{K} \in\{0,1\}^{\mathrm{k}}, \mathrm{E}_{\mathrm{K}}(\cdot)$ is a permutation (one-to-one and onto function). For every $\mathrm{C} \in\{0,1\}^{\mathrm{n}}$ there is a single $\mathrm{M} \in\{0,1\}^{\mathrm{n}}$ s.t. $C=E_{K}(M)$
- Thus each block cipher has an inverse for every key: $\mathrm{E}_{\mathrm{K}}{ }^{-1}(\cdot)$ s.t. $E_{K}\left(E_{K}^{-1}(M)\right)=C$ for all $M, C \in\{0,1\}^{n}$
- For every $K \in\{0,1\}^{k}, E_{K}(\cdot), E_{K}^{-1}(\cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

DES

- Key length $k=56$, input and output length $n=64$
- 1973. NBS (National Bureau of Standards) announced a search for a data protection algorithm to be standardized
- 1974. IBM submits a design based on "Lucifer" algorithm
- 1975. The proposed DES is published
- 1976. DES approved as a federal standard
- DES is highly efficient: $\approx 2.5 \cdot 10^{7}$ DES computations per second

Security of block ciphers

- Any block cipher E is subject to exhaustive key-search: given ($M 1, C 1=E(K, M 1), \ldots,(M q, C q=E(K, M q))$ an adversary can recover K (or another key consistent with the given pairs) as follows:
$\operatorname{EKS}_{E}((M 1, C 1), \ldots(M q, C q))$
For $\mathrm{i}=1, \ldots, 2^{\mathrm{k}}$ do if $\mathrm{E}(\mathrm{Ti}, \mathrm{M} 1)=\mathrm{C} 1$ then //Ti is i-th k-bit string// if $E(T i, M j)=C j$ for all $2 \leq j \leq q$ then return Ti EndIf EndIf
EndFor

Security of block ciphers

- Exhaustive key search takes 2^{k} block cipher computations in the worst case.
- On the average: $\sum_{i=1}^{2^{k}} i \cdot \operatorname{Pr}\left[K=T_{i}\right]=\sum_{i=1}^{2^{k}} \frac{i}{2^{k}}=\frac{1}{2^{k}} \cdot \sum_{i=1}^{2^{k}} i$

$$
=\frac{1}{2^{k}} \cdot \frac{2^{k}\left(2^{k}+1\right)}{2}=\frac{2^{k}+1}{2} \approx 2^{k-1}
$$

- DES has a property that $\operatorname{DES}_{K}(x)=\overline{\operatorname{DES}_{\bar{K}}(\bar{x})}$, this speeds up exhaustive search by a factor of 2
- For DES ($k=56$) exhaustive search takes
$2^{55} / 2 \cdot 2 \cdot 5 \cdot 10^{7}$ that is about 23 years

Security of DES

- There are more sophisticated attacks known:
- differential cryptoanalysis: finds the key given about 2^{47} chosen plaintexts and the corresponding ciphertexts
- linear cryptoanalysis: finds the key given about 2^{42} known plaintext and ciphertext pairs
- These attacks require too many data, hence exhaustive key earch is the best known attack. And it can be mounted in parallel!
- A machine for DES exhaustive key search was built for $\$ 250,000$. It finds the key in about 56 hours on average.
- A new block cipher was needed....
- Triple-DES: 3DES(K1||K2,M)=DES(K2, DES ${ }^{-1}(\mathrm{~K} 1, \mathrm{DES}(\mathrm{K} 2, \mathrm{M}))$
- 3DES's keys are 112-bit long. Good, but needs 3 DES computations

Advanced Encryption Standard (AES)

- 1998. NIST announced a search for a new block cipher.
- 15 algorithms from different countries were submitted
- 2001. NIST announces the winner: an algorithm Rijndael, designed by Joan Daemen and Vincent Rijmen from Belgium.
- AES: block length $\mathrm{n}=128$, key length k is variable: 128,192 or 256 bits.
- Exhaustive key search is believed infeasible

