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Symmetric encryption schemes
A scheme SE is specified by a key generation algorithm K, an 

encryption algorithm E, and a decryption algorithm D.
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• Often the key generation algorithm simply picks a random 

string from some key space KeySp (e.g. {0,1}
k
 for some 

integer k).

• In this case we will say that a scheme SE is defined by 

KeySp and two algorithms: SE=(KeySp,E,D)  

• The encryption algorithm can be either 

• randomized (take as input a random string)

• or stateful (take as input some state (e.g. counter) that it 
can update)
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Block cipher modes of operation

• Modes of operation define how to use a block 

cipher to encrypt long messages

• We will often assume that the message space 

consists of messages whose length is multiple 

of a block length
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Electronic Code Book (ECB) mode
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Electronic Code Book (ECB) mode

Bellare and Rogaway 5

algorithm EK(M)
if (|M | mod n != 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
for i ← 1 to m do

C[i] ← EK(M [i])
C ← C[1] · · ·C[m]
return C

algorithm DK(C)
if (|C| mod n != 0 or |C| = 0) then return ⊥
Break C into n-bit blocks C[1] · · ·C[m]
for i ← 1 to m do

M [i] ← E−1
K (C[i])

M ← M [1] · · ·M [m]
return M

Figure 4.1: ECB mode.

did not make any random choices. (That does not mean it is not, technically, a
randomized algorithm; it is simply a randomized algorithm that happened not to
make any random choices.)

The next scheme, cipher-block chaining (CBC) with random initial vector, is the
most popular block-cipher mode of operation, used pervasively in practice.

Scheme 4.4 [CBC$ mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher.
Operating it in CBC mode with random IV yields a stateless symmetric encryption
scheme, SE = (K, E ,D). The key generation algorithm simply returns a random
key for the block cipher, K $←K. The encryption and decryption algorithms are
depicted in Fig. 4.2. The IV (“initialization vector”) is C[0], which is chosen at
random by the encryption algorithm. This choice is made independently each time
the algorithm is invoked.

For the following schemes it is useful to introduce some notation. If n ≥ 1 and i ≥ 0
are integers then we let [i]n denote the n-bit string that is the binary representation
of integer i mod 2n. If we use a number i ≥ 0 in a context for which a string
I ∈ {0, 1}n is required, it is understood that we mean to replace i by I = [i]n. The
following is a counter-based version of CBC mode, whose security is considered in
Section 4.5.3.

Scheme 4.5 [CBCC mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher.
Operating it in CBC mode with counter IV yields a stateful symmetric encryption
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Cipher-block chaining (CBC) mode with random IV
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Cipher-block chaining (CBC) mode with random IV
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algorithm EK(M)
if (|M | mod n != 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
C[0] ← IV $← {0, 1}n

for i ← 1 to m do
C[i] ← EK(C[i − 1] ⊕ M [i])

C ← C[1] · · ·C[m]
return 〈IV, C〉

algorithm DK(〈IV, C〉)
if (|C| mod n != 0 or |M | = 0) then return ⊥
Break C into n-bit blocks C[1] · · ·C[m]
C[0] ← IV
for i ← 1 to m do

M [i] ← E−1
K (C[i]) ⊕ C[i − 1])

M ← M [1] · · ·M [m]
return M

Figure 4.2: CBC$ mode.

scheme, SE = (K, E ,D). The key generation algorithm simply returns a random
key for the block cipher, K $←K. The encryptor maintains a counter ctr which is
initially zero. The encryption and decryption algorithms are depicted in Fig. 4.3.
The IV (“initialization vector”) is C[0], which is set to the current value of the
counter. The counter is then incremented each time a message is encrypted. The
counter is a static variable, meaning that its value is preserved across invocations
of the encryption algorithm.

The CTR (counter) modes that follow are not much used, to the best of our knowl-
edge, but perhaps wrongly so. We will see later that they have good privacy prop-
erties. In contrast to CBC, the encryption procedure is parallelizable, which can be
exploited to speed up the process in the presence of hardware support. It is also
the case that the methods work for strings of arbitrary bit lengths, without doing
anything “special” to achieve this end. There are two variants of CTR mode, one
random and the other stateful, and, as we will see later, their security properties
are different. For security analyses see Section 4.7 and Section ??.

Scheme 4.6 [CTR$ mode] Let F : K×{0, 1}! → {0, 1}L be a family of functions.
(Possibly a block cipher, but not necessarily.) Then CTR mode over F with a
random starting point is a probabilistic, stateless symmetric encryption scheme,
SE = (K, E ,D). The key-generation algorithm simply returns a random key for E.
The encryption and decryption algorithms are depicted in Fig. 4.4. The starting
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Stateful Cipher-block chaining (CBC) mode with counter IV
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algorithm EK(M)
static ctr ← 0
if (|M | mod n "= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
if ctr ≥ 2n then return ⊥
C[0] ← IV ← [ctr]n
for i ← 1 to m do

C[i] ← EK(C[i − 1] ⊕ M [i])
C ← C[1] · · ·C[m]
ctr ← ctr + 1
return 〈IV, C〉

algorithm DK(〈IV, C〉)
if (|C| mod n "= 0 or |C| = 0) then return ⊥
Break C into n-bit blocks C[1] · · ·C[m]
if IV + m > 2n then return ⊥
C[0] ← IV
for i ← 1 to m do

M [i] ← E−1
K (C[i]) ⊕ C[i − 1])

M ← M [1] · · ·M [m]
return M

Figure 4.3: CBCC mode.

point R is used to define a sequence of values on which FK is applied to produce
a “pseudo one-time pad” to which the plaintext is XORed. The starting point R
chosen by the encryption algorithm is a random !-bit string. To add an !-bit string R
to an integer i—when we write FK(R+i)—convert the !-bit string R into an integer
in the range [0 .. 2! − 1] in the usual way, add this number to i, take the result
modulo 2!, and then convert this back into an !-bit string. Note that the starting
point R is included in the ciphertext, to enable decryption. On encryption, the pad
Pad is understood to be the empty string when m = 0.

We now give the counter-based version of CTR mode.

Scheme 4.7 [CTRC mode] Let F : K×{0, 1}! → {0, 1}L be a family of functions.
(Possibly a block cipher, but not necessarily.) Operating it in CTR mode with a
counter starting point is a stateful symmetric encryption scheme, SE = (K, E ,D),
which we call CTRC. The key-generation algorithm simply returns a random key
for F . The encryptor maintains a counter ctr which is initially zero. The encryption
and decryption algorithms are depicted in Fig. 4.5. Position index ctr is not allowed
to wrap around: the encryption algorithm returns ⊥ if this would happen. The
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Randomized counter mode (CTR$)
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Randomized counter mode (CTR$) 
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algorithm EK(M)
m ← "|M |/L#
R $← {0, 1}!

Pad ← FK(R + 1) ‖ FK(R + 2) ‖ · · · ‖ FK(R + m)
Pad ← the first |M | bits of Pad
C ′ ← M ⊕ Pad
C ← R ‖ C ′
return C

algorithm DK(C)
if |C| < ! then return ⊥
Parse C into R ‖ C ′ where |R| = !
m ← "|C ′|/L#
Pad ← FK(R + 1) ‖ FK(R + 2) ‖ · · · ‖ FK(R + m)
Pad ← the first |C ′| bits of Pad
M ← C ′ ⊕ Pad
return M

Figure 4.4: CTR$ mode using a family of functions F : K× {0, 1}! → {0, 1}L. This
version of counter mode is randomized and stateless.

position index is included in the ciphertext in order to enable decryption. The
encryption algorithm updates the position index upon each invocation, and begins
with this updated value the next time it is invoked.

