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Symmeftric encryption, encryption modes,
security notions.

e Often the key generation algorithm simply picks a random

string from some key space KeySp (e.g. {O,1}k for some
integer k).

e In this case we will say that a scheme SE is defined by
KeySp and two algorithms: SE=(KeySp,E,D)

* The encryption algorithm can be either
* randomized (take as input a random string)

» or stateful (take as input some state (e.g. counter) that it
can update)

Symmetric encryption schemes

A scheme SE is specified by a key generation algorithm K, an

encryption algorithm E, and a decryption algorithm D.

SE=(K,E,D)
X _|.(> MsgSp-message space
. Ks A K 3 .
M t c C D M
— _0‘|'>J_ 7 a’>J.
Sender S Receiver R

It is required that for every MeMsgSp and every K that can be output by
K, D(K,E(K,M))=M

Block cipher modes of operation

* Modes of operation define how to use a block
cipher to encrypt long messages

* We will often assume that the message space
consists of messages whose length is multiple
of a block length




Electronic Code Book (ECB) mode

Let E:£0,13%x£0,131>{0,13" be a block cipher. ECB=({0,1}X,E,D):
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Cipher-block chaining (CBC) mode with random IV

Let E:£0,13Kx£0,131>{0,13" be a block cipher. CBC$=(£0,1}K,E,D):
Encryption algorithm £
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Electronic Code Book (ECB) mode

algorithm Ex (M)
if (JM|modn #0or |[M|=0) then return L
Break M into n-bit blocks M[1]--- M[m]
for i+ 1tomdo
Cli] « Ex(M[i])
C—C[1]---C[m]
return C

algorithm Dy (C)
if (JC|modn # 0 or |C| =0) then return L
Break C' into n-bit blocks C[1]--- C[m]
for i« 1tom do
M) — EZY(CPH))
M «— M[1]--- Mm]
return M

Cipher-block chaining (CBC) mode with random IV

algorithm Ex (M)
if (|JM|modn # 0 or |M|=0) then return L
Break M into n-bit blocks M[1]--- M[m]
Clo] —1v < {0,1}
for i<+ 1tom do
Cli] — Ex(Cli — 1] & M[i])
C—C[1]---Cm]
return (IV, C)

algorithm Dk ((IV, C))
if (|C| modn # 0 or [M|=0) then return L
Break C' into n-bit blocks C[1]--- C[m]
C[0] « IV
for i — 1tom do
M)« EZNCi) @ Cli — 1))
M «— M[1]--- M[m)]
return M




Stateful Cipher-block chaining (CBC) mode with counter IV

Let E:£0,13Kx£0,131>{0,13" be a block cipher. CBCC=({0,1}X,E,Dy:
Encryption algorithm £
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Randomized counter mode (CTR$)

Let F:{O,l}kx{O,l}‘—v{O,l}L be a function family. CBC$=({0,1}k,E,D):
Encryption algorithm £
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Stateful Cipher-block chaining (CBC) mode with counter IV

algorithm Ex (M)
static ctr < 0
if (JM|modn # 0 or |[M|=0) then return L
Break M into n-bit blocks M(1]--- M[m)]
if ctr > 2" then return L
Cl0] « IV « [ctr],
for i« 1tom do
Cli] — Ex(Cli — 1] & M[d])
C —C[1]---Cm]
ctr «—ctr+1
return (IV,C)

algorithm Dy ((IV, C))
if (|C]modn # 0 or |C|=0) then return L
Break C' into n-bit blocks C[1]---C[m]|
if IV 4+ m > 2" then return L
Cl0] IV
for i —1tom do
Mli] — EZ'(C[i]) @ Cli —1])
M — M[1]--- M[m]
return M

Randomized counter mode (CTR$)

algorithm Ex (M)
m «— [|[M|/L]
R {0,1}¢
Pad — Fg(R+1) || Fk(R+2) || -+ || Fx(R+m)
Pad — the first |M| bits of Pad
C" — M & Pad
C—R|C

return C

algorithm D (C)
if |C| < {then return L
Parse C into R || C’ where |R| = ¢
m— [|C"]/L]
Pad — Fie(R+1) | Fc(R+2) || -~ | Fic(R+m)
Pad « the first |C’| bits of Pad
M « C' ® Pad
return M




Stateful counter mode (CTRC)

Let F:{O,l}kx{O,l}e—v{O,l}L be a function family. CBC$=({0,1}k,'E,D):
Encryption algorithm £
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ctr is maintained as a
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What is a secure encryption scheme?
* Recall, perfectly secure schemes are impractical

* We assume that adversaries are computationally
bounded

* A scheme is secure when it is not insecure.

* Insecure = adversaries can do bad things.

