CS 6260
 Applied Cryptography

Alexandra (Sasha) Boldyreva
Symmetric encryption, encryption modes, security notions.

Symmetric encryption schemes

A scheme SE is specified by a key generation algorithm K, an encryption algorithm E, and a decryption algorithm \mathcal{D}.

$$
\mathrm{SE}=(K, E, \mathcal{D})
$$

MsgSp-message space

It is required that for every $\mathrm{M} \in \mathrm{MsgSp}$ and every K that can be output by $K, \mathcal{D}(\mathrm{~K}, E(\mathrm{~K}, \mathrm{M}))=\mathrm{M}$

- Often the key generation algorithm simply picks a random string from some key space KeySp (e.g. $\{0,1\}^{\mathrm{k}}$ for some integer k).
- In this case we will say that a scheme SE is defined by KeySp and two algorithms: $\mathrm{SE}=(\mathrm{KeySp}, \mathrm{E}, \mathcal{D})$
- The encryption algorithm can be either
- randomized (take as input a random string)
- or stateful (take as input some state (e.g. counter) that it can update)

Block cipher modes of operation

- Modes of operation define how to use a block cipher to encrypt long messages
- We will often assume that the message space consists of messages whose length is multiple of a block length

Electronic Code Book (ECB) mode

algorithm $\mathcal{E}_{K}(M)$
if $(|M| \bmod n \neq 0$ or $|M|=0)$ then return \perp
Break M into n-bit blocks $M[1] \cdots M[m]$
for $i \leftarrow 1$ to m do
$C[i] \leftarrow E_{K}(M[i])$
$C \leftarrow C[1] \cdots C[m]$
return C
algorithm $\mathcal{D}_{K}(C)$
if $(|C| \bmod n \neq 0$ or $|C|=0)$ then return \perp
Break C into n-bit blocks $C[1] \cdots C[m]$
for $i \leftarrow 1$ to m do
$M[i] \leftarrow E_{K}^{-1}(C[i])$
$M \leftarrow M[1] \cdots M[m]$
return M

Cipher-block chaining (CBC) mode with random IV Let $\mathrm{E}:\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$ be a block cipher. $\mathrm{CBC} \$=\left(\{0,1\}^{\mathrm{k}}, \mathrm{E}, \mathcal{D}\right)$:
Encryption algorithm E

Cipher-block chaining (CBC) mode with random IV algorithm $\mathcal{E}_{K}(M)$
if $(|M| \bmod n \neq 0$ or $|M|=0)$ then return \perp
Break M into n-bit blocks $M[1] \cdots M[m]$
$C[0] \leftarrow \mathrm{IV} \leftarrow\{0,1\}$
$C[i] \leftarrow E_{K}(C[i-1] \oplus M[i])$
return (IV, C)
algorithm $\mathcal{D}_{K}(\langle\mathrm{IV}, C\rangle)$
if $(|C| \bmod n \neq 0$ or $|M|=0$) then return \perp
Break C into n-bit blocks $C[1] \cdots C[m]$
$C[0] \leftarrow \mathrm{IV}$
for $i \leftarrow 1$ to m do
$M[i]$
$M\left[E_{K}^{-1}(C[i]) \oplus C[i-1]\right)$
$M \leftarrow M[1] \cdots M[m]$
return M

> Stateful Cipher-block chaining (CBC) mode with counter IV

Let $\mathrm{E}:\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$ be a block cipher. $\mathrm{CBCC}=\left(\{0,1\}^{\mathrm{k}}, \mathrm{E}, \mathcal{D}\right)$:
Encryption algorithm E

Stateful Cipher-block chaining (CBC) mode with counter IV
algorithm $\mathcal{E}_{K}(M)$
static $c t r \leftarrow 0$
if $(|M| \bmod n \neq 0$ or $|M|=0)$ then return \perp
Break M into n-bit blocks $M[1] \cdots M[m]$
if ctr $\geq 2^{n}$ then return \perp
if $c t r \geq 2^{n}$ then
$C[0] \leftarrow \mathrm{IV} \leftarrow[c t r]_{n}$
for $i \leftarrow 1$ to m do
$C[i] \leftarrow E_{K}(C[i-1] \oplus M[i])$
$C \leftarrow C[1] \cdots C[m]$
$c t r \leftarrow c t r+1$
return $\langle\mathrm{IV}, C\rangle$
algorithm $\mathcal{D}_{K}(\langle\mathrm{IV}, C\rangle)$
if $(|C| \bmod n \neq 0$ or $|C|=0)$ then return \perp
Break C into n-bit blocks $C[1] \cdots C[m]$
if IV $+m>2^{n}$ then return \perp
$C[0] \leftarrow \mathrm{IV}$
for $i \leftarrow 1$ to m do
$\underset{M \leftarrow M[1] \cdots M[m]}{\left.M[i] \leftarrow E_{K}^{-1}(C[i]) \oplus C[i-1]\right)}$
return M