We will return to the security of these schemes after we have developed the appro-
priate notions.

4.3 Issues in privacy

Let us fix a symmetric encryption scheme SE = (K, E ,D). Two parties share a
key K for this scheme, this key having being generated as K $←K. The adversary
does not a priori know K. We now want to explore the issue of what the privacy of
the scheme might mean. For this chapter, security is privacy, and we are trying to
get to the heart of what security is about.

The adversary is assumed able to capture any ciphertext that flows on the chan-
nel between the two parties. It can thus collect ciphertexts, and try to glean some-
thing from them. Our first question is: what exactly does “glean” mean? What
tasks, were the adversary to accomplish them, would make us declare the scheme
insecure? And, correspondingly, what tasks, were the adversary unable to accom-
plish them, would make us declare the scheme secure?
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Stateful counter mode (CTRC)
Bellare and Rogaway 9

algorithm EK(M)
static ctr ← 0
m ← "|M |/L#
If ctr + m ≥ 2! then return ⊥
Pad ← FK(ctr + 1) ‖ FK(ctr + 2) ‖ · · · ‖ FK(ctr + m)
Pad ← the first |M | bits of Pad
C ← M ⊕ Pad
ctr ← ctr + m
return 〈ctr − m, C〉

algorithm DK(〈i, C〉)
m ← "|C|/L#
Pad ← FK(i + 1) ‖ FK(i + 2) ‖ · · · ‖ FK(i + m)
Pad ← the first |C| bits of Pad
M ← Pad ⊕ C
return M

Figure 4.5: CTRC mode using a family of functions F : K× {0, 1}! → {0, 1}L. This
version of counter mode uses stateful (but deterministic) encryption.

It is easier to think about insecurity than security, because we can certainly
identify adversary actions that indubitably imply the scheme is insecure. So let us
begin here.

For example, if the adversary can, from a few ciphertexts, derive the underlying
key K, it can later decrypt anything it sees, so if the scheme allowed easy key
recovery from a few ciphertexts it is definitely insecure.

Now, the mistake that is often made is to go on to reverse this, saying that if key
recovery is hard, then the scheme is secure. This is certainly not true, for there are
other possible weaknesses. For example, what if, given the ciphertext, the adversary
could easily recover the plaintext M without finding the key? Certainly the scheme
is insecure then too.

So should we now declare a scheme secure if it is hard to recover a plaintext
from the ciphertext? Many people would say yes. Yet, this would be wrong too.

One reason is that the adversary might be able to figure out partial information
about M . For example, even though it might not be able to recover M , the adversary
might, given C, be able to recover the first bit of M , or the sum of all the bits of M .
This is not good, because these bits might carry valuable information.

For a concrete example, say I am communicating to my broker a message which
is a sequence of “buy” or “sell” decisions for a pre-specified sequence of stocks. That
is, we have certain stocks, numbered 1 through m, and bit i of the message is 1 if I
want to buy stock i and 0 otherwise. The message is sent encrypted. But if the first
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What is a secure encryption scheme?
• Recall, perfectly secure schemes are impractical

• We assume that adversaries are computationally 
bounded

• A scheme is secure when it is not insecure.

• Insecure = adversaries can do bad things.

• Bad things: an adversary, who sees ciphertexts

• can compute the secret key

• can compute some plaintexts

• can compute the first bit of a plaintext

• can compute the sum of the bits of a plaintext

• can see when equal messages are encrypted

• can compute ...........
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So what is a secure encryption scheme?

• Informally, an encryption scheme is secure if no 

adversary with “reasonable” resources who sees  

several ciphertexts can compute any* partial 

information about the plaintexts, besides some 

a-priori information.

  * Any information, except the length of the 

plaintexts. We assume the length of the 

plaintexts is public.

• Note, that the above implies that the bad things 

we mentioned do not happen. And the other 

“bad” things.

• While the above “definition” captures the right 

intuition, it’s too informal to be useful.
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Indistinguishability under chosen-plaintext attacks
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For an adversary A and a bit b consider an experiment Exp
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A symmetric encryption scheme SE is indistinguishable under chosen-
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The oracle used above is specified in Fig. 4.6. The IND-CPA advantage of A is
defined as

Advind-cpa
SE (A) = Pr

[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]

.

As the above indicates, the choice of which world we are in is made just once, at
the beginning, before the adversary starts to interact with the oracle. In world 0,
all message pairs sent to the oracle are answered by the oracle encrypting the left
message in the pair, while in world 1, all message pairs are answered by the oracle
encrypting the right message in the pair. The choice of which does not flip-flop from
oracle query to oracle query.

If Advind-cpa
SE (A) is small (meaning close to zero), it means that A is outputting 1

about as often in world 0 as in world 1, meaning it is not doing a good job of telling
which world it is in. If this quantity is large (meaning close to one—or at least far
from zero) then the adversary A is doing well, meaning our scheme SE is not secure,
at least to the extent that we regard A as “reasonable.”

Informally, for symmetric encryption scheme SE to be secure against chosen
plaintext attack, the IND-CPA advantage of an adversary must be small, no matter
what strategy the adversary tries. However, we have to be realistic in our expec-
tations, understanding that the advantage may grow as the adversary invests more
effort in its attack. Security is a measure of how large the advantage of the adversary
might when compared against the adversary’s resources.

We consider an encryption scheme to be “secure against chosen-plaintext at-
tack” if an adversary restricted to using “practical” amount of resources (computing
time, number of queries) cannot obtain “significant” advantage. The technical no-
tion is called left-or-right indistinguishability under chosen-plaintext attack, denoted
IND-CPA.

We discuss some important conventions regarding the resources of adversary A.
The running time of an adversary A is the worst case execution time of A over all
possible coins of A and all conceivable oracle return values (including return values
that could never arise in the experiments used to define the advantage). Oracle
queries are understood to return a value in unit time, but it takes the adversary
one unit of time to read any bit that it chooses to read. By convention, the running
time of A also includes the size of the code of the adversary A, in some fixed RAM
model of computation. This convention for measuring time complexity is the same
as used in other parts of these notes, for all kinds of adversaries.

Other resource conventions are specific to the IND-CPA notion. When the ad-
versary asks its left-or-right encryption oracle a query (M0, M1) we say that length
of this query is max(|M0|, |M1|). (This will equal |M0| for any reasonable adversary
since an oracle query with messages of different lengths results in the adversary
being returned ⊥, so we can assume no reasonable adversary makes such a query.)
The total length of queries is the sum of the length of each query. We can measure
query lengths in bits or in blocks, with block having some understood number of
bits n.
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C $← EK(M0), and returns C as the answer.

World 1: The oracle provided to the adversary is EK(LR(·, ·, 1)). So, whenever
the adversary makes a query (M0, M1) with |M0| = |M1| to its oracle, the oracle
computes C $← EK(M1), and returns C as the answer.

We also call the first world (or oracle) the “left” world (or oracle), and the second
world (or oracle) the “right” world (or oracle). The problem for the adversary is,
after talking to its oracle for some time, to tell which of the two oracles it was given.
Before we pin this down, let us further clarify exactly how the oracle operates.

