# CS 6260 Applied Cryptography Alexandra (Sasha) Boldyreva Block ciphers, pseudorandom functions and permutations

1

## 

- <u>Notation</u>: for every  $K \in \{0,1\}^k E_K(M) = E(K,M)$
- For every Ke{0,1}<sup>k</sup>, E<sub>K</sub>(·) is a permutation (one-to-one and onto function). For every Ce{0,1}<sup>n</sup> there is a single Me{0,1}<sup>n</sup> s.t. C=E<sub>K</sub>(M)
- Thus each block cipher has an inverse for every key:  $E_{K}^{-1}(\cdot)$  s.t.  $E_{k}(E_{k}^{-1}(M))=C$  for all  $M,C\in\{0,1\}^{n}$

• For every  $K \in \{0,1\}^k$ ,  $E_K(\cdot), E_K^{-1}(\cdot): \{0,1\}^n \rightarrow \{0,1\}^n$ 

2

### DES

- + Key length k=56, input and output length n=64
- 1973. NBS (National Bureau of Standards) announced a search for a data protection algorithm to be standardized
- 1974. IBM submits a design based on "Lucifer" algorithm
- 1975. The proposed DES is published
- 1976. DES approved as a federal standard
- DES is highly efficient:  $\approx\!2.5{\cdot}10^7$  DES computations per second

3

### Security of block ciphers

| • | Any block cipher E is subject to exhaustive key-search:<br>given $(M1,C1=E(K,M1),,(Mq,Cq=E(K,Mq))$ an adversary<br>can recover K (or another key consistent with the given<br>pairs) as follows: |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | EKS <sub>E</sub> ((M1,C1),(Mq,Cq))                                                                                                                                                               |
|   | For i=1,,2 <sup>k</sup> do<br>if E(Ti,M1)=C1 then //Ti is i-th k-bit string//<br>if E(Ti,Mj)=Cj for all 2≤j≤q then return Ti EndIf                                                               |
|   | EndIf                                                                                                                                                                                            |

EndFor

### Security of block ciphers

• Exhaustive key search takes  $2^k$  block cipher computations in the worst case.

• On the average: 
$$\sum_{i=1}^{2} i \cdot \Pr[K = T_i] = \sum_{i=1}^{2} \frac{i}{2^k} = \frac{1}{2^k} \cdot \sum_{i=1}^{2} i$$
$$= \frac{1}{2^k} \cdot \frac{2^k (2^k + 1)}{2} = \frac{2^k + 1}{2} \approx 2^{k-1}$$

- DES has a property that  $DES_K(x)=\overline{DES_K(x)}$  , this speeds up exhaustive search by a factor of 2
- For DES (k=56) exhaustive search takes  $2^{55}/2 \cdot 2.5 \cdot 10^7$  that is about 23 years

5

### Security of DES

- There are more sophisticated attacks known:
  - differential cryptoanalysis: finds the key given about 2<sup>47</sup> chosen plaintexts and the corresponding ciphertexts
  - linear cryptoanalysis: finds the key given about  $2^{42}\,\,\underline{\text{known}}$  plaintext and ciphertext pairs
- These attacks require too many data, hence exhaustive key search is the best known attack. And it can be mounted in parallel!
- A machine for DES exhaustive key search was built for \$250,000. It finds the key in about 56 hours on average.
- A new block cipher was needed....
- Triple-DES: 3DES(K1||K2,M)=DES(K2, DES<sup>-1</sup>(K1, DES(K2,M)).
   3DES's keys are 112-bit long. Good, but needs 3 DES computations

6

### Advanced Encryption Standard (AES)

- 1998. NIST announced a search for a new block cipher.
- 15 algorithms from different countries were submitted
- 2001. NIST announces the winner: an algorithm Rijndael, designed by Joan Daemen and Vincent Rijmen from Belgium.
- AES: block length n=128, key length k is variable: 128, 192 or 256 bits.
- Exhaustive key search is believed infeasible

7

### Limitations of key-recovery based security

- A classical approach to block cipher security: key recovery should be infeasible.
- I.e. given (M1,E(K,M1),...,Mq,E(K,Mq)), where K is chosen at random and M1,...Mq are chosen at random (or by an adversary), the adversary cannot compute K in time t with probability ε.
- Necessary, but is it sufficient?
- Consider E'(K,M1||M2)=E(K,M1)||M2 for some "good"
   E. Key recovery is hard for E' as well, but it does not look secure.
- Q. What property of a block cipher as a building block would ensure various security properties of different constructions?