Randomized counter mode (CTR\$)
Let $\mathrm{F}:\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\mathrm{L}}$ be a function family. $\mathrm{CBC} \$=\left(\{0,1\}^{\mathrm{k}}, \mathrm{E}, \mathcal{D}\right)$:

Randomized counter mode (CTR\$)

```
algorithm }\mp@subsup{\mathcal{E}}{K}{}(M
    m\leftarrow\lceil|M|/L\rceil
    R\leftarrow&{0,1\mp@subsup{}}{}{\ell}
    Pad}\leftarrow\mp@subsup{F}{K}{\prime}(R+1)|\mp@subsup{F}{K}{}(R+2)|\cdots|\mp@subsup{F}{K}{}(R+m
    Pad}\leftarrow\mathrm{ the first |M| bits of Pad
    Pad}
    C}\leftarrowM\oplusP\textrm{Pa
    return C
    algorithm }\mp@subsup{\mathcal{D}}{K}{}(C
    if }|C|<\ell\mathrm{ then return }
    Parse C into R| 豬 where |R|=\ell
    m\leftarrow\lceil|\mp@subsup{C}{}{\prime}|/L\rceil
    Pad}\leftarrow\mp@subsup{F}{K}{}(R+1)|\mp@subsup{F}{K}{}(R+2)|\cdots|\mp@subsup{F}{K}{}(R+m
    Pad}\leftarrow\mathrm{ the first }|\mp@subsup{C}{}{\prime}|\mathrm{ bits of Pad
    M\leftarrowC'\oplus Pad
    return M
```


Stateful counter mode (CTRC)
Let $\mathrm{F}:\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\mathrm{L}}$ be a function family. $\mathrm{CBC} \$=\left(\{0,1\}^{\mathrm{k}}, E, \mathcal{D}\right)$:
Encryption algorithm E

13

Stateful counter mode (CTRC)

```
lgorithm }\mp@subsup{\mathcal{E}}{K}{}(M
    static ctr\leftarrow0
    If ctr +m\geq2 2 then return }
    Pad\leftarrowF FK}(ctr+1)|F\mp@subsup{F}{K}{}(ctr+2)|\cdots|\mp@subsup{F}{K}{}(ctr+m
    Pad\leftarrowthe first |M| bits of Pad
    C\leftarrowM\oplusPad
    ctr\leftarrowctr +m
    algorithm \mp@subsup{\mathcal{D}}{K}{\prime}(\langlei,C\rangle)
    Pad
    Pad\leftarrowthe first |C| bits of Pad
    M\leftarrowPad \oplusC
    return M
```

What is a secure encryption scheme?

- Recall, perfectly secure schemes are impractical
- We assume that adversaries are computationally bounded
- A scheme is secure when it is not insecure.
- Insecure = adversaries can do bad things.
- Bad things: an adversary, who sees ciphertexts
- can compute the secret key
- can compute some plaintexts
- can compute the first bit of a plaintext
- can compute the sum of the bits of a plaintext
- can see when equal messages are encrypted
- can compute

So what is a secure encryption scheme?

- Informally, an encryption scheme is secure if no adversary with "reasonable" resources who sees several ciphertexts can compute any* partial information about the plaintexts, besides some a-priori information.
* Any information, except the length of the plaintexts. We assume the length of the plaintexts is public.
- Note, that the above implies that the bad things we mentioned do not happen. And the other "bad" things.
- While the above "definition" captures the right intuition, it's too informal to be useful.

Indistinguishability under chosen-plaintext attacks
Fix $S E=(K e y S p, E, D)$
$K^{\ddagger}{ }^{\$} \mathrm{KeySp}$
For an adversary A and a bit b consider an experiment $\operatorname{Exp}_{S E}{ }^{\text {ind-cpa-b }}{ }_{(A)}$

The IND-CPA advantage of A is:

A symmetric encryption scheme SE is indistinguishable under chosenplaintext attacks (IND-CPA secure) if for any adversary A with "reasonable" resources $\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A)$ is "small" (close to 0).