Think of the oracle as a subroutine to which A has access. Adversary A can
make an oracle query (M0, M1) by calling the subroutine with arguments (M0, M1).
In one step, the answer is then returned. Adversary A has no control on how the
answer is computed, nor can A see the inner workings of the subroutine, which will
typically depend on secret information that A is not provided. Adversary A has
only an interface to the subroutine—the ability to call it as a black-box, and get
back an answer.

First assume the given symmetric encryption scheme SE is stateless. The oracle,
in either world, is probabilistic, because it calls the encryption algorithm. Recall
that this algorithm is probabilistic. Above, when we say C $← EK(Mb), it is implicit
that the oracle picks its own random coins and uses them to compute ciphertext C.

The random choices of the encryption function are somewhat “under the rug”
here, not being explicitly represented in the notation. But these random bits should
not be forgotten. They are central to the meaningfulness of the notion and the
security of the schemes.

If the given symmetric encryption scheme SE is stateful, the oracles, in either
world, become stateful, too. (Think of a subroutine that maintains a “static” vari-
able across successive calls.) An oracle begins with a state value initialized to a
value specified by the encryption scheme. For example, in CTRC mode, the state
is an integer ctr that is initialized to 0. Now, each time the oracle is invoked, it
computes EK(Mb) according to the specification of algorithm E . The algorithm may,
as a side-effect, update the state, and upon the next invocation of the oracle, the
new state value will be used.

The following definition associates to a symmetric encryption scheme SE and an
adversary A a pair of experiments, one capturing each of the worlds described above.
The adversary’s advantage, which measures its success in breaking the scheme, is
the difference in probabilities of the two experiments returning the bit one.

Definition 4.8 Let SE = (K, E ,D) be a symmetric encryption scheme, and let A
be an algorithm that has access to an oracle. We consider the following experiments:

Experiment Expind-cpa-1
SE (A)

K $←K
d $← AEK(LR(·,·,1))
Return d

Experiment Expind-cpa-0
SE (A)

K $←K
d $← AEK(LR(·,·,0))
Return dThe experiment returns d 

E
K
(•)

C=EK(Mb)
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The resources of the adversary we will typically care about are three. First, its
time-complexity, measured according to the convention above. Second, the number
of oracle queries, meaning the number of message pairs the adversary asks of its
oracle. These messages may have different lengths, and our third resource measure is
the sum of all these lengths, denoted µ, again measured according to the convention
above.

4.4.2 Alternative interpretation

Let us move on to describe a somewhat different interpretation of left-or-right indis-
tinguishability. Why is Advind-cpa

SE (A) called the “advantage” of the adversary? We
can view the task of the adversary as trying to guess which world it is in. A trivial
guess is for the adversary to return a random bit. In that case, it has probability 1/2
of being right. Clearly, it has not done anything damaging in this case. The advan-
tage of the adversary measures how much better than this it does at guessing which
world it is in, namely the excess over 1/2 of the adversary’s probability of guessing
correctly. In this subsection we will see how the above definition corresponds to this
alternative view, a view that lends some extra intuition to the definition and is also
useful in later usages of the definition.

Proposition 4.9 Let SE = (K, E ,D) be a symmetric encryption scheme, and let A
be an algorithm that has access to an oracle that takes input a pair of strings and
returns a string. We consider the following experiment:

Experiment Expind-cpa-cg
SE (A)

b $← {0, 1} ; K $←K
b′ $← AEK(LR(·,·,b))
if b = b′ then return 1 else return 0

Then

Advind-cpa
SE (A) = 2 · Pr

[
Expind-cpa-cg

SE (A) = 1
]
− 1 .

In the above experiment, adversary A is run with an oracle for world b, where the
bit b is chosen at random. A eventually outputs a bit b′, its guess as to the value of
b. The experiment returns 1 if A’s guess is correct. Thus,

Pr
[
Expind-cpa-cg

SE (A) = 1
]

is the probability that A correctly guesses which world it is in. (The “cg” in the
superscript naming the experiment stands for “correct guess.”) The probability is
over the initial choice of world as given by the bit b, the choice of K, the random
choices of EK(·) if any, and the coins of A if any. This value is 1/2 when the adversary
deserves no advantage, since one can guess b correctly by a strategy as simple as
“always answer zero” or “answer with a random bit.” The “advantage” of A can
thus be viewed as the excess of this probability over 1/2, which, re-scaled, is

2 · Pr
[
Expind-cpa-cg

SE (A) = 1
]
− 1 .

For an adversary A consider an experiment 
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Claim.
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The experiment returns 1 iff A b’=b

b’
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Proof of the claim
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The Proposition says that this rescaled advantage is exactly the same measure as
before.

Proof of Proposition 4.9: We let Pr [·] be the probability of event “·” in the
experiment Expind-cpa-cg

SE (A), and refer below to quantities in this experiment. The
claim of the Proposition follows by a straightforward calculation:

Pr
[
Expind-cpa-cg

SE (A) = 1
]

= Pr
[
b = b′

]
= Pr

[
b = b′ | b = 1

] · Pr [b = 1] + Pr
[
b = b′ | b = 0

] · Pr [b = 0]

= Pr
[
b = b′ | b = 1

] · 1
2

+ Pr
[
b = b′ | b = 0

] · 1
2

= Pr
[
b′ = 1 | b = 1

] · 1
2

+ Pr
[
b′ = 0 | b = 0

] · 1
2

= Pr
[
b′ = 1 | b = 1

] · 1
2

+
(
1 − Pr

[
b′ = 1 | b = 0

]) · 1
2

=
1
2

+
1
2
· (Pr

[
b′ = 1 | b = 1

] − Pr
[
b′ = 1 | b = 0

])
=

1
2

+
1
2
·
(
Pr

[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
])

=
1
2

+
1
2
· Advind-cpa

SE (A) .

We began by expanding the quantity of interest via standard conditioning. The term
of 1/2 in the third line emerged because the choice of b is made at random. In the
fourth line we noted that if we are asking whether b = b′ given that we know b = 1,
it is the same as asking whether b′ = 1 given b = 1, and analogously for b = 0. In the
fifth line and sixth lines we just manipulated the probabilities and simplified. The
next line is important; here we observed that the conditional probabilities in question
are exactly the probabilities that A returns 1 in the experiments of Definition 4.8.

4.4.3 Why is this a good definition?

Our thesis is that we should consider an encryption scheme to be “secure” if and
only if it is IND-CPA secure, meaning that the above formalization captures our
intuitive sense of privacy, and the security requirements that one might put on an
encryption scheme can be boiled down to this one.

But why? Why does IND-CPA capture “privacy”? This is an important question
to address and answer.

In particular, here is one concern. In Section 4.3 we noted a number of security
properties that are necessary but not sufficient for security. For example, it should be
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encryption scheme can be boiled down to this one.

But why? Why does IND-CPA capture “privacy”? This is an important question
to address and answer.
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We began by expanding the quantity of interest via standard conditioning. The term
of 1/2 in the third line emerged because the choice of b is made at random. In the
fourth line we noted that if we are asking whether b = b′ given that we know b = 1,
it is the same as asking whether b′ = 1 given b = 1, and analogously for b = 0. In the
fifth line and sixth lines we just manipulated the probabilities and simplified. The
next line is important; here we observed that the conditional probabilities in question
are exactly the probabilities that A returns 1 in the experiments of Definition 4.8.

