Plain RSA encryption scheme

Algorithm $\mathcal{K}_{\text {mod }}^{¢}$		Algorithm $\mathcal{K}_{\text {rsa }}^{\$}$
$\ell_{1} \leftarrow\lfloor k / 2\rfloor ; \ell_{2} \leftarrow\lceil k / 2\rceil$		$(N, p, q) \stackrel{\leftrightarrow}{\leftarrow} \mathcal{K}_{\text {mod }}^{¢}$
Repeat		$\Phi \leftarrow(p-1)(q-1)$
$p \stackrel{s}{\leftarrow}\left\{2^{\ell_{1}-1}, \ldots, 2^{\ell_{1}}\right.$	$q \stackrel{s}{\leftarrow}\left\{2^{\ell_{2}-1}, \ldots, 2^{\ell_{2}}-1\right.$	$e \stackrel{\stackrel{s}{*}}{\leftarrow} Z_{\phi}^{*}$
- TEST-PRIME $(p)=$	$\operatorname{TEST}-\operatorname{PRIME}(q)=1$	$d \leftarrow \operatorname{MOD}-\operatorname{INV}(e, \phi)$
$\begin{aligned} & -\quad p \neq q \\ & -\quad 2^{k-1} \leq p q \end{aligned}$		Return $((N, e),(N, p, q, d))$
$N \leftarrow p q$		
Return (N, p, q)		
$\begin{array}{r} \text { Algorithm } \mathcal{K} \\ ((N, e),(N, p, q, d)) \stackrel{\mathcal{K}}{\boldsymbol{K}} \begin{array}{r} \mathrm{S} \text { sea } \\ \operatorname{Return}((N, e),(N, d)) \end{array} \end{array}$	Algorithm $\mathcal{E}_{(N, e)}(M)$ $C \leftarrow M^{e} \quad \bmod N$	$\begin{array}{r} \text { Algorithm } \mathcal{D}_{(N, d)}(C) \\ M \leftarrow C^{d} \bmod N \\ \text { Return } M \end{array}$

Plain RSA is not secure

- Under the RSA assumption it is hard to recover a message given the public key and a ciphertext.
-
- $M \underset{\text { easy with } d}{\stackrel{\text { easy }}{\rightleftarrows}} C=M^{e} \bmod N$
- hard without d
-
- Nevertheless, the plain RSA is not a good encryption scheme.
- E.g. it is not IND-CPA secure. Why?
- One might try to add a random padding to a message before applying the RSA function, but as we saw it does not necessarily helps.

(N,p,q,d)) $\stackrel{\mathcal{K}_{r s}^{\lessgtr}}{¢}$ Return $((N, e),(N, d))$

Algorithm $\mathcal{E}_{(N, e)}(M)$

Algorithm $\mathcal{D}_{(N, d)}(C)$
$W \leftarrow C^{d} \bmod N$ Parse W as $s \| t$ $r \leftarrow H(s) \oplus t$ $M^{\prime} \leftarrow s \oplus G(r)$ Parse M^{\prime} as $M \| z$
$z=0^{k_{1}}$ then return M else return \perp

Security of RSA-OAEP

- RSA-OAEP has not been proven IND-CCA secure
- But it is proven IND-CCA secure assuming the RSA assumption, and when G,H are modeled as random oracles.
- Assuming the RSA problem is hard, RSA-OAEP is IND-CCA secure in the Random Oracle (RO) model

RO model

- The RO model assumes that all parties (adversary included) have oracle access to a truly random function
- This is not true in reality. The model is ideal.
- In practice real hash functions such as SHA1 are used in place of random oracles.
- The belief is that security of the practical schemes holds in the standard model
- However there are several examples of uninstantiable schemes (the schemes that are proven secure in the RO model but shown to be insecure for any instantiation of random oracles with a real function.)
- All currently known uninstantiable schemes are rather artificial.