Limitations of key-recovery based security

- A classical approach to block cipher security: key recovery should be infeasible.
- I.e. given ($\mathrm{M} 1, \mathrm{E}(\mathrm{K}, \mathrm{M} 1$) , $\ldots, \mathrm{Mq}, \mathrm{E}(\mathrm{K}, \mathrm{Mq})$), where K is chosen at random and M1,...Mq are chosen at random (or by an adversary), the adversary cannot compute K in time t with probability ϵ.
- Necessary, but is it sufficient?
- Consider $E^{\prime}(K, M 1| | M 2)=E(K, M 1)| | M 2$ for some "good" E. Key recovery is hard for E^{\prime} as well, but it does not look secure.
- Q. What property of a block cipher as a building block would ensure various security properties of different constructions?

Intuition

- We want that (informally)
- key search is hard
- a ciphertext does not leak bits of the plaintext
- a ciphertext does not leak any function of a plaintexts
...
- there is a "master" property of a block cipher as a building block that enables security analysis of protocols based on block ciphers
- It is good if ciphertexts "look" random
- Pseudorandom functions (PRFs) and permutations (PRPs) are very important tools in cryptography. Let's start with the notion of function families:
- A function family F is a map $\operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow$ Range (F).
- For any $\operatorname{K} \in \operatorname{Keys}(F)$ we define $F_{K}=F(K, M)$, call it an instance of F.
- Notation $f^{\mathfrak{s}}{ }^{F}$ is the shorthand for $K \stackrel{s}{ }{ }^{\underline{s}} \operatorname{eys}(F) ; f \leftarrow F_{K}$
- Block cipher E is a function family with $\operatorname{Dom}(E)=\operatorname{Range}(E)=\{0,1\}^{\text {n }}$ and $\operatorname{Keys}(K)=\{0,1\}^{\mathrm{k}}$
- Let $\operatorname{Func}(\ell . \mathrm{L})$ denote the set of all functions from $\{0,1\}^{\ell}$ to $\{0,1\}^{\mathrm{L}}$.
- It's a function family where a key specifying an instance is a description of this instance function.
- Q. How large is the key space?
- A.
- We will often consider the case when $\epsilon=\mathrm{L}$
- Let's try to understand how a random function (a random instance f of Func($(, \mathrm{L})$) behaves

Random functions

- $\mathrm{g}\{\mathrm{F}(\mathrm{e}, \mathrm{L})$
- We are interested in the input-output behavior of a random function. Let's imagine that we have access to a subroutine that implements such a function
$g\left(X \in\{0,1\}^{\ell}\right)$
global array T
If $T[X]$ is not defined then
$\mathrm{T}[\mathrm{X}]^{\frac{5}{2}}\{0,1\}^{\mathrm{L}}$ EndIf
Return $\mathrm{T}[\mathrm{X}]$

13

Random permutations

- $\operatorname{Perm}(\ell)$ is the set of all permutations on $\{0,1\}^{\ell}$
- Q. How large is the key space?
- A. ℓ
- We are interested in a random instance $\pi \stackrel{\Im}{\curvearrowleft} \operatorname{Perm}(\ell)$
$\pi\left(X \in\{0,1\}^{\ell}\right)$
global array T, S; S \sqsubset
If $T[X]$ is not defined then
$\mathrm{T}[\mathrm{X}] \stackrel{₫}{\unlhd} 0,1\}^{\ell}-\varnothing ; \mathrm{S} \leftarrow \mathrm{S} U\{\mathrm{~T}[\mathrm{X}]\}$ EndIf Return T[X]

Random functions vs permutations
Fix $X_{1}, X_{2} \in\{0,1\}^{\ell}$ and $Y_{1}, Y_{2} \in\{0,1\}^{L}$