4.4.3 Why is this a good definition?

Our thesis is that we should consider an encryption scheme to be “secure” if and
only if it is IND-CPA secure, meaning that the above formalization captures our
intuitive sense of privacy, and the security requirements that one might put on an
encryption scheme can be boiled down to this one.

But why? Why does IND-CPA capture “privacy”? This is an important question
to address and answer.

In particular, here is one concern. In Section 4.3 we noted a number of security
properties that are necessary but not sufficient for security. For example, it should be
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Why IND-CPA ensures that no partial information is leaked?

• Fix SE=(KeySp,E,D) with MsgSp={0,1}
m

. Assume there exists an adversary B that 

after seeing a few plaintexts-cipertexts pairs and a challenge ciphertext can 

compute the challenge plaintext. Namely, in 

•

•

•

•

• Then SE is not IND-CPA secure.

• Claim. [IND-CPA⇒PR-CPA] Fix SE=(KeySp,E,D) with MsgSp={0,1}
m

. Then for 

every adversary B  there exists an adversary A such that

•

   and  

is non-negligible
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Let us now go through the plaintext recovery example in detail. The task facing
the adversary will be to decrypt a ciphertext which was formed by encrypting a
randomly chosen challenge message of some length m. In the process we want to
give the adversary the ability to see plaintext-ciphertext pairs, which we capture
by giving the adversary access to an encryption oracle. This encryption oracle is
not the lr-encryption oracle we saw above: instead, it simply takes input a single
message M and returns a ciphertext C $← EK(M) computed by encrypting M . To
capture providing the adversary with a challenge ciphertext, we choose a random m-
bit plaintext M , compute C $← EK(M), and give C to the adversary. The adversary
wins if it can output the plaintext M corresponding to the ciphertext C.

For simplicity we assume the encryption scheme is stateless, and that {0, 1}m is
a subset of the plaintext space associated to the scheme. As usual, when either the
encryption or the challenge oracle invoke the encryption function, it is implicit that
they respect the randomized nature of the encryption function, meaning the latter
tosses coins anew upon each invocation of the oracle.

Definition 4.11 Let SE = (K, E ,D) be a stateless symmetric encryption scheme
whose plaintext space includes {0, 1}m and let B be an algorithm that has access
to an oracle. We consider the following experiment:

Experiment Exppr-cpa
SE (B)

K $←K
M ′ $← {0, 1}m

C $← EK(M ′)
M $← BEK(·)(C)
If M = M ′ then return 1 else return 0

The PR-CPA advantage of B is defined as

Advpr-cpa
SE (B) = Pr

[
Exppr-cpa

SE (B) = 1
]

.

In the experiment above, B is executed with its oracle and challenge ciphertext C.
The adversary B wins if it can correctly decrypt C, and in that case the experiment
returns 1. In the process, the adversary can make encryption oracle queries as it
pleases.

The following Proposition says that the probability that an adversary success-
fully recovers a plaintext from a challenge ciphertext cannot exceed the IND-CPA
advantage of the scheme (with resource parameters those of the plaintext recovery
adversary) plus the chance of simply guessing the plaintext. In other words, security
in the IND-CPA sense implies security in the PR-CPA sense.

Proposition 4.12 [IND-CPA ⇒ PR-CPA] Let SE = (K, E ,D) be a stateless
symmetric encryption scheme whose plaintext space includes {0, 1}m. Suppose
that B is a (plaintext-recovery) adversary that runs in time t and asks at most q
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queries, these queries totaling at most µ bits. Then there exists an adversary A such
that

Advpr-cpa
SE (B) ≤ Advind-cpa

SE (A) +
1

2m
.

Furthermore, the running time of A is that of B plus O(µ + m + c) where c bounds
the length of the encryption of an m-bit string. A makes q + 1 oracle queries and
these queries total at most µ + m bits.

Proof of Proposition 4.12: As per Definition 4.8, adversary A will be provided
an lr-encryption oracle and will try to determine in which world it resides. To do
so, it will run adversary B as a subroutine. We provide the description followed by
an explanation and analysis.

Adversary AEK(LR(·,·,b))

M0
$← {0, 1}m ; M1

$← {0, 1}m

C ← EK(LR(M0, M1, b))
Run adversary B on input C, replying to its oracle queries as follows

When B makes an oracle query X to g do
Y ← EK(LR(X, X, b))
return Y to B as the answer

When B halts and outputs a plaintext M
If M = M1 then return 1 else return 0

Here A is running B and itself providing answers to B’s oracle queries. To make the
challenge ciphertext C for B, adversary A chooses random messages M0 and M1

and uses its lr-oracle to get the encryption C of one of them. When B makes an
encryption oracle query X, adversary A needs to return EK(X). It does this by
invoking its lr-encryption oracle, setting both messages in the pair to X, so that
regardless of the value of the bit b, the ciphertext returned is an encryption of X, just
as B wants. When B outputs a plaintext M , adversary A tests whether M = M1

and if so bets that it is in world 1. Otherwise, it bets that it is in world 0. Now we
claim that

Pr
[
Expind-cpa-1

SE (A) = 1
]

≥ Advpr-cpa
SE (B) (4.1)

Pr
[
Expind-cpa-0

SE (A) = 1
]

≤ 2−m . (4.2)

We will justify these claims shortly, but first let us use them to conclude. Subtract-
ing, as per Definition 4.8, we get

Advind-cpa
SE (A) = Pr

[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]

≥ Advpr-cpa
SE (B) − 2−m .

qA = qB+1,µA = µB+m, tA = tB = O(µ+m+ c)

1
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• Proof. We define A as follows:

•

•

•

•

•

•

• We now analyze the adversary:

•

•

•

•

The resources of A are justified by the description of A.
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an lr-encryption oracle and will try to determine in which world it resides. To do
so, it will run adversary B as a subroutine. We provide the description followed by
an explanation and analysis.
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If M = M1 then return 1 else return 0

Here A is running B and itself providing answers to B’s oracle queries. To make the
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and uses its lr-oracle to get the encryption C of one of them. When B makes an
encryption oracle query X, adversary A needs to return EK(X). It does this by
invoking its lr-encryption oracle, setting both messages in the pair to X, so that
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and if so bets that it is in world 1. Otherwise, it bets that it is in world 0. Now we
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SE (B) (4.1)
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Analysis of the ECB mode.

M[1]

EK

C[1]

M[2]

EK

C[2]

M[m]

EK

C[m]

Encryption 

algorithm E 

Let E:{0,1}
k
!{0,1}

n
!{0,1}

n
 be a block cipher. ECB=({0,1}

k,E,D):

Conjecture. ECB is PR-CPA secure.

Is ECB a good encryption scheme?

Is ECB IND-CPA secure?
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ECB is not IND-CPA
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computationally infeasible for an adversary to recover the key from a few plaintext-
ciphertext pairs, or to recover a plaintext from a ciphertext.

A test of our definition is that it implies the necessary properties that we have
discussed, and others. For example, a scheme that is secure in the IND-CPA sense of
our definition should also be, automatically, secure against key-recovery or plaintext-
recovery. Later, we will prove such things, and even stronger things. For now, let
us continue to get a better sense of how to work with the definition by using it to
show that certain schemes are insecure.

4.5 Example chosen-plaintext attacks

We illustrate the use of our IND-CPA definition in finding attacks by providing an
attack on ECB mode, and also a general attack on deterministic, stateless schemes.