* Bad things: an adversary, who sees ciphertexts
* can compute the secret key
* can compute some plaintexts
* can compute the first bit of a plaintext
* can compute the sum of the bits of a plaintext
* can see when equal messages are encrypted

* can compute ...........

Stateful counter mode (CTRC)

algorithm Ex (M)
static ctr « 0
m «— [|M|/L]
If ctr +m > 2¢ then return L
Pad « Fg(ctr + 1) || Fx(ctr +2) || -+ || Fx(ctr +m)
Pad « the first | M| bits of Pad
C — M & Pad
ctr < ctr +m
return (ctr —m,C)

algorithm Dk ((i,C))

m «— [|C|/L]

Pad — Fg(i+1) || Fx(i+2) | -+ || Fk(i +m)
Pad « the first |C| bits of Pad

M «— Pad ® C

return M

So what is a secure encryption scheme?

* Informally, an encryption scheme is secure if no
adversary with “reasonable” resources who sees
several ciphertexts can compute any* partial
information about the plaintexts, besides some
a-priori information.

* Any information, except the length of the
plaintexts. We assume the length of the
plaintexts is public.

* Note, that the above implies that the bad things
we mentioned do not happen. And the other
“bad” things.

* While the above “definition” captures the right
intuition, it’s too informal to be useful.




Indistinguishability under chosen-plaintext attacks
Fix SE=(KeySp,E,D)
K‘$—KeySp

For an adversary A and a bit b consider an experiment Expin® P4 (4)

b
|
|

MoM M

R | LR() | E

A =M B (R()
Experiment Expitg " (A) | Experiment Explse ()
ld K&K K&K
; d & AEK(LR(1)) 4 & AEK(LR(,0)
The experiment returns d Return d Bt

The IND-CPA advantage of A is:
Adv.g'g’(:pa(A) = Pr [Expg'giwa’l(A) = 1} —Pr [ExpiS"ngaio(A) = 1]
A symmetric encryption scheme SE is indistinguishable under chosen-

plaintext attacks (IND-CPA secure) if for any adversary A with “reasonable”
resources Advidr?(4) is “small” (close to 0).

Alternative interpretation
Fix SE=(KeySp,E,D)

K& KeySp
For an adversary A consider an experiment Expias "5 ( A)
]
?
b
l Experiment Exp?ﬁ’“paﬁcg(A)
MMl | LR M Bk bE{0,1); KK
v & AEK(LR(b))
y if b=10 then return 1 else return 0
N
A
b
The experiment returns 1 iff A b’=b
Claim. Advi§s™™(4) = 2-Pr [Expgd ™ #(4) =1] -1
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Pr [Explge ™ 4(4) = 1]
= Pr[p=V]
= Prb=V|b=1]-Prb=1+Pr[b=0|b=0]-Prb=0]
= Prlo=p[b=1] L4 Prlb=v]b=0]-
U 1 7’ 1
= Pr[t=1]b=1]-=+Pr[¥ =0|b=0]->
2 2
, 1 , 1
= Pr[b:l\b:l]‘§+(17Pr[b:1“}:0])»5
= bW =1p=1]-Prf=1]p=0)
1.1 ind-cpa- ind-cpa-
= §+§-<P1'[Expsgl ¥ I(A)zl]—Pr [Exps‘;i P O(A)zl})
1.1 ind-cpa
= 5+§~Adv5§p(,4)
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Why IND-CPA ensures that no partial information is leaked?

Fix SE=(KeySp,E,D) with MsgSp={0,1}m. Assume there exists an adversary B that
after seeing a few plaintexts-cipertexts pairs and a challenge ciphertext can
compute the challenge plaintext. Namely, in

o Experiment Exp%: " (B) Advi;P(B) = Pr [Expg?’w(B) = 1}
K&K

. M {0,137 is non-negligible
C & Ep(M)

¢ MEBERO(E)

If M = M’ then return 1 else return 0
¢ Then SE is not IND-CPA secure.

Claim. [IND-CPA=PR-CPA] Fix SE=(KeySp,E,D) with MsgSp={0,1}m. Then for
every adversary B there exists an adversary A such that
AAVEEPA(B) < AdvEET(A)

. - om

and 9a=qs+ 1, pa=pp+m,ty=tg = O(u+m+-c)

20




* Proof. We define A as follows:

o Adversary ASKx(IR(.0)
Mo < {0,1}™; My < {0,1}™
* C — Ex(LR(Mo, M, b))
Run adversary B on input C, replying to its oracle queries as follows

When B makes an oracle query X do
. Y « Ex(LR(X, X, b))
return Y to B as the answer

When B halts and outputs a plaintext M
. If M = M; then return 1 else return 0

* We now analyze the adversary:
Pr[Expld™ ™ (4) = 1] > AdvE;™(B)

Pr [Expg'g—r‘pa'o(A) = 1} < 27

ind-cpa _ ind-cpa-1 _4]_ ind-cpa-0 _
L AQVEETN(A) = Pr[Bxple ™ (4) = 1] - Pr [Explf " 0(4) = 1]
> AdvEP(B)—27".