### Intuition

- We want that (informally)
  - key search is hard
  - a ciphertext does not leak bits of the plaintext
  - a ciphertext does not leak any function of a plaintexts
  - ....
  - there is a "master" property of a block cipher as a building block that enables security analysis of protocols based on block ciphers
- It is good if ciphertexts "look" random

9

- Pseudorandom functions (PRFs) and permutations (PRPs) are very important tools in cryptography. Let's start with the notion of function families:
- A function family F is a map  $Keys(F) \times Dom(F) \rightarrow Range(F)$ .
- For any KeKeys(F) we define  $F_{\mbox{K}}{=}F(K,M),$  call it an  $\mbox{instance}$  of F.
- Notation  $f_{\leftarrow}^{\$}F$  is the shorthand for  $K_{\leftarrow}^{\$}Keys(F)$ ;  $f_{\leftarrow}F_{K}$
- Block cipher E is a function family with  $\mathsf{Dom}(\mathsf{E}){=}\mathsf{Range}(\mathsf{E}){=}\{0{,}1\}^n$  and  $\mathsf{Keys}(\mathsf{K}){=}\{0{,}1\}^k$

10

- Let  $\mathsf{Func}({\ell}L)$  denote the set of all functions from  $\{0,1\}^\ell$  to  $\{0,1\}^L.$
- It's a function family where a key specifying an instance is a description of this instance function.
- <u>Q.</u> How large is the key space?
- <u>A.</u>
- We will often consider the case when *t*=L
- Let's try to understand how a random function (a random instance f of  $\mathsf{Func}(\ell,\mathsf{L}))$  behaves

11

### Random functions

g <sup>s</sup>-F(,L)
 We are interested in the input-output behavior of a random function. Let's imagine that we have access to a subroutine that implements such a function:
 g(X∈{0,1}<sup>ℓ</sup>)
 global array T
 If T[X] is not defined then
 T[X]<sup>s</sup>-{0,1}<sup>L</sup> EndIf
 Return T[X]



# Random permutationsPerm(?) is the set of all permutations on $\{0,1\}^{\ell}$ • Q. How large is the key space?• A. $\ell$ • We are interested in a random instance $\pi^{-5}$ -Perm(?) $\pi(X \in \{0,1\}^{\ell})$ global array T, S; S $\leftarrow \emptyset$ If T[X] is not defined then $T[X] \stackrel{s}{\rightarrow} \{0,1\}^{\ell} - \emptyset$ ; S $\leftarrow S \cup \{T[X]\}$ EndIfReturn T[X]



| Random functions vs permutations<br>Fix $X_1, X_2 \in \{0, 1\}^{\ell}$ and $Y_1, Y_2 \in \{0, 1\}^L$ , |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                           |    |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| f-random                                                                                               | function                                                                                                                                                                                         | permutation<br>l = L                                                                                                                                                                                                                                                                      |    |
| $\Pr\left[f(X)=Y\right]=$                                                                              | $2^{-L}$                                                                                                                                                                                         | $2^{-\ell}$                                                                                                                                                                                                                                                                               |    |
| $\Pr\left[f(X_1) = Y_1 \mid f(X_2) = Y_2\right] =$                                                     | : 2 <sup>-L</sup>                                                                                                                                                                                | $\left\{ \begin{array}{ll} \displaystyle \frac{1}{2^\ell-1} & \text{if } Y_1 \neq Y_2 \\ 0 & \text{if } Y_1 = Y_2 \end{array} \right.$                                                                                                                                                    |    |
| $\Pr \left[ f(X_1) = Y \text{ and } f(X_2) = Y \right] =$                                              | $\left\{ \begin{array}{ll} 2^{-2L} & \text{if } X_1 \neq X_2 \\ 2^{-L} & \text{if } X_1 = X_2 \end{array} \right.$                                                                               | $\left\{ \begin{array}{ll} 0 & \text{if } X_1 \neq X_2 \\ 2^{-\ell} & \text{if } X_1 = X_2 \end{array} \right.$                                                                                                                                                                           |    |
| $\Pr\left[f(X_1)\oplus f(X_2)=Y\right]=$                                                               | $\left\{ \begin{array}{ll} 2^{-L}  \text{if} \; X_1 \neq X_2 \\ 0  \text{if} \; X_1 = X_2 \; \text{and} \; Y \neq 0^L \\ 1  \text{if} \; X_1 = X_2 \; \text{and} \; Y = 0^L \end{array} \right.$ | $ \left\{ \begin{array}{l} \frac{1}{2^\ell-1} & \text{if } X_1 \neq X_2 \text{ and } Y \neq 0^\ell \\ 0 & \text{if } X_1 \neq X_2 \text{ and } Y = 0^\ell \\ 0 & \text{if } X_1 = X_2 \text{ and } Y \neq 0^\ell \\ 1 & \text{if } X_1 = X_2 \text{ and } Y = 0^\ell \end{array} \right.$ | 16 |



17





19

### Resources of an adversary

- Time-complexity is measured in some fixed RAM model of computation and includes the maximum of the running-times of A in the experiments, plus the size of the code for A.
- The number of queries A makes.
- The total length of all queries.