Alternative interpretation

```
Fix SE=(KeySp,E,D)
\(K^{\ddagger}\) KeySp
For an adversary A consider an experiment \(\operatorname{Exp}_{\mathcal{S} \mathcal{E}}{ }^{\text {ind-cpa-cg }}(A)\)
```



```
The experiment returns 1 iff \(A b^{\prime}=b\)
Claim. \(\operatorname{Adv}_{\mathcal{S} \mathcal{E}}{ }^{\text {ind-cpa }}(A)=2 \cdot \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S} \mathcal{E}}^{\text {ind-cpa-cg }}(A)=1\right]-1\)
```


Proof of the claim

$\operatorname{Pr}\left[\operatorname{Exp}_{S \varepsilon}^{\mathrm{ind}-\mathrm{cpaccg}_{(}}(A)=1\right]$
$=\operatorname{Pr}\left[b=b^{\prime}\right]$
$=\operatorname{Pr}\left[b=b^{\prime} \mid b=1\right] \cdot \operatorname{Pr}[b=1]+\operatorname{Pr}\left[b=b^{\prime} \mid b=0\right] \cdot \operatorname{Pr}[b=0]$
$=\operatorname{Pr}\left[b=b^{\prime} \mid b=1\right] \cdot \frac{1}{2}+\operatorname{Pr}\left[b=b^{\prime} \mid b=0\right] \cdot \frac{1}{2}$
$=\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right] \cdot \frac{1}{2}+\operatorname{Pr}\left[b^{\prime}=0 \mid b=0\right] \cdot \frac{1}{2}$
$=\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right] \cdot \frac{1}{2}+\left(1-\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]\right) \cdot \frac{1}{2}$
$=\frac{1}{2}+\frac{1}{2} \cdot\left(\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]\right)$
$=\frac{1}{2}+\frac{1}{2} \cdot\left(\operatorname{Pr}\left[\operatorname{Exp}_{S \varepsilon}^{\text {ind } c \text { cpa-1 }}(A)=1\right]-\operatorname{Pr}\left[\operatorname{ExP}_{S \varepsilon}^{\text {ind }-c p a-0}(A)=1\right]\right)$
$=\frac{1}{2}+\frac{1}{2} \cdot \operatorname{Adv}_{S E}{ }^{\mathrm{idx}-\mathrm{pepa}_{(}(A)}$

Why IND-CPA ensures that no partial information is leaked?

- Fix SE=(KeySp,E,D) with MsgSp=\{0,1\} ${ }^{\mathrm{m}}$. Assume there exists an adversary B that after seeing a few plaintexts-cipertexts pairs and a challenge ciphertext can compute the challenge plaintext. Namely, in
- Experiment $\operatorname{Exp}_{\mathcal{S} \mathcal{E}}^{\mathrm{pr}-\mathrm{cpa}}(B)$
- $K^{s}-\mathcal{K}$
- $M^{\prime} \stackrel{s}{s}^{s}\{0,1\}^{m}$
- $C \leftarrow^{\frac{8}{-}} \mathcal{E}_{K}\left(M^{\prime}\right)$
$M \leftarrow B^{\mathcal{L}}()$
If $M=M^{\prime}$ then return 1 else return 0
- Then SE is not IND-CPA secure
- Claim. $\left[\right.$ IND-CPA \Rightarrow PR-CPA] Fix $\mathrm{SE}=(\mathrm{KeySp}, \mathrm{E}, \mathrm{D})$ with $\mathrm{MsgSp}=\{0,1\}^{\mathrm{m}}$. Then for every adversary B there exists an adversary A such that
- $\operatorname{Adv}_{\mathcal{S}}^{\text {pr-cpa }}(B) \leq \operatorname{Adv}_{s \in}^{\text {ind-cpa }}(A)+\frac{1}{2^{m}}$
and $q_{A}=q_{B}+1, \mu_{A}=\mu_{B}+m, t_{A}=t_{B}=O(\mu+m+c)$
- Proof. We define A as follows:
- Adversary $A^{\mathcal{E}_{K}(\operatorname{LR}(\cdot,, b))}$
- $M_{0} \stackrel{\S}{\leftarrow}\{0,1\}^{m} ; M_{1} \stackrel{₫}{\leftarrow}\{0,1\}^{m}$
- $\quad C \leftarrow \mathcal{E}_{K}\left(\operatorname{LR}\left(M_{0}, M_{1}, b\right)\right)$
- Run adversary B on input C, replying to its oracle queries as follows
- When B makes an oracle query X do
- $\quad Y \leftarrow \mathcal{E}_{K}(\operatorname{LR}(X, X, b))$
- When B halts and outputs a plaintext M
- If $M=M_{1}$ then return 1 else return 0
- We now analyze the adversary:
${ }^{-} \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S} \mathcal{E}}^{\mathrm{ind}-\text { ppa-1 }}(A)=1\right] \geq \operatorname{Adv}_{\mathcal{S} \mathcal{E}}^{\mathrm{pr}-\text { cpa }}(B)$
${ }^{\bullet} \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S} \mathcal{E}}^{\text {ind cpa-0 }}(A)=1\right] \leq 2^{-m}$
- $\operatorname{Adv}_{\mathcal{S} \mathcal{E}}^{\text {ind cpa }}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S} \mathcal{E}}^{\text {ind-cpa-1 }}(A)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S} \mathcal{E}}^{\text {ind cpa-0 }}(A)=1\right]$ $\geq \operatorname{Adv}_{\mathcal{S} \mathcal{E}}^{\mathrm{prcpa}}(B)-2^{-m}$.
The resources of A are justified by the description of A.