4.5.1 Attack on ECB

Let us fix a block cipher E: K×{0, 1}n → {0, 1}n. The ECB symmetric encryption
scheme SE = (K, E ,D) was described as Scheme 4.3. Suppose an adversary sees
a ciphertext C = EK(M) corresponding to some random plaintext M , encrypted
under the key K also unknown to the adversary. Can the adversary recover M?
Not easily, if E is a “good” block cipher. For example if E is AES, it seems quite
infeasible. Yet, we have already discussed how infeasibility of recovering plaintext
from ciphertext is not an indication of security. ECB has other weaknesses. Notice
that if two plaintexts M and M ′ agree in the first block, then so do the corresponding
ciphertexts. So an adversary, given the ciphertexts, can tell whether or not the
first blocks of the corresponding plaintexts are the same. This is loss of partial
information about the plaintexts, and is not permissible in a secure encryption
scheme.

It is a test of our definition to see that it captures these weaknesses and also
finds the scheme insecure. It does. To show this, we want to show that there is
an adversary that has a high IND-CPA advantage while using a small amount of
resources. We now construct such an adversary A. Remember that A is given a
lr-encryption oracle EK(LR(·, ·, b)) that takes as input a pair of messages and that
returns an encryption of either the left or the right message in the pair, depending
on the value of the bit b. The goal of A is to determine the value of b. Our adversary
works like this:

Adversary AEK(LR(·,·,b))
M1 ← 02n ; M0 ← 0n ‖ 1n

C[1]C[2] ← EK(LR(M0, M1, b))
If C[1] = C[2] then return 1 else return 0

Above, X[i] denotes the i-th block of a string X, a block being a sequence of n
bits. The adversary’s single oracle query is the pair of messages M0, M1. Since eachAdv

ind−cpa
ECB (A) = Pr

[
Exp

ind−cpa−1
ECB (A) = 1

]
−Pr

[
Exp

ind−cpa−0
ECB (A) = 1

]
= 1−0= 1

1
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• Claim. Any deterministic, stateless scheme is 

not IND-CPA

• Why?
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Analysis of the CTRC

Encryption algorithm E 

Let F:{0,1}
k
!{0,1}

l
!{0,1}

L
 be a function family. CBC$=({0,1}

k,E,D):

ctr is initially 0
l

FK

C[1]

FK

C[2]

FK

C[m]

⊕ ⊕ ⊕

ctr+1 ctr+2 ctr+m

M[2] M[m]M[1]

ctr

A current counter 
ctr is maintained as a 

state

The scheme is used to encrypt at most 2
l
 blocks (so that the counter does not wrap around)

• How good is the scheme?

• The flaws seem hard to find.

• Q. But may be they exist and we just don’t see them?

• A. The mode is as good as it can be and we can prove it.
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Security of CTRC

• Theorem. For any adversary A there exists an adversary B such that

•

   where

• Proof idea. We present an adversary B who needs to distinguish whether 

it is given an oracle access to a truly random function or an instance of 

F. B will use A’s ability to break the CTRC encryption scheme. B will run 

A as a subroutine, simulating the ind-cpa experiment for it. B will 

answer A’s oracle queries using its own oracle. Finally, if A wins, B will 

win.

Adv
ind−cpa
CTRC (A)≤ 2 ·Advpr fF (B)

1

tB = tA+O(qA+(l+L)
µA

l
),qB =

µA

l
,µB = µA

1
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• Proof. Let A be any “ind-cpa” adversary attacking CTRC. We present a 
“prf” adversary B:
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there might be an adversary having large IND-CPA advantage in attacking SE [F ],
even though we know that its advantage in attacking SE [Func(!,L)] is zero. But
we claim that this is not possible if F is a secure PRF. Intuitively, the existence
of such an adversary indicates that F is not approximating Func(!,L) since there
is some detectable event, namely the success probability of some adversary in a
certain experiment, that happens with high probability when F is used and with
low probability when Func(!,L) is used. To concretize this intuition, let A be a
IND-CPA adversary attacking SE [F ]. We associate to A an adversary B that is
given oracle access to a function g: {0, 1}! → {0, 1}L and is trying to determine
which world it is in, where in world 0 g is a random instance of Func(!,L) and in
world 1 g is a random instance of F . We suggest the following strategy to the
adversary. It runs A, and replies to A’s oracle queries in such a way that A is
attacking SE [Func(!,L)] in B’s world 0, and A is attacking SE [F ] in B’s world 1.
The reason it is possible for B to do this is that it can execute the encryption
algorithm Eg(·) of Fig. 4.7, which simply requires access to the function g. If the
adversary A wins, meaning it correctly identifies the encryption oracle, B bets that
g is an instance of F ; otherwise, B bets that g is an instance of Func(!,L).

We stress the key point that makes this argument work. It is that the encryption
function of the CTRC scheme invokes the function FK purely as an oracle. If it had,
instead, made some direct use of the key K, the paradigm above would not work.
The full proof follows.

Proof of Theorem 4.13: Let A be any IND-CPA adversary attacking SE =
(K, E ,D). Assume A makes q oracle queries totaling µ bits, and has time-complexity
t. There there is an adversary B such that

Advind-cpa
SE (A) ≤ 2 · Advprf

F (B) . (4.3)

Furthermore, B will make σ oracle queries and have time-complexity that of A plus
O(q + (! + L)σ). Now, the statement of Theorem 4.13 follows.

Remember that B takes an oracle g: {0, 1}! → {0, 1}L. This oracle is either drawn
at random from F or from Func(!,L) and B does not know which. To find out, B
will use A, running it as a subroutine. But remember that A too gets an oracle,
namely an lr-encryption oracle. From A’s point of view, this oracle is simply a
subroutine: A can write, at some location, a pair of messages, and is returned a
response by some entity it calls its oracle. When B runs A as a subroutine, it is
B that will “simulate” the lr-encryption oracle for A, meaning B will provide the
responses to any oracle queries that A makes. Here is the description of B:

Adversary Bg

b $← {0, 1}
Run adversary A, replying to its oracle queries as follows

When A makes an oracle query (M0, M1) do
C $← Eg(Mb)
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Return C to A as the answer
Until A stops and outputs a bit b′

If b′ = b then return 1 else return 0

Here Eg(·) denotes the encryption function of the generalized CTRC scheme that
we defined in Fig. 4.7. The crucial fact we are exploiting here is that this function
can be implemented given an oracle for g. Adversary B itself picks the challenge bit
b representing the choice of worlds for A, and then sees whether or not A succeeds
in guessing the value of this bit. If it does, it bets that g is an instance of F , and
otherwise it bets that g is an instance of Func(!,L). For the analysis, we claim that

Pr
[
Expprf-1

F (B) = 1
]

=
1
2

+
1
2
· Advind-cpa

SE[F ] (A) (4.4)

Pr
[
Expprf-0

F (B) = 1
]

=
1
2

+
1
2
· Advind-cpa

SE[Func(!,L)](A) . (4.5)

We will justify these claims shortly, but first let us use them to conclude. Subtract-
ing, as per Definition ??, we get

Advprf
F (B) = Pr

[
Expprf-1

F (B) = 1
]
− Pr

[
Expprf-0

F (B) = 1
]

=
1
2
· Advind-cpa

SE[F ] (A) − 1
2
· Advind-cpa

SE[Func(!,L)](A) (4.6)

=
1
2
· Advind-cpa

SE[F ] (A) .

