CS 6260
Applied Cryptography
Alexandra (Sasha) Boldyreva

Block ciphers, pseudorandom
functions and permutations

Block ciphers
Building blocks for symmetric encryption. M

* A block cipher is a function family E:{o,1}kx{o,1}"—~{o,1}",

where k-key length, n-input and output lengths are the
parameters

Examples: DES, 3DES, AES...

Notation: for every Ke{0,13K E,(M)=E(K,M)

For every Ke{O,l}k, Ey(+) is a permutation (one-to-one and

onto function). For every Ce{O,l}n there is a single Me{o,l}n
s.t. C=E(M)

Thus each block cipher has an inverse for every key: EK'I(-)

s.t. Eg(E 1(M))=C for all M,Ce{0,1}"

For every Ke{O,l}k, EK(-),EK'I(-):{O,I}n*{O,l}n

DES
Key length k=56, input and output length n=64

1973. NBS (National Bureau of Standards) announced a
search for a data protection algorithm to be standardized

1974. IBM submits a design based on “Lucifer” algorithm

1975. The proposed DES is published

1976. DES approved as a federal standard

DES is highly efficient: ~2.5107 DES computations per
second

Security of block ciphers

Any block cipher E is subject to exhaustive key-search:
given (M1,C1=E(K,M1),...,(Mq,Cq=E(K,Mq)) an adversary
can recover K (or another key consistent with the given
pairs) as follows:

EKSE((M1,C1),...(Mq,Caq))

For i=1,....2K do
if E(Ti,M1)=C1 then //Ti is i-th k-bit string//
if E(Ti,Mj)=Cj for all 2<j<q then return Ti EndIf
EndIf
EndFor




Security of block ciphers

Exhaustive key search takes 2k block cipher computations in
the worst case.
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DES has a property that DESg (x) = DES3(7), this speeds
up exhaustive search by a factor of 2

For DES (k=56) exhaustive search takes
255/2:2.5:107 that is about 23 years

Security of DES

There are more sophisticated attacks known:

* differential cryptoanalysis: finds the key given about 247
chosen plaintexts and the corresponding ciphertexts

* linear cryptoanalysis: finds the key given about 242 known
plaintext and ciphertext pairs

These attacks require too many data, hence exhaustive key

search is the best known attack. And it can be mounted in

parallel!

A machine for DES exhaustive key search was built for

$250,000. It finds the key in about 56 hours on average.

A new block cipher was needed....

Triple-DES: 3DES(K1||K2,M)=DES(K2, DES'l(Kl, DES(K2,M)).
* 3DES’s keys are 112-bit long. Good, but needs 3 DES
computations

Advanced Encryption Standard (AES)

1998. NIST announced a search for a new block cipher.

15 algorithms from different countries were submitted

2001. NIST announces the winner: an algorithm Rijndael,
designed by Joan Daemen and Vincent Rijmen from Belgium.

AES: block length n=128, key length k is variable: 128, 192
or 256 bits.

Exhaustive key search is believed infeasible

Limitations of key-recovery based security

* A classical approach to block cipher security: key
recovery should be infeasible.

I.e. given (M1,E(K,M1),...,Mq,E(K,Mq)), where K is
chosen at random and M1,...Mq are chosen at random
(or by an adversary), the adversary cannot compute K
in time t with probability €.

Necessary, but is it sufficient?

Consider E'(K,M1||M2)=E(K,M1)||M2 for some “good”
E. Key recovery is hard for E’ as well, but it does not
look secure.

Q. What property of a block cipher as a building block
would ensure various security properties of different
constructions?




Intuition

* We want that (informally)
* key search is hard
* a ciphertext does not leak bits of the plaintext
 a ciphertext does not leak any function of a plaintexts

 there is a “master” property of a block cipher as a building
block that enables security analysis of protocols based on
block ciphers

e It is good if ciphertexts “look” random

¢ Pseudorandom functions (PRFs) and permutations (PRPs) are
very important tools in cryptography. Let’s start with the
notion of function families:

¢ A function family F is a map Keys(F)xDom(F) — Range(F).

« For any KeKeys(F) we define FK=F(K,M), call it an instance
of F.

« Notation f<F is the shorthand for K=Keys(F); f—Fy

* Block cipher E is a function family with
Dom(E)=Range(E)={0,1}" and Keys(K)={0,1}¥

* Let Func(« L) denote the set of all functions from {0,1}‘ to
{0,135

* It's a function family where a key specifying an instance is a
description of this instance function.

* Q. How large is the key space?
A
* We will often consider the case when ¢=L

e Let's try to understand how a random function (a random
instance f of Func(¢L)) behaves

Random functions
° giFEL)

* We are interested in the input-output behavior of a random
function. Let’s imagine that we have access to a subroutine
that implements such a function:

g(Xe{0,1}9
global array T
If T[X] is not defined then
TIX1440,13" EndIf
Return T[X]
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“Black box” access

q()

e | global array T

If T[X] is not defined then
Y TIX]< {0,13" EnIf

—_— Return Y=T[X]

Note that for any Xe{0, 1}’ and Ye{0, 1}- Prg(X)=Y]=2""
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Random permutations
* Perm(¢) is the set of all permutations on {0,1}‘
¢ Q. How large is the key space?
cA 4
o We are interested in a random instance T <Perm(¢)
m(Xe{0,1}9)

global array T, S; S«J
If T[X] is not defined then

TIX] & {0,1¥-@; S—Su{T[X]} EndIf
Return T[X]
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“Black box” access