Analysis of the ECB mode.

Let $\mathrm{E}:\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$ be a block cipher. $\mathrm{ECB}=\left(\{0,1\}^{\mathrm{k}}, \mathcal{E}, \mathcal{D}\right)$:

Conjecture. ECB is PR-CPA secure.
Is ECB a good encryption scheme?
Is ECB IND-CPA secure?

ECB is not IND-CPA

Adversary $A^{\mathcal{E}_{K}(\operatorname{LR}(\cdot, ;, b))}$
$M_{1} \leftarrow 0^{2 n} ; M_{0} \leftarrow 0^{n} \| 1^{n}$
$C[1] C[2] \leftarrow \mathcal{E}_{K}\left(\operatorname{LR}\left(M_{0}, M_{1}, b\right)\right)$
If $C[1]=C[2]$ then return 1 else return 0

- Claim. Any deterministic, stateless scheme is not IND-CPA
- Why?

Analysis of the CTRC

Let $F:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$ be a function family. $C B C \$=\left(\{0,1\}^{k}, E, \mathcal{D}\right)$: Encryption algorithm E

The scheme is used to encrypt at most 2^{l} blocks (so that the counter does not wrap around)

- How good is the scheme?
- The flaws seem hard to find
- Q. But may be they exist and we just don't see them?
- A. The mode is as good as it can be and we can prove it.

Security of CTRC

- Theorem. For any adversary A there exists an adversary B such that
- $\operatorname{Adv}_{C T R C}^{\text {ind }- \text { ppa }}(A) \leq 2 \cdot \mathbf{A d v}_{F}^{\text {prf }}(B)$ where $t_{B}=t_{A}+O\left(q_{A}+(l+L) \frac{\mu_{A}}{l}\right), q_{B}=\frac{\mu_{A}}{l}, \mu_{B}=\mu_{A}$
- Proof idea. We present an adversary B who needs to distinguish whether it is given an oracle access to a truly random function or an instance of F. B will use A's ability to break the CTRC encryption scheme. B will run A as a subroutine, simulating the ind-cpa experiment for it. B will answer A's oracle queries using its own oracle. Finally, if A wins, B will win.

- Let us analyze B. Note that
- $\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prf-1 }}(B)=1\right]=\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{S}[\mathcal{E}[F]}^{\text {ind } \text { cpacg }}(A)=1\right]=\frac{1}{2}+\frac{1}{2} \cdot \operatorname{Adv}_{\mathcal{S}[[F]}^{\text {ind-cpa }}(A)$

and thus
$\operatorname{Adv}_{F}^{\text {prf }}(B)=\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prf-1 }}(B)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{F}^{\text {prf-0 }}(B)=1\right]$

and the statement of the theorem follows.Finally the resources of B are justified by the algorithm for B.
$\operatorname{Adv}_{\mathcal{S} E[\text { Func }(\ell, L)]}^{\mathrm{ind} \text {-pa }}(A)=0$ because all the values corresponding to the red dots on the picture below are random and independent (since they are the results of a random function applied to distinct points) and thus $C[1], \ldots, C[m]$ are also random values, independent from the adversary A's challenge bit.