The last inequality was obtained by applying Lemma 4.16, which told us that the
term Advind-cpa

SE[Func(!,L)](A) was simply zero. Re-arranging terms gives us Equation (4.3).
Now let us check the resource usage. Each computation Eg(Mb) requires |Mb|/L ap-
plications of g, and hence the total number of queries made by B to its oracle g is
σ. The time-complexity of B equals that of A plus the overhead for answering the
oracle queries. It remains to justify Equations (4.4) and (4.5).

Adversary B returns 1 when b = b′, meaning that IND-CPA adversary A correctly
identified the world b in which it was placed, or, in the language of Section 4.4.2,
made the “correct guess.” The role played by B’s world is simply to alter the
encryption scheme for which this is true. When B is in world 1, the encryption
scheme, from the point of view of A, is SE [F ], and when B is in world 0, the
encryption scheme, from the point of view of A, is SE [Func(!,L)]. Thus, using the
notation from Section 4.4.2, we have

Pr
[
Expprf-1

F (B) = 1
]

= Pr
[
Expind-cpa-cg

SE[F ] (A) = 1
]

Pr
[
Expprf-0

F (B) = 1
]

= Pr
[
Expind-cpa-cg

SE[Func(!,L)](A) = 1
]

.

To obtain Equations (4.4) and (4.5) we can now apply Proposition 4.9.

g / FK
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b
R← {0,1}

1

M0,M1
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b’

1 iff b’=b

E     (!)g/F
K

B can simulate the CTRC encryption algorithm 
because it makes only “oracle” use of the 
underlying function F.

g is a random instance of Func(l,L)
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• Let us analyze B. Note that

•

•

   and thus

We will show that

and the statement of the theorem follows.Finally the resources of B are 
justified by the algorithm for B.
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identified the world b in which it was placed, or, in the language of Section 4.4.2,
made the “correct guess.” The role played by B’s world is simply to alter the
encryption scheme for which this is true. When B is in world 1, the encryption
scheme, from the point of view of A, is SE [F ], and when B is in world 0, the
encryption scheme, from the point of view of A, is SE [Func(!,L)]. Thus, using the
notation from Section 4.4.2, we have
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To obtain Equations (4.4) and (4.5) we can now apply Proposition 4.9.
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and looks instead at an “idealized” version of the scheme. Namely we consider the
scheme SE [Func(!,L)]. Here, a random function g of !-bits to L-bits is being used
where the original scheme would use FK . We then assess an adversary’s chance of
breaking this idealized scheme. We argue that this chance is actually zero. This is
the main lemma in the analysis.

This step is definitely a thought experiment. No real implementation can use
a random function in place of FK because even storing such a function takes an
exorbitant amount of memory. But this analysis of the idealized scheme enables
us to focus on any possible weaknesses of the CTR mode itself, as opposed to
weaknesses arising from properties of the underlying block cipher. We can show
that this idealized scheme is secure, and that means that the mode itself is good.

It then remains to see how this “lifts” to a real world, in which we have no
ideal random functions, but rather want to assess the security of the scheme SE [F ]
that uses the given family F . Here we exploit the notion of pseudorandomness to
say that the chance of an adversary breaking the SE [F ] can differ from its chance
of breaking the ideal-world scheme SE [Func(!,L)] by an amount not exceeding the
probability of breaking the pseudorandomness of F using comparable resources.

Lemma 4.16 [Security of CTRC using a random function] Let A be any
IND-CPA adversary attacking SE [Func(!,L)], where the scheme is depicted in Fig. 4.7.
Then

Advind-cpa
SE[Func(!,L)](A) = 0 .

The lemma considers an arbitrary adversary. Let us say this adversary has time-
complexity t, makes q queries to its lr-encryption oracle, these totaling σ L-bit
blocks. The lemma does not care about the values of t, q, or σ. (Recall, however,
that after encrypting a total of 2! blocks, the encryption mechanism will “shut up”
and be of no use.) It says the adversary has zero advantage, meaning no chance at
all of breaking the scheme. The fact that no restriction is made on t indicates that
the result is information-theoretic: it holds regardless of how much computing time
the adversary invests.

Of course, this lemma refers to the idealized scheme, namely the one where
the function g being used by the encryption algorithm is random. But remember
that ECB was insecure even in this setting. (The attacks we provided for ECB
work even if the underlying cipher E is Perm(n), the family of all permutations on
n-bit strings.) So the statement is not content-free; it is saying something quite
meaningful and important about the CTR mode. It is not true of all modes.

We postpone the proof of the lemma. Instead we will first see how to use it to
conclude the proof of the theorem. The argument here is quite simple and generic.

The lemma tells us that the CTRC encryption scheme is (very!) secure when g
is a random function. But we are interested in the case where g is is an instance of
our given family F . So our worry is that the actual scheme SE [F ] is insecure even
though the idealized scheme SE [Func(!,L)] is secure. In other words, we worry that
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                      because all the values corresponding to the red dots 

on the picture below are random and independent (since they are the 

results of a random function applied to distinct points) and thus 

C[1],...,C[m] are also random values, independent from the adversary A’s 

challenge bit.   
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• Theorem. For any adversary A there exists an adversary B such that

•

   where

•

• What does the security statement tell us?

• Let F be AES, l=L=128. Assume one encrypts q=2
30

 messages, 1 Kb 

each (2
13

 bits), recall

•

•

•

• Proof idea. As in the proof of the previous theorem.
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• Proof. The adversary B is exactly like one in the proof of the previous 
theorem. But now we claim that

•

• Given this and the previous proof, the statement of the theorem follows.

• To prove the claim note that after q queries A made the inputs to the 
random function are

Adv
ind−cpa
CTR$[Func(l,L)](A)

1
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one is identical in these two worlds under the assumption that no collisions have
occurred in the values in the table.

Claim 2: Pr0 [A = 1 | NoCol] = Pr1 [A = 1 | NoCol]. !

We can say nothing about the advantage of A if a collision does occur in the table.
It might be big. However, it will suffice to know that the probability of a collision
is small. Since we already know that this probability is the same in both worlds
(Claim 1) we bound it just in world 0:

Claim 3: Pr0 [Col] ≤ σ2

2!
. !

Let us see how these put together complete the proof of the lemma, and then go
back and prove them.

Proof of Lemma given Claims: It is a simple conditioning argument:

Advind-cpa
SE[Func(!,L)](A)

= Pr1 [A = 1] − Pr0 [A = 1]

= Pr1 [A = 1 | Col] · Pr1 [Col] + Pr1 [A = 1 | NoCol] · Pr1 [NoCol]

− Pr0 [A = 1 | Col] · Pr0 [Col] − Pr0 [A = 1 | NoCol] · Pr0 [NoCol]

= (Pr1 [A = 1 | Col] − Pr0 [A = 1 | Col]) · Pr0 [Col]

≤ Pr0 [Col] .

The second-last step used Claims 1 and 2. In the last step we simply upper bounded
the parenthesized expression by 1. Now apply Claim 3, and we are done. !

It remains to prove the three claims.

Proof of Claim 1: The event NoCol depends only on the random values r1, . . . , rq

chosen by the encryption algorithm Eg(·). These choices, however, are made in
exactly the same way in both worlds. The difference in the two worlds is what
message is encrypted, not how the random values are chosen. !