### Pseudorandom permutations (PRPs)

 Informally, a function family F is a PRF if the input-output behavior of its random instance is computationally indistinguishable from that of a random permutation.

21

PRPs under chosen-plaintext attacks (CPA)  
• Def. Fix a function family F: Keys(F) × Dom(F) 
$$\rightarrow$$
 Dom(F)  
Experiment  $\mathbf{Exp}_F^{\text{prp-cpa-1}}(A)$   
 $K \stackrel{s}{\leftarrow} A^F_K$   
 $b \stackrel{s}{\leftarrow} A^F_K$   
Return  $b$   
Experiment  $\mathbf{Exp}_F^{\text{prp-cpa-0}}(A)$   
 $g \stackrel{s}{\leftarrow} Perm(D)$   
 $b \stackrel{s}{\leftarrow} A^g$   
Return  $b$   
The prp-cpa-advantage of an adversary A is  
 $Adv_F^{\text{prp-cpa-d}}(A) = \Pr\left[\mathbf{Exp}_F^{\text{prp-cpa-1}}(A) = 1\right] - \Pr\left[\mathbf{Exp}_F^{\text{prp-cpa-0}}(A) = 1\right]$   
F is a secure PRP under CPA if for any adversary with  
"reasonable" resources its prf-cpa-advantage is "small".

22

PRPs under chosen-ciphertext attacks (CCA) Since an inverse function is defined for each instance, we can also consider the case when an adversary gets, in addition, an oracle for  $g^{-1}$ <u>Def.</u> Fix a <u>permutation</u> family F: Keys(F) × Dom(F)  $\rightarrow$  Dom(F) .  $\text{Experiment } \mathbf{Exp}_{F}^{\text{prp-cca-1}}(A) \ \left| \ \text{Experiment } \mathbf{Exp}_{F}^{\text{prp-cca-0}}(A) \right.$  $g \stackrel{\$}{\leftarrow} \operatorname{Perm}(D)$  $b \stackrel{\$}{\leftarrow} A^{g,g^{-1}}$  $K \stackrel{\$}{\leftarrow} K$  $b \overset{\text{s}}{\leftarrow} A^{F_K,F_K^{-1}}$ Return  $\boldsymbol{b}$ Return bThe prp-cca-advantage of an adversary A is  $\mathbf{Adv}_{F}^{\mathrm{prp-cca}}(A) \hspace{.1in} = \hspace{.1in} \Pr\left[\mathbf{Exp}_{F}^{\mathrm{prp-cca-1}}(A) = 1\right] - \Pr\left[\mathbf{Exp}_{F}^{\mathrm{prp-cca-0}}(A) = 1\right]$ F is a secure PRP under CCA if for any adversary with "reasonable" resources its prf-cca-advantage is "small".

23

 $\mathsf{PRP}\text{-}\mathsf{CCA} \Rightarrow \mathsf{PRP}\text{-}\mathsf{CPA}$ 

• <u>Theorem</u>. Let F:Keys×D→D be a permutation family. Then for any adversary A that runs in time t and makes q chosenplaintext queries these totalling  $\mu$  bits there exists an adversary B that also runs in time t and makes q chosenplaintext queries these totalling  $\mu$  bits and no chosenciphertext queries such that

$$\mathbf{Adv}_F^{\mathrm{prp-cca}}(B) \geq \mathbf{Adv}_F^{\mathrm{prp-cpa}}(A)$$

### Modeling block ciphers

- Want a "master" property that a block cipher be PRP-CPA or PRP-CCA secure.
- Conjectures:
  - DES and AES are PRP-CCA (thus also PRP-CPA) secure.
  - For any B running time t and making q queries

$$\begin{array}{lll} \mathbf{Adv}_{\mathrm{AES}}^{\mathrm{prp-cpa}}(B_{t,q}) & \leq & c_1 \cdot \frac{t/T_{\mathrm{AES}}}{2^{128}} + c_2 \cdot \frac{q}{2^{128}} \\ \mathbf{Adv}_{\mathrm{AES}}^{\mathrm{prf}}(B_{t,q}) & \leq & c_1 \cdot \frac{t/T_{\mathrm{AES}}}{2^{128}} + \frac{q^2}{2^{128}} \end{array}$$

25

The "birthday" attack  
• Theorem. For any block cipher E with domain and range  

$$\{0,1\}^{\ell}$$
 and any A that makes q queries s.t.  $2 \le q \le 2^{(\ell+1)/2}$ .  
Adv<sup>prf</sup><sub>E</sub>(A)  $\ge 0.3 \cdot \frac{q(q-1)}{2^{\ell}}$   
• Lemma. If we throw (at random) q balls into N≥q bins and  
if  $1 \le q \le \sqrt{2N}$  then the probability of a collision  
 $C(N,q) \ge 0.3 \cdot \frac{q(q-1)}{N}$ 





27