Analysis of the CTR\$

Let $\mathrm{F}:\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\mathrm{L}}$ be a function family. $\mathrm{CBC} \$=\left(\{0,1\}^{\mathrm{k}}, \mathrm{E}, \mathcal{D}\right)$:
Encryption algorithm E
$R^{\mathfrak{s}-\{0,1\}^{\ell}}$

Security of CTR\$

- Theorem. For any adversary A there exists an adversary B such that
- $\operatorname{Adv}_{c T R S}^{\text {ind } c \text { cpa }}(A) \leq 2 \cdot \operatorname{Adv}_{F}^{\text {prf }}(B)+\frac{\mu_{A}^{2}}{l^{2} \cdot 2^{l}}$
where $t_{B}=t_{A}+O\left(q_{A}+(l+L) \frac{\mu_{A}}{l}\right), q_{B}=\frac{\mu_{A}}{l}, \mu_{B}=\mu_{A}$
-
- What does the security statement tell us?
- Let F be AES, $l=\mathrm{L}=128$. Assume one encrypts $\mathrm{q}=2^{30}$ messages, 1 Kb each (2^{13} bits), recall Adv AESS $_{p r f}(A) \leq \approx \frac{q_{A E S}^{2}}{2^{128}}$
- $\operatorname{Adv}_{C T R S}^{\text {ind }}$ cpa $(A) \leq \approx 2 \cdot \frac{q_{\text {AES }}^{2}}{2128}+\frac{\mu_{A}^{2}}{L^{2} \cdot 2^{l}}=\frac{3 \cdot \mu^{2}}{L^{2} \cdot 2^{128}}$
- $\quad \leq \frac{4 \cdot 2^{233 \cdot 2}}{128^{2} \cdot 2^{128}}=\frac{1}{2^{54}}$
- Proof idea. As in the proof of the previous theorem.
- Proof. The adversary B is exactly like one in the proof of the previous theorem. But now we claim that
- $\boldsymbol{A d v}_{C T R S[\text { Furc }(I, L)]}^{\text {ind }}(A) \leq \frac{\mu_{A}^{2}}{2 \cdot l^{2} \cdot 2^{l}}$
- Given this and the previous proof, the statement of the theorem follows.
- To prove the claim note that after q queries A made the inputs to the random function are
$\begin{array}{llll}r_{1}+1, & r_{1}+2, & \cdots, & r_{1}+m_{1} \\ r_{2}+1, & r_{2}+2, & \cdots, & r_{2}+m_{2}\end{array} \quad$ Let NoCol be the event that these values are all
$r_{q}+1, \quad r_{q}+2, \cdots, \quad r_{q}+m_{q}$

$=\operatorname{Pr}_{1}[A=1]-\operatorname{Pr}_{0}[A=1]$
 $-\operatorname{Pr}_{0}|A=1| \mathrm{Col} \mid \cdot \mathrm{Pr}_{0}[\mathrm{Col}]-\operatorname{Pr}_{0}[A=1 \mid \mathrm{NoCol}] \cdot \mathrm{Pr}_{0}[$ NoCol $]$
$=\left(\operatorname{Pr}_{1}|A=1| \mathrm{Col}\right]-\operatorname{Pr}_{0}[A=1|\mathrm{Col}|) \cdot \operatorname{Pr}_{0}[\mathrm{Col}]$
$\leq \mathrm{Pr}_{0}|\mathrm{Col}|$

```
- It remains to calculate }\operatorname{Pr}[\textrm{Col}]\mathrm{ (we drop the subscript 0 in the notation)
    Pr [Col] = Pr[COI ] (Col is the event that there is is collision in the first i rows)
    = Pr [Col q-1 ] + Pr [COIq}| NoCOI q-1 ] Pr [NoCOolq-1 ]
    \leq Pr [Col }\mp@subsup{q}{-1}{}]+\operatorname{Pr}[\mp@subsup{\textrm{COI}}{q}{}|\mp@subsup{\textrm{NoCol}}{q-1}{}
    \leq:
    \leqPr [Col }]+\mp@subsup{\sum}{i=2}{q}\operatorname{Pr}[\mp@subsup{\textrm{Col}}{i}{}|\mp@subsup{\textrm{NoCol}}{i-1}{}
    = \sum = Pr=2
    Pr[\mp@subsup{Coli}{i}{|}|\mp@subsup{\textrm{NoCol}}{i-1}{}]\leq\frac{(\mp@subsup{m}{i}{}+\mp@subsup{m}{1}{}-1)+(\mp@subsup{m}{i}{}+\mp@subsup{m}{2}{}-1)+\cdots+(\mp@subsup{m}{i}{}+\mp@subsup{m}{i-1}{}-1)}{\mp@subsup{2}{}{\ell}}
        =}\frac{(i-1)\mp@subsup{m}{i}{}+\mp@subsup{m}{i-1}{}+\cdots+\mp@subsup{m}{1}{}-(i-1)}{\mp@subsup{2}{}{\ell}}
    Pr[CO1] \leq \sum = Pr [COOi | NoCOOli-1]
    \leq \sum 
    = (q-1)(\mp@subsup{m}{1}{}+\cdots+\mp@subsup{m}{q}{})}\mp@subsup{2}{}{\ell}
        The statement follows after we
```