Proof of Claim 2: Given the event NoCol, we have that, in either game, the function g
is evaluated at a new point each time it is invoked. Thus the output is randomly and
uniformly distributed over {0, 1}L, independently of anything else. That means the
reasoning from the counter-based scheme as given in Lemma 4.16 applies. Namely,
we observe that according to the scheme

Ci[j] = g(ri + j) ⊕
{

Mi,1[j] if we are in world 1
Mi,0[j] if we are in world 0.

Thus each cipher block is a message block XORed with a random value. A conse-
quence of this is that each cipher block has a distribution that is independent of any
previous cipher blocks and of the messages. !
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The adversary makes some number q of oracle queries. Let (Mi,0, Mi,1) be the i-th
query, and let mi be the number of blocks in Mi,0.(We can assume this is the same
as the number of blocks in Mi,1, since otherwise the lr-encryption oracle returns ⊥).
Let Mi,b[j] be the value of the j-th L-bit block of Mi,b for b ∈ {0, 1}. Let C ′

i be the
response returned by the oracle to query (Mi,0, Mi,1). It consists of the encoding of
a number ri ∈ [0..2! − 1] and a mi-block message Ci = Ci[1] · · ·Ci[mi]. Pictorially:

M1,b = M1,b[1]M1,b[1] . . .M1,b[m1]
C1 = 〈r1, C1[1] · · ·C1[m1]〉

M2,b = M2,b[1]M2,b[2] · · ·M2,b[m2]
C2 = 〈r2, C2[1] . . . C2[m2]〉

...
...

Mq,b = Mq,b[1]Mq,b[2] · · ·Mq,b[mq]
Cq = 〈rq, Cq[1] . . . Cq[mq]〉

Let NoCol be the event that the following m1 + · · · + mq values are all distinct:

r1 + 1, r1 + 2, · · · , r1 + m1

r2 + 1, r2 + 2, · · · , r2 + m2
...

...
rq + 1, rq + 2, · · · , rq + mq

Let Col be the complement of the event NoCol, meaning the event that the above
table contains at least two values that are the same. It is useful for the analysis to
introduce the following shorthand:

Pr0 [·] = The probability of event “·” in world 0

Pr0 [·] = The probability of event “·” in world 1 .

We will use the following three claims, which are proved later. The first claim says
that the probability of a collision in the above table does not depend on which world
we are in.

Claim 1: Pr1 [Col] = Pr0 [Col]. !

The second claim says that A has zero advantage in winning the left-or-right game in
the case that no collisions occur in the table. Namely, its probability of outputting

Let NoCol be the event that these values are all 
distinct, and Col is the complement of NoCol. 
Then

Adv
ind−cpa
CTR$[Func(l,L)](A)≤ µ2A

2 · l2 ·2l

1

32



• It remains to calculate            (we drop the subscript 0 in the notation)
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where the addition is performed modulo 2!. We say that a collision occurs if some two (or more)
numbers in the above table are equal. Then

Pr [Col] ≤
(q − 1)(m1 + · · · + mq)

2!
, (5.7)

where Col denotes the event that a collision occurs.

Proof of Lemma 5.18: As with many of the probabilistic settings that arise in this area, this
is a question about some kind of “balls thrown in bins” setting, related to the birthday problem
studied in the appendix on the birthday problem. Indeed a reader may find it helpful to study that
appendix first.

Think of having 2! bins, numbered 0, 1, . . . , 2! − 1. We have q balls, numbered 1, . . . , q. For each
ball we choose a random bin which we call ri. We choose the bins one by one, so that we first choose
r1, then r2, and so on. When we have thrown in the first ball, we have defined the first row of the
above table, namely the values r1 + 1, . . . , r1 + m1. Then we pick the assignment r2 of the bin for
the second ball. This defines the second row of the table, namely the values r2 + 1, . . . , r2 + m2. A
collision occurs if any value in the second row equals some value in the first row. We continue, up
to the q-th ball, each time defining a row of the table, and are finally interested in the probability
that a collision occurred somewhere in the process. To upper bound this, we want to write this
probability in such a way that we can do the analysis step by step, meaning view it in terms of
having thrown, and fixed, some number of balls, and seeing whether there is a collision when we
throw in one more ball. To this end let Coli denote the event that there is a collision somewhere in
the first i rows of the table, for i = 1, . . . , q. Let NoColi denote the event that there is no collision
in the first i rows of the table, for i = 1, . . . , q. Then by conditioning we have

Pr [Col] = Pr [Colq]

= Pr [Colq−1] + Pr [Colq | NoColq−1] · Pr [NoColq−1]

≤ Pr [Colq−1] + Pr [Colq | NoColq−1]

≤
...

≤ Pr [Col1] +
q∑

i=2

Pr [Coli | NoColi−1]

=
q∑

i=2

Pr [Coli | NoColi−1] .

Thus we need to upper bound the chance of a collision upon throwing the i-th ball, given that there
was no collision created by the first i − 1 balls. Then we can sum up the quantities obtained and
obtain our bound.

We claim that for any i = 2, . . . , q we have

Pr [Coli | NoColi−1] ≤
(i − 1)mi + mi−1 + · · · + m1

2!
. (5.8)
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Let us first see why this proves the lemma and then return to justify it. From the above and
Equation (5.8) we have

Pr [Col] ≤
q∑

i=2

Pr [Coli | NoColi−1]

≤
q∑

i=2

(i − 1)mi + mi−1 + · · · + m1

2!

=
(q − 1)(m1 + · · · + mq)

2!
.

How did we do the last sum? The term mi occurs with weight i − 1 in the i-th term of the sum,
and then with weight 1 in the j-th term of the sum for j = i + 1, . . . , q. So its total weight is
(i − 1) + (q − i) = q − 1.

It remains to prove Equation (5.8). To get some intuition about it, begin with the cases i = 1, 2.
When we throw in the first ball, the chance of a collision is zero, since there is no previous row with
which to collide, so that is simple. When we throw in the second, what is the chance of a collision?
The question is, what is the probability that one of the numbers r2 + 1, . . . , r2 + m2 defined by the
second ball is equal to one of the numbers r1 + 1, . . . , r1 + m1 already in the table? View r1 as
fixed. Observe that a collision occurs if and only if r1 − m2 + 1 ≤ r2 ≤ r1 + m1 − 1. So there are
(r1 + m1 − 1) − (r1 − m2 + 1) + 1 = m1 + m2 − 1 choices of r2 that could yield a collision. This
means that Pr [Col2 | NoCol1] ≤ (m2 + m1 − 1)/2!.

We need to extend this argument as we throw in more balls. So now suppose i− 1 balls have been
thrown in, where 2 ≤ i ≤ q, and suppose there is no collision in the first i−1 rows of the table. We
throw in the i-th ball, and want to know what is the probability that a collision occurs. We are
viewing the first i− 1 rows of the table as fixed, so the question is just what is the probability that
one of the numbers defined by ri equals one of the numbers in the first i − 1 rows of the table. A
little thought shows that the worst case (meaning the case where the probability is the largest) is
when the existing i− 1 rows are well spread-out. We can upper bound the collision probability by
reasoning just as above, except that there are i − 1 different intervals to worry about rather than
just one. The i-th row can intersect with the first row, or the second row, or the third, and so on,
up to the (i − 1)-th row. So we get

Pr [Coli | NoColi−1] ≤
(mi + m1 − 1) + (mi + m2 − 1) + · · · + (mi + mi−1 − 1)

2!