f-random	function	permutation
$\operatorname{Pr}[f(X)=Y]=$	2^{-L}	$2^{-\ell}$
$\operatorname{Pr}\left[f\left(X_{1}\right)=Y_{1} \mid f\left(X_{2}\right)=Y_{2}\right]=$	2^{-L}	$\begin{cases}\frac{1}{2^{2}-1} & \\ 0\end{cases}$
$\operatorname{Pr}\left[f\left(X_{1}\right)=Y\right.$ and $\left.f\left(X_{2}\right)=Y\right]=$	$\begin{cases}2^{-2 L} & \text { if } X_{1} \neq X_{2} \\ 2^{-L} & \text { if } X_{1}=X_{2}\end{cases}$	$\left\{\begin{array}{cc}0 & \text { if } X_{1} \neq X_{2} \\ 2^{-} \text {if } X_{1}=X_{2}\end{array}\right.$
$\operatorname{Pr}\left[f\left(X_{1}\right) \oplus f\left(X_{2}\right)=Y\right]=$	$\begin{cases}2^{-L} & \text { if } X_{1} \neq X_{2} \\ 0 & \text { if } X_{1}=X_{2} \text { and } Y \neq 0^{L} \\ 1 & \text { i } X_{1}=X_{2} \text { and } Y=0^{L}\end{cases}$	$\begin{cases}\frac{1}{2^{\prime}-1} & \text { if } X_{1} \neq X_{2} \text { and } Y \neq 0^{\prime} \\ 0 & \text { i } X_{1} \neq X_{2} \text { and } Y=0^{\prime} \\ 0 & \text { i } X_{1}=X_{2} \text { and } Y \neq 0^{\prime} \\ 1 & \text { if } X_{1}=X_{2} \text { and } Y=0^{e}\end{cases}$

Pseudorandom functions (PRFs)

- Informally, a function family F is a PRF if the input-output behavior of its random instance is computationally indistinguishable from that of a random function.

PRFs

- Def. Fix a function family F: $\operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$
- Experiment $\operatorname{Exp}_{F}^{\text {prf-1 }}(A)$
- $\quad \mathrm{K} \leftarrow \operatorname{Keys}(\mathrm{F})$

Return b

Experiment $\operatorname{Exp}_{F}^{\text {prf-0 }}(A)$ $\mathrm{g} \stackrel{\ddagger}{ }{ }^{\stackrel{5}{2}} \operatorname{Func}(\operatorname{Dom}(\mathrm{~F})$, Range(F) $)$

The prf-advantage of an adversary A is
$\operatorname{Adv}_{F}^{\text {prf }}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prf-1 }}(A)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prf-0 }}(A)=1\right]$
F is a secure PRF if for any adversary with "reasonable" resources its prf-advantage is "small".

PRFs

- Def. Fix a function family F: Keys(F) $\times \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$
-
- Experiment $\operatorname{Exp}_{F}^{\text {prf-1 }}(A) \mid \operatorname{Experiment}^{\operatorname{Exp}}{ }_{F}^{\text {prf-0 }}(A)$
$K \stackrel{\leftrightarrow}{\leftarrow} \mathcal{K}$ $g \stackrel{\&}{\stackrel{\&}{5} \operatorname{Func}(D, R)}$
$b \stackrel{\&}{\leftarrow} A^{F_{K}}$
$b \stackrel{\&}{\leftarrow} A^{g}$
Return $b \quad$ Return b
The prf-advantage of an adversary A is
$\operatorname{Adv}_{F}^{\text {prf }}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prf-1 }}(A)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prf- }}(A)=1\right]$
F is a secure PRF if for any adversary with "reasonable" resources its prf-advantage is "small".

Resources of an adversary

- Time-complexity is measured in some fixed RAM model of computation and includes the maximum of the running-times of A in the experiments, plus the size of the code for A.
- The number of queries A makes.
- The total length of all queries.

Pseudorandom permutations (PRPs)

- Informally, a function family F is a PRF if the input-output behavior of its random instance is computationally indistinguishable from that of a random permutation.