X ()
global array T, §; S+~ &
IFT[X] is not defined then

TIX] & {0,1-@; S<-SU{T[X]} Endif
Return Y=T[X]

For any X€{0,1¥ and Ye{0, 1}’ PrTr(X)=Y]=2"
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Random functions vs permutations

Fix X1, Xo € {0,1} and Y3, Y5 € {0,1}F

f-random| function permutation
I=L
Prif(X)=Y]= 2-L ot
L sop NAn
Pr(f(X) =Vi| f(Xz) = Yo = 27t {U P
P () =Y FY = V] — 272k if X #£ X, 0 X #Xs
Pr[f(X1) =Y and f(X2) = Y] { v oy 2t i X, = X
2L i X £ X 2,1 X £ X md Y A0
Prf(X1) & f(Xp) =Y] = [ 0 ifX;=X;and Y #0F 0 if X1 # Xz and ¥V = 0f
1 if X1 = X5 and Y = 0F 0 if Xy = Xy and Y #0°
ST 1 if Xy = Xp and ¥ = 0¢ 1 6




Pseudorandom functions (PRFs)

* Informally, a function family F is a PRF if the input-output
behavior of its random instance is computationally
indistinguishable from that of a random function.

PRFs
* Def. Fix a function family F: Keys(F) x Dom(F) — Range(F)
©  Experiment Exp?’™!(4) Experiment Exp}™(4)
. K< Keys(F) g<> Func(Dom(F),Range(F))

E A

Return b Return b

P

Lyb

The prf-advantage of an adversary A is
Aavi(4) = Pr[Exp)™(4) =1] - Pr [Exp}0(4) = 1]

F is a secure PRF if for any adversary with “reasonable”
resources its prf-advantage is “small”.

PRFs
¢ Def. Fix a function family F: Keys(F) x Dom(F) — Range(F)

Experiment Exp%rf—l(A) Experiment Exp%rf—o(A)
K&K g <~ Func(D,R)
* bd AFK b A9
. Return b Return b

The prf-advantage of an adversary A is

AdvP(4)

Pr [Expr;-rf'l(/l) = 1} —Pr [Expr;-rf'o(A) = 1}

F is a secure PRF if for any adversary with “reasonable”
resources its prf-advantage is “small”.

Resources of an adversary

¢ Time-complexity is measured in some fixed RAM model of
computation and includes the maximum of the running-times
of A in the experiments, plus the size of the code for A.

* The number of queries A makes.

* The total length of all queries.
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Pseudorandom permutations (PRPs)
* Informally, a function family F is a PRF if the input-output

behavior of its random instance is computationally
indistinguishable from that of a random permutation.
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PRPs under chosen-plaintext attacks (CPA)
 Def. Fix a function family F: Keys(F) x Dom(F) - Dom(F)

Experiment Exp%?**(4) | Experiment Exph? P*0(4)

K&K g <> Perm(D)
bE AFK b A9
Return b Return b

The prp-cpa-advantage of an adversary A is
AdVRPPN(A) = Pr [Exp}"”“"”"(A) = 1] —Pr [Exp‘;"“"“’(A) = 1]

F is a secure PRP under CPA if for any adversary with
“reasonable” resources its prf-cpa-advantage is “small”.
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PRPs under chosen-ciphertext attacks (CCA)
* Since an inverse function is defined for each instance, we can
also consider the case when an adversary gets, in addition, an
oracle for g'1
* Def. Fix a permutation family F: Keys(F) x Dom(F) =Dom(F)

Experiment Exp}”™ *1(A4) | Experiment Exp"F""’mHJ (4)
K&K g <~ Perm(D)
bE AFKER! b Age!
Return b Return b

The prp-cca-advantage of an adversary A is

AdvETeR () Pr [Exp” ! (4) = 1] = Pr [Bxpl™*0(4) = 1]

* Fis a secure PRP under CCA if for any adversary with
“reasonable” resources its prf-cca-advantage is “small”.
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PRP-CCA = PRP-CPA

¢ Theorem. Let F:KeysxD—D be a permutation family. Then
for any adversary A that runs in time t and makes q chosen-
plaintext queries these totalling p bits there exists an
adversary B that also runs in time t and makes q chosen-
plaintext queries these totalling p bits and no chosen-
ciphertext queries such that

AdvDTCNB) > AdVIPP(A)
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Modeling block ciphers

Want a “master” property that a block cipher be PRP-CPA or
PRP-CCA secure.

Conjectures:

* DES and AES are PRP-CCA (thus also PRP-CPA) secure.

* For any B running time t and making q queries

-cpa t/Tars q
prp-cpa X ) 3
AdviiEs™ (Brg) < ar- oios T2 5z

T, 2
AdVL(Bry) < oo LTAES | 4

2128 9128
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The “birthday” attack
¢ Theorem. For any block cipher E with domain and range

{0,1¥ and any A that makes q queries s.t. 2 < ¢ < 2(¢+1/2

. qlg—1
AdvET(4) > o.s-%

e Lemma. If we throw (at random) q balls into N=q bins and
if 1 <¢ < V2N then the probability of a collision

C(N,q) > 03- ‘1(‘1\7’1)

Proof of the Lemma

/] Using that 1 — 2 < e™®

/I Using that if

Thus

Proof of the Theorem

* Adversary A9 i-th L-bit string

For i=1,..q do y;+g(<x;>) EndFor
If Yjr-¥q are all distinct return 1, else return 0
EndIf

Advi(4) = Pr[Expl™(4) = 1] - Pr [Exp}™0(4) = 1]
= 1-[1-C(N,q)
= C(N.0)

(g —1)
P

[\

0.3-
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