=
(i − 1)mi + mi−1 + · · · + m1 − (i − 1)

2!
,

and Equation (5.8) follows by just dropping the negative term in the above.

Let us now extend the proof of Lemma 5.16 to prove Lemma 5.17.

Proof of Lemma 5.17: Recall that the idea of the proof of Lemma 5.16 was that when g is a
random function, its value on successive counter values yields a one-time pad. This holds whenever
g is applied on some set of distinct values. In the counter case, the inputs to g are always distinct.
In the randomized case they may not be distinct. The approach is to consider the event that they
are distinct, and say that in that case the adversary has no advantage; and on the other hand,
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The statement follows after we 
note that m1+ . . .+mq = µA/l

1

(Coli is the event that there is is collision in the first i rows)  
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〈IV1, C1〉 $← EK(LR(M0,1, M1,1, b))
〈IV2, C2〉 $← EK(LR(M0,2, M1,2, b))
If C1 = C2 then return 1 else return 0

We claim that

Pr
[
Expind-cpa-1

SE (A) = 1
]

= 1 and

Pr
[
Expind-cpa-0

SE (A) = 1
]

= 0 .

Why? First consider the case b = 0, meaning we are in world 0. In that case IV1 = 0
and IV2 = 1 and C1 = EK(0) and C2 = EK(1) and so C1 $= C2 and the defined
experiment returns 0. On the other hand, if b = 1, meaning we are in world 1, then
IV1 = 0 and IV21 = 1 and C1 = EK(0) and C2 = EK(0), so the defined experiment
returns 1.

Subtracting, we get Advind-cpa
SE (A) = 1− 0 = 1, showing that A has a very high

advantage. Moreover, A is practical, using very few resources. So the scheme is
insecure.

4.6 IND-CPA implies PR-CPA

In Section 4.3 we noted a number of security properties that are necessary but not
sufficient for security. For example, it should be computationally infeasible for an
adversary to recover the key from a few plaintext-ciphertext pairs, or to recover a
plaintext from a ciphertext. A test of our definition is that it implies these properties,
in the sense that a scheme that is secure in the sense of our definition is also secure
against key-recovery or plaintext-recovery.

The situation is analogous to what we saw in the case of PRFs. There we showed
that a secure PRF is secure against key-recovery. In order to have some variation,
this time we choose a different property, namely plaintext recovery. We formalize
this, and then show if there was an adversary B capable of recovering the plaintext
from a given ciphertext, then this would enable us to construct an adversary A that
broke the scheme in the IND-CPA sense (meaning the adversary can identify which
of the two worlds it is in). If the scheme is secure in the IND-CPA sense, that latter
adversary could not exist, and hence neither could the former.

The idea of this argument illustrates one way to evidence that a definition is
good—say the definition of left-or-right indistinguishability. Take some property
that you feel a secure scheme should have, like infeasibility of key recovery from a
few plaintext-ciphertext pairs, or infeasibility of predicting the XOR of the plaintext
bits. Imagine there were an adversary B that was successful at this task. We should
show that this would enable us to construct an adversary A that broke the scheme
in the original sense (left-or-right indistinguishability). Thus the adversary B does
not exist if the scheme is secure in the left-or-right sense. More precisely, we use
the advantage function of the scheme to bound the probability that adversary B
succeeds.
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The requirement being made on the message space is minimal; typical schemes
have messages spaces containing all strings of lengths between some minimum and
maximum length, possibly restricted to strings of some given multiples. Note that
this Proposition applies to ECB and is enough to show the latter is insecure.

Proof of Proposition 4.10: We must describe the adversary A. Remember
that A is given an lr-encryption oracle f = EK(LR(·, ·, b)) that takes input a pair
of messages and returns an encryption of either the left or the right message in the
pair, depending on the value of b. The goal of A is to determine the value of b. Our
adversary works like this:

Adversary Af

Let X, Y be distinct, m-bit strings in the plaintext space
C1 ← EK(LR(X, Y, b))
C2 ← EK(LR(Y, Y, b))
If C1 = C2 then return 1 else return 0

Now, we claim that

Pr
[
Expind-cpa-1

SE (A) = 1
]

= 1 and

Pr
[
Expind-cpa-0

SE (A) = 1
]

= 0 .

Why? In world 1, meaning b = 1, the oracle returns C1 = EK(Y ) and C2 = EK(Y ),
and since the encryption function is deterministic and stateless, C1 = C2, so A
returns 1. In world 0, meaning b = 0, the oracle returns C1 = EK(X) and C2 =
EK(Y ), and since it is required that decryption be able to recover the message, it
must be that C1 "= C2. So A returns 0.

Subtracting, we get Advind-cpa
SE (A) = 1 − 0 = 1. And A achieved this advantage by

making two oracle queries, each of whose length, which as per our conventions is
just the length of the first message, is m bits.

4.5.3 Attack on CBC encryption with counter IV

Let us fix a block cipher E: K × {0, 1}n → {0, 1}n. Let SE = (K, E ,D) be the
corresponding counter-based version of the CBC encryption mode described in
Scheme 4.5. We show that this scheme is insecure. The reason is that the adversary
can predict the counter value.

To justify our claim of insecurity, we present an adversary A. As usual it is given
an lr-encryption oracle EK(LR(·, ·, b)) and wants to determine b. Our adversary
works like this:

Adversary AEK(LR(·,·,b))
M0,1 ← 0n ; M1,1 ← 0n

M0,2 ← 0n ; M1,2 ← 0n−11
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M[1]

EK

C[1]

M[2]

EK

C[2]

M[m]

EK

C[m]

Encryption algorithm E 

Let E:{0,1}
k
!{0,1}

n
!{0,1}

n
 be a block cipher. CBC$=({0,1}

k,E,D):

IVIV"{0,1}
n

⊕ ⊕ ⊕

IV

• Theorem. For any adversary A there exists an adversary B such that

•

 where 

Adv
ind−cpa
CBC$

(A)≤ 2 ·Advpr fE (B)+
µ2A

n2 ·2n

1

tB = tA+O(qA+µA), qB =
µA

n
, µB = µA

1
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Did we get all we wanted?

• Is IND-CPA security definition strong enough (does it take 
into account all the bad things that can happen?)

• An adversary wants to win: to get some partial 
information about the plaintext from a challenge 
ciphertext 

• What if the adversary can make the receiver to decrypt 
other ciphertexts of the adversary’s choice, learn the 
plaintexts and this helps it to win?

• Our definition didn’t consider such “chosen-ciphertext” 
attacks
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EK(LR(!,!,!))

Indistinguishability under chosen-ciphertext attacks

A

d

Fix SE=(KeySp,E,D)

K"KeySp
$

M0,M1
Mb

LR(!,!,!)

b
For an adversary A and a bit b consider an experiment 

A symmetric encryption scheme SE is indistinguishable under chosen-

ciphertext attacks (IND-CCA secure) if for any adversary A with “reasonable” 

resources                          is “small” (close to 0).

The IND-CCA advantage of A is:

The experiment returns d 

E
K
(•)

C=EK(Mb)

Expind−cca−bSE (A)

1

D
K
(•)

C’

M’

Adv
ind−cca
SE (A)

1

Advind−ccaSE (A) = Pr
[
Expind−cca−1SE (A) = 1

]−Pr[Expind−cca−0SE (A) = 1
]

1

A is not allowed to query 

its decryption oracle on 

ciphertexts returned by 

its LR encryption oracle
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