Security of CBCC

Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher. $C B C C=\left(\{0,1\}^{k}, E, \mathcal{D}\right)$:
Stateful Encryption algorithm E

- Theorem. There exists an adversary A such that $\operatorname{Adv}_{C B C C}^{\text {ind-cpa }}(A)=1$
- Proof idea. Adversary $A^{\mathcal{E}_{K}(\operatorname{LR}(\cdot, \cdot, b))}$
$M_{0,1} \leftarrow 0^{n} ; M_{1,1} \leftarrow 0^{n}$
$M_{0,2} \leftarrow 0^{n} ; M_{12} \leftarrow 0^{n-}$
$M_{0,2} \leftarrow 0^{n} ; M_{1,2} \leftarrow 0^{n-1}$
$\left(\mathrm{IV}_{1}, C_{1}\right) \stackrel{\&}{\varepsilon} \mathcal{E}_{K}\left(\operatorname{LR}\left(M_{0,1,}, M_{1,1}, b\right)\right)$
$\left.\mathrm{IV}_{2}, C_{2}\right\rangle \stackrel{\varepsilon}{\&} \mathcal{E}_{K}\left(\operatorname{LR}\left(M_{0,2}, M_{1,2}, b\right)\right)$
If $C_{1}=C_{2}$ then return 1 else return 0

Security of CBC\$

Let $\mathrm{E}:\{0,1\}^{\mathrm{k}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$ be a block cipher. $\mathrm{CBC} \$=\left(\{0,1\}^{\mathrm{k}}, E, \mathcal{D}\right)$: Encryption algorithm E

IV $\leftarrow\{0,1\}^{n}$

- Theorem. For any adversary A there exists an adversary B such that
- $\boldsymbol{A d v}_{C B C S}^{\text {ind }}{ }^{\text {cpa }}(A) \leq 2 \cdot \mathbf{A d} \mathbf{v}_{E}^{p r f}(B)+\frac{\mu_{A}^{2}}{n^{2} \cdot 2^{n}}$
where $\quad t_{B}=t_{A}+O\left(q_{A}+\mu_{A}\right), q_{B}=\frac{\mu_{A}}{n}, \mu_{B}=\mu_{A}$

Did we get all we wanted?

- Is IND-CPA security definition strong enough (does it take into account all the bad things that can happen?)
- An adversary wants to win: to get some partial information about the plaintext from a challenge ciphertext
- What if the adversary can make the receiver to decrypt other ciphertexts of the adversary's choice, learn the plaintexts and this helps it to win?
- Our definition didn't consider such "chosen-ciphertext" attacks

Indistinguishability under chosen-ciphertext attacks Fix SE=(KeySp,E,D)
K^{\ddagger} KeySp
For an adversary A and a bit b consider an experiment $\operatorname{Exp}_{S \mathcal{E}}^{i n d-c c a-b}(A)$

|d
The experiment returns d
The IND-CCA advantage of A is
$\operatorname{Adv}_{S E}^{i n d-c c a}(A)=\operatorname{Pr}\left[\operatorname{Exp}_{S E}^{i n d-c c a-1}(A)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{S E}^{i n d-c c a-0}(A)=1\right]$
A symmetric encryption scheme $S E$ is indistinguishable under chosenciphertext attacks (IND-CCA secure) if for any adversary A with "reasonable" resources $\operatorname{Adv}_{s \in}^{\text {ind } d \text { cca }}(A)$ is "small" (close to 0).