The resources of A are justified by the description of A.

21

ECB is not IND-CPA

Adversary A€x(LR(.0)
My — 0% My 0" || 17
0[1]0[2] — SK(LR(]WQ, ]\/11, b))
If C[1] = C[2] then return 1 else return 0

AdVjLP(4) = Pr [ Exppdy ™ (4) = 1]~ Pr [ Expily ™ () = 1] =1-0=1
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Analysis of the ECB mode.
Let E:{0,13¥x£0,13"{0,1}" be a block cipher. ECB=({0,1}K,E,D):

| MJT] | MJ[&Z] |

Encryption

algorithm £ EK EK EK

} | |
[cu] [

Conjecture. ECB is PR-CPA secure.

Is ECB a good encryption scheme?

Is ECB IND-CPA secure?

22
* Claim. Any deterministic, stateless scheme is
not IND-CPA
* Why?
24




Analysis of the CTRC

Let F:{O,l}kx{O,l}‘—v{O,l}L be a function family. CBC$=({0,1}k,E,D):

F

Encryption algorithm £

ctr is initially o

A current counter FK
ctr is maintained as a

N T e L5 i —7

The scheme is used to encrypt at most 2 blocks (so that the counter does not wrap around)

* How good is the scheme?
¢ The flaws seem hard to find.
* Q. But may be they exist and we just don't see them?

* A. The mode is as good as it can be and we can prove it.

25
* Proof. Let A be any “ind-cpa” adversary attacking CTRC. We present a
“prf” adversary B:
b&£{01} | (.)::_" 9/Fy g is a random instance of Func(c,L)
g/F|<
MM
B can simulate the CTRC encryption algorithm
MOfMll l because it makes only “oracle” use of the
b’ underlying function F.
—>
B B
B
Adversary BY
b {0,1}
Run adversary A, replying to its oracle queries as follows
When A makes an oracle query (My, M;) do
O & Ey(My)
Return C to A as the answer
Until A stops and outputs a bit ¥’
If ¥ = b then return 1 else return 0
27

Security of CTRC

* Theorem. For any adversary A there exists an adversary B such that

o AdVIELPM(A) < 2-Advi(B)

HA HA
T)JIB = T HB= HA

where  tp=14+0(ga+ (I+L) .

« Proof idea. We present an adversary B who needs to distinguish whether

it is given an oracle access to a truly random function or an instance of
F. B will use A’s ability to break the CTRC encryption scheme. B will run
A as a subroutine, simulating the ind-cpa experiment for it. B will
answer A’s oracle queries using its own oracle. Finally, if A wins, B will
win.
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e Let us analyze B. Note that

o Pr[Bxpi(B)=1] = Pr[Expliarea)=1] = %* % PAdVET"(A)
. Dr [Expiff'“(B) = 1} = Pr [EXP?g[_FCf:;&%L)](A) = 1] = % + % FAAVEEET () (4)
and thus
AdvE(B) = Pr[Bxpl™(B) = 1] — Pr [Bxpp™(B) = 1]
- % - AdVITR(A) - % AV ()

We will show that Advyg{;ﬂ’fc([,L)](A) =0

and the statement of the theorem follows.Finally the resources of B are
justified by the algorithm for B.

28




Adviggebe 1 (A) = 0 because all the values corresponding to the red dots
on the picture below are random and independent (since they are the
results of a random function applied to distinct points) and thus
C[1],...,C[m] are also random values, independent from the adversary A’s

challenge bit.

1
g g
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Analysis of the CTR$

Let F:{O,l}kx{O,l}‘—v{O,l}L be a function family. CBC$=({0,1}k,E,D):
Encryption algorithm £

RE£0.1)¢ R+2 R+m
' |

F Fg Fg
Mf—¢ M2l MIm—¢
[ R ] [er] [c21 ] | ctmi |

30

Security of CTR$

* Theorem. For any adversary A there exists an adversary B such that

2
ind—c, M
o Adver"(A) <2-Advi (B)+ 57

HA Ha

where t5=14+0(qa+ (I +L)7),qs =M= A

* What does the security statement tell us?

