The RSA system. The basics.

* Def. Let N,f = 1 be integers. The RSA function associated to
N,f is the function RSA ¢ 1 Zy — Zy defined by

RSAN,f (w) = wf mod N for all w € g

o Claim. LetN =2 2 and e, d e qu(N) be integers such thated = 1
(mod ¢(N)). Then the RSA functions RSAN e and RSAN gare

« both permutations on Zy and

« inverses of each other, ie. RSA_1 = RSA and
1 N,e N,d
RSAN,d = RSAN,e'

« Proof. For any xeZy; , modulo N:

d Xed mod ¢ (N)

* RSAy 4(RSAY o(X)) = (x®)d = xed = x1

« Similarly, RSAy o(RSA 4(Y)) =Y

X

e The RSA function associated to N,f can be efficiently computed
using MOD-EXP(-,f,N) algorithm.

« Hence, RSAN e(~) is efficiently computable given N,e
- RSAGL() = RSA 4() s efficiently computable given N,d

-1
. But RSAN e(-) = RSAN d(-) is believed hard (without d) for
a proper choice of parameters (good for crypto).

¢ Let’s build algorithms that generate RSA parameters.
* Claim. There is an O(kz) time algorithm that on inputs $(N), e

where e € Z¢(N) and N < 2%, returns d € Z¢(N) satisfying
ed =1 (mod ¢(N)).

¢ The RSA modulus generator:

Algorithm IC;s;md (k)
b = |k/2]; £y — [k/2]
Repeat
pE 267 ol 1) g S {2kt 9k 1)
Until the following conditions are all true:
— TEST-PRIME(p) =1 and TEST-PRIME(q) =1
- p#Fq
- 2 <pg
N —pq
Return (N, p,q)

¢ The random-exponent RSA generator:
Algorithm K8, (k)

rsa

(va7 q) <iIcimd
y M~ (p-1)(¢-1)
. e Zyy

d — MOD-INV (e, M)
Return ((N,e), (N,p,q,d))

¢ Often for efficiency we want e to be small, e.g. 3. Then

Algorithm K¢, (k)
Repeat
(N, p,q) = K5 0q(k)
Until
~— e<(p-1)ande<(¢g—1)
~ ged(e, (p—1)) =ged(e,(¢—1)) =1
M—(p-1)(g-1)
d — MOD-INV (e, M)
Return ((N,e), (N,p,q,d))




One-wayness problems
Def [ow-kea] For an adversary A consider an experiment:

Experiment Expo,cvg‘ca(A)
(N €), (N.p,q.d)) < Ky, (K
x &7y — 2 mod N
' & A(N,e,y)
If 2/ = x then return 1 else return 0

The ow-kea - advantage of A is defined as

AV (4) = Pr[Exppre(4) = 1]

easy o
X x- mod N
easy with d
hard without d
Let’s study several known attacks that “break” RSA, i.e.

compute an inverse of the RSA function on random inputs
without knowing the trapdoor.

One-wayness problems

¢ Def [ow-cea] For an adversary A consider an experiment:
Experiment Expg’~“**(A)

Y )Crsa
(vav q) & K:mod (k)
. 2y
(z,e) < A(N,y)
. Ifz¢=y (mod N)ande>1

then return 1 else return 0.
L]

The ow-cea - advantage of A is defined as

AdvETS(4) = P B () = 1]

Conjecture. The RSA function is believed to be ow-kea and ow-
cea secure, i.e. the corresponding advantages of any
polynomial-time (in k) adversaries are small.

Known attacks on RSA function
1. Factoring the RSA modulus.

» If one can factor N, i.e. compute p,q, s.t. N=pq then one
can compute d=e'1 mod (p-1)(g-1)
* The best known algorithm to factor is GNFS.

2. Theorem [RSA with low secret exponent]. Let N=pqg, where

q<p<2q and p,q are prime. Let d<1/3-N1/4
(N,e) one can efficiently compute d.

. Then given




3. Hast8d’s broadcast attack for RSA with low public exponent.

Cll CZI C3I pk1: kaI pk3

If N;,N,,N; are relatively ﬁ
prime then by Chinese
Remainder Theorem can

combine
C, = m*mod N,

[ )
Y, C,=m3mod N
2 2
{m pky=(N,, 3) C;=m3mod N,
pk3=(N3 3) to find C = m3mod N; N, N3
I
Since M3 < N; N, N5 then
~VeC

6. Theorem. [Coppersmith’s short pad attack].

Let N,e be RSA modulus and public exponent, where INI=k. Set m=k/e2

Let Mezﬁ be a message of length at most k-m bits.
Define M1=2mM+r1 and M2=2mM+r2,where O< ryfp< 2™ Then given

N,e,C1 ,02, one can efficiently recover M.

* When e=3 the attack works as long as the pad’s length is less than 1/9
of the message.

A fix? Let’s apply different polynomials to message prior to
applying the RSA function.

4. Theorem [broadcast attack on padded RSA with low public
exponents].
Let Ny,...N, be pairwise relatively prime integers and set

Nmin:mini(Ni)' Let g; be n polynomials of maximum degree
e. Suppose there exists a unique M<Nin satisfying
g;(M)=0 mod N; for all i=1,...n.

If n>e, then one can efficiently find M given all (Ni' gi) for
i=1,...,n.

5. Theorem [Related-message attack on RSA with low public

exponent].
Set e=3 and let N be and RSA modulus. Let M1¢Mzezl’(‘ satisfy

M, =f(M,) mod N for some linear polynomial f=ax+b with b+0.

Then, given (N,e,C1=M1e mod N,C2=M2e mod N), one can
recover M4,M5 in time quadratic in k=|N].

7. Theorem. Let N=pq be a k-bit RSA modulus. Then given k/4
least or most significant bits of p, one can efficiently factor N.

8. Theorem. Let N be a k-bit RSA modulus and let d be an RSA
secret exponent. Then given the k/4 least significant bits of d,
one can efficiently recover all bits of d.

Reference: http://crypto.stanford.edu/~dabo/abstracts/
RSAattack-survey.html




