
Plain RSA encryption scheme

Algorithm E(N,e)(M)
C←M

e mod N

ReturnC

1

Algorithm D(N,d)(C)
M←C

d mod N

Return M

1

AlgorithmK
((N,e),(N, p,q,d)) $←K $

rsa

Return ((N,e),(N,d))

1
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1, and compute d via the algorithm of Proposition 10.8. This random-exponent RSA generator,
denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q) $←K$
mod

M ← (p − 1)(q − 1)

e $← Z∗
M

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

In order to speed-up computation of RSAN,e, however, we often like e to be small. To enable this,
we begin by setting e to some small prime number like 3, and then picking the other parameters
appropriately. In particular we associate to any odd prime number e the following exponent-e RSA

generator :

Algorithm Ke
rsa

Repeat

(N, p, q) $←K$
mod(k)

Until

– e < (p − 1) and e < (q − 1)
– gcd(e, (p − 1)) = gcd(e, (q − 1)) = 1

M ← (p − 1)(q − 1)

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

10.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e, y
it is hard to compute RSA

−1
N,e(y). One must be careful to formalize this properly though. The

formalization chooses y at random.

Definition 10.10 Let Krsa be an RSA generator with associated security parameter k, and let A
be an algorithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d)) $←Krsa

x $← Z∗
N ; y ← xe mod N

x′ $← A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[
Expow-kea

Krsa
(A) = 1

]
.

Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack,
abbreviated “cea,” in which, rather than having the encryption exponent specified by the instance
of the problem, one allows the adversary to choose it. The only condition imposed is that the
adversary not choose e = 1.

Return (N, p,q)

1
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Definition 10.9 A modulus generator with associated security parameter k (where k ≥ 2 is an
integer) is a randomized algorithm that takes no inputs and returns integers N, p, q satisfying:

1. p, q are distinct, odd primes

2. N = pq

3. 2k−1 ≤ N < 2k (ie. N has bit-length k).

An RSA generator with associated security parameter k is a randomized algorithm that takes no
inputs and returns a pair ((N, e), (N, p, q, d)) such that the three conditions above are true, and, in
addition,

4. e, d ∈ Z∗
(p−1)(q−1)

5. ed ≡ 1 (mod (p − 1)(q − 1))

We call N an RSA modulus, or just modulus. We call e the encryption exponent and d the decryption

exponent.

Note that (p− 1)(q − 1) = ϕ(N) is the size of the group Z∗
N . So above, e, d are relatively prime to

the order of the group Z∗
N . As the above indicates, we are going to restrict attention to numbers

N that are the product of two distinct odd primes. Condition (4) for the RSA generator translates
to 1 ≤ e, d < (p − 1)(q − 1) and gcd(e, (p − 1)(q − 1)) = gcd(d, (p − 1)(q − 1)) = 1.

For parameter generation to be feasible, the generation algorithm must be efficient. There are
many different possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, q at random, with each being about k/2
bits long. The corresponding modulus generator K$

mod with associated security parameter k works
as follows:

Algorithm K$
mod

"1 ← 'k/2( ; "2 ← )k/2*
Repeat

p $← {2!1−1, . . . , 2!1 − 1} ; q $← {2!2−1, . . . , 2!2 − 1}
Until the following conditions are all true:

– TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
– p += q
– 2k−1 ≤ N

N ← pq

Return (N, e), (N, p, q, d)

Above, TEST-PRIME denotes an algorithm that takes input an integer and returns 1 or 0. It is
designed so that, with high probability, the former happens when the input is prime and the latter
when the input is composite.

Sometimes, we may want modulii product of primes having a special form, for example primes
p, q such that (p − 1)/2 and (q − 1)/2 are both prime. This corresponds to a different modulus
generator, which works as above but simply adds, to the list of conditions tested to exit the loop, the
conditions TEST-PRIME((p− 1)/2)) = 1 and TEST-PRIME((q− 1)/2)) = 1. There are numerous
other possible modulus generators too.

An RSA generator, in addition to N, p, q, needs to generate the exponents e, d. There are several
options for this. One is to first choose N, p, q, then pick e at random subject to gcd(N, ϕ(N)) =
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Note that (p − 1)(q − 1) = ϕ(N) is the size of the group Z∗
N . So above, e, d are

relatively prime to the order of the group Z∗
N . As the above indicates, we are going

to restrict attention to numbers N that are the product of two distinct odd primes.
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For parameter generation to be feasible, the generation algorithm must be effi-
cient. There are many different possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, q at random, with each be-
ing about k/2 bits long. The corresponding modulus generator K$

mod with associated
security parameter k works as follows:
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Above, TEST-PRIME denotes an algorithm that takes input an integer and returns
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and TEST-PRIME((q − 1)/2)) = 1. There are numerous other possible modulus
generators too.

An RSA generator, in addition to N, p, q, needs to generate the exponents e, d.
There are several options for this. One is to first choose N, p, q, then pick e at random
subject to gcd(N, ϕ(N)) = 1, and compute d via the algorithm of Proposition 7.8.
This random-exponent RSA generator, denoted K$

rsa, is detailed below:
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e
$← Z

∗
!

1

d←MOD–INV(e,!)

1

!

1

Plain RSA is not secure

• Under the RSA assumption it is hard to recover a message 
given the public key and a ciphertext.

•

•

•

•

• Nevertheless, the plain RSA is not a good encryption scheme.

• E.g. it is not IND-CPA secure. Why?

• One might try to add a random padding to a message before 
applying the RSA function, but as we saw it does not 
necessarily helps. 

M C=M
e
 mod N

easy

easy with d

hard without d

2

RSA-OAEP

M 0...0 $

⊕

G

H

⊕

RSA N,e

C

C

RSAN,d

⊕

H

G

⊕

M z $

Output M iff z=0...0

G,H are hash functions

3

RSA-OAEP

AlgorithmK
((N,e),(N, p,q,d)) $←K $

rsa

Return ((N,e),(N,d))

1

AlgorithmE(N,e)(M)

r
$← {0,1}k0

s←M||0k1⊕G(r)
t← r⊕H(s)

C←< s||t >e mod N

ReturnC

1

AlgorithmD(N,d)(C)
W ←C

d mod N

ParseW as s||t
r← H(s)⊕ t

M
′ ← s⊕G(r)

Parse M′ as M||z
If z= 0k1 thenReturnC Else return ⊥

1

G : {0,1}k0→ {0,1}k−k0

1

H : {0,1}k−k0→ {0,1}k0

1

Hash functions:

If z= 0
k1 then return M else return ⊥

1
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Security of RSA-OAEP

• RSA-OAEP has not been proven IND-CCA 

secure.

• But it is proven IND-CCA secure assuming the 

RSA assumption, and when G,H are modeled as 

random oracles. 

• Assuming the RSA problem is hard, RSA-OAEP 

is IND-CCA secure in the Random Oracle (RO) 

model. 

5

RO model

• The RO model assumes that all parties (adversary included) 
have oracle access to a truly random function.

• This is not true in reality. The model is ideal.

• In practice real hash functions such as SHA1 are used in place 
of random oracles.

• The belief is that security of the practical schemes holds in 
the standard model.

• However there are several examples of uninstantiable 
schemes (the schemes that are proven secure in the RO 
model but shown to be insecure for any instantiation of 
random oracles with a real function.)

• All currently known uninstantiable schemes are rather 
artificial.
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