530

* Let F be AES, /=L=128. Assume one encrypts q= messages, 1 Kb

13 . / %
each (277 bits), recall Adv{(A) gzﬁ

2 2 2
ind—cpa ~ qAES My 3 M
Adverps(A) < =2 218 T2l T [20im
. 4.0432 1

S g o

* Proof idea. As in the proof of the previous theorem.
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* Proof. The adversary B is exactly like one in the proof of the previous
theorem. But now we claim that

2
ind—cpa Ha
. AdVCTRs(s[p;unc(t.L)](A) < 2. 2.0

¢ Given this and the previous proof, the statement of the theorem follows.

* To prove the claim note that after q queries A made the inputs to the
random function are

riHl 42, e, TiEm Let NoCol be the event that these values are all
o1, To42, -, To+ma distinct, and Col is the complement of NoCol.

: Then
rgt+ 1, Tg+2, oo, TEtmy

ind—c,
AdeTRsf[i{lunr(LL)] (A)

= Pri[A=1]-Pr[4d=1]
Pry [A =1] Col] - Pry [Col] + Pry [A = 1] NoCol] - Pry [NoCol|
— Prg [A = 1] Col] - Prg [Col] — Pry [A = 1| NoCol] - Prg [NoCol]
= (Pr1[A =1]Col] - Prg[A = 1] Col]) - Prg [Col]
Pry [Col] .

A

32




e It remains to calculate Pr [CO” (we drop the subscript 0 in the notation)
Pr(Col] = Pr[Coly] (Col;is the event that there is is collision in the first i rows)
= Pr[Col,_1] 4 Pr[Col, | NoCol,_1] - Pr[NoCol,_1]
Pr [Col,—1] 4 Pr[Col, | NoColg—1]

IN

IN

IA

q
Pr[Coly] + ZPr [Col; | NoCol;_1]
=2

q
= ZPI‘ [Col; | NoCol; 1] .
=2

mi+mg—1)+ (mi+ma—1)+--+ (mj +mi—1 —1

Pr[Col; | NoCol;—1] < (ms L= 1)+ (m 22[) (my i-1—1)
(i—1)mij+mi_1+---4+my—(i—1)
- 2t )

q
Z Pr [Col; | NoCol;—1]

=2

Pr[Col]

IN

(i = D)mi 4+ miog + -+
2t

IN

Il
o

(g=D(mi +---+mg)
2t ’

The statement follows after we
note that my+...+mg=pa/l
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Security of CBC$
Let E:{0,13¥x{0,13"0,1}" be a block cipher. CBC$=({0,1}K,E,Dy:
Encryption algorithm £
ven" |V [ [mil ] [ M2
_ ®
E
Ex Bl K
L v [[ean] [ca]
* Theorem. For any adversary A there exists an adversary B such that
ind—cpa T ]'42
© Adv/es™(4) <2 Advy (B) +
where 1 =14+0(qa+a), g5 = ”;A M8 = Ha
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Security of CBCC

Let E:£0,13Kx£0,131>{0,13" be a block cipher. CBCC=({0,1}X,E,Dy:
Stateful Encryption algorithm £

creo" [ ar [[M01 ] [m21]

incremented _ e

for each new

message E K E Kl ----- E K

— 1 e
e J[omn ] [e]

* Theorem. There exists an adversary A such that Advia-"“(A) =1

* Proof idea. Adversary ASx(LR(.b))
Moy — 0" J”l,l — Q"
]\'[012 — Q" H 1\1172 — 11
(IV1,C1) < Ex(LR(Mo 1, My4,b))
(IVa, C) & £ (LR(Mo,2, M1 2,b))
If C; = C5 then return 1 else return 0
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Did we get all we wanted?

Is IND-CPA security definition strong enough (does it take
into account all the bad things that can happen?)

* An adversary wants to win: to get some partial
information about the plaintext from a challenge
ciphertext

¢ What if the adversary can make the receiver to decrypt
other ciphertexts of the adversary’s choice, learn the
plaintexts and this helps it to win?

¢ Our definition didn’t consider such “chosen-ciphertext”
attacks
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Indistinguishability under chosen-ciphertext attacks
Fix SE=(KeySp,E,D)

K<$4 KeySp
For an adversary A and a bit b consider an experiment Exp?a—<“~*(A)
|
o | Ais not allowed to query
o LR(-,",") Mp EK(-) its decryption oracle on
( > ‘ ciphertexts returned by
— its LR encryption oracle
# VOB (1)
ALC .
v DK(-)

[d
The experiment returns d

The IND-CCA advantage of A is:
Adv7dc?(A) = Pr [Expiig “"1(A) = 1] — Pr [Explis “°(4) = 1]
A symmetric encryption scheme SE is indistinguishable under chosen-

ciphertext attacks (IND-CCA secure) if for any adversary A with “reasonable”
resources Adv‘}’%"""'(A) is “small” (close to 0).
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