PRPs under chosen-plaintext attacks (CPA)

- Def. Fix a function family F: $\operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow \operatorname{Dom}(F)$

Experiment $\operatorname{Exp}_{F}^{\text {prp-cpa-1 }}(A)$	Experiment $\operatorname{Exp}_{F}^{\text {prp-cpa-0 }}(A)$
$K \stackrel{\&}{\leftarrow} \mathcal{K}$	$g \stackrel{\&}{\leftarrow} \operatorname{Perm}(D)$
$b \stackrel{\&}{\leftarrow} A_{K}$	$b \stackrel{\&}{\leftarrow} A^{g}$
Return b	Return b

The prp-cpa-advantage of an adversary A is
$\operatorname{Adv}_{F}^{\text {prp-cpa }}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prp-cpa-1 }}(A)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prp-cpa-0 }}(A)=1\right]$
F is a secure PRP under CPA if for any adversary with "reasonable" resources its prf-cpa-advantage is "small".

PRPs under chosen-ciphertext attacks (CCA)

- Since an inverse function is defined for each instance, we can also consider the case when an adversary gets, in addition, an oracle for g^{-1}
- Def. Fix a permutation family F: $\operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow \operatorname{Dom}(F)$
$\underset{\text { Experiment }}{ } \operatorname{Exp}_{F}^{\text {prp-cca-1 }}(A) \mid \underset{\&}{\text { Experiment }} \operatorname{Exp}_{F}^{\text {prp-cca-0 }}(A)$
$K \stackrel{\&}{\leftarrow} \mathcal{K}$
$b \stackrel{\&}{\leftarrow} A^{F_{K}, F_{K}^{-1}}$
$g \stackrel{\&}{\leftarrow} \operatorname{Perm}(D)$
Return b
Return b

The prp-cca-advantage of an adversary A is
$\operatorname{Adv}_{F}^{\text {prp-cca }}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prp-cca-1 }}(A)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prp-cca-0 }}(A)=1\right]$

- F is a secure PRP under CCA if for any adversary with "reasonable" resources its prf-cca-advantage is "small".

Modeling block ciphers

- Want a "master" property that a block cipher be PRP-CPA or PRP-CCA secure.
- Conjectures:
- DES and AES are PRP-CCA (thus also PRP-CPA) secure.
- For any B running time t and making q queries

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{AES}}^{\text {prp-cpa }}\left(B_{t, q}\right) & \leq c_{1} \cdot \frac{t / T_{\mathrm{AES}}}{2^{128}}+c_{2} \cdot \frac{q}{2^{128}} \\
\operatorname{Adv}_{\mathrm{AES}}^{\text {prf }}\left(B_{t, q}\right) & \leq c_{1} \cdot \frac{t / T_{\mathrm{AES}}}{2^{128}}+\frac{q^{2}}{2^{128}}
\end{aligned}
$$

The "birthday" attack

- Theorem. For any block cipher E with domain and range $\{0,1\}^{\ell}$ and any A that makes q queries s.t. $2 \leq q \leq 2^{(\ell+1) / 2}$

$$
\mathbf{A d v}_{E}^{\operatorname{prf}}(A) \geq 0.3 \cdot \frac{q(q-1)}{2^{\ell}}
$$

- Lemma. If we throw (at random) q balls into $\mathrm{N} \geq \mathrm{q}$ bins and if $1 \leq q \leq \sqrt{2 N}$ then the probability of a collision
$C(N, q) \geq 0.3 \cdot \frac{q(q-1)}{N}$

Proof of the Lemma
// Using that $1-x \leq e^{-x}$
// Using that
Thus if

Proof of the Theorem

- Adversary A
i-th l-bit string
For $\mathrm{i}=1, . . \mathrm{q}$ do $\mathrm{y}_{\mathrm{i}} \leftarrow \mathrm{g}\left(<\widehat{\left.\mathrm{x}_{\mathrm{i}}>\right) \text { EndFor }}\right.$
If $\mathrm{y}_{\mathrm{i}}, \cdots \mathrm{y}_{\mathrm{q}}$ are all distinct return 1 , else return 0 EndIf

$$
\begin{aligned}
\operatorname{Adv}_{E}^{\text {prf }}(A) & =\operatorname{Pr}\left[\mathbf{E x p}_{E}^{\text {prf-1 }}(A)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{E}^{\text {prf-0 }}(A)=1\right] \\
& =1-[1-C(N, q)] \\
& =C(N, q) \\
& \geq 0.3 \cdot \frac{q(q-1)}{2^{l}} .
\end{aligned}
$$

