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Symmetric encryption, encryption modes,
security notions.

Symmetric encryption schemes
A scheme SE is specified by a key generation algorithm K, an
encryption algorithm E, and a decryption algorithm D.

SE=(K,E,D)

MsgSp-message space

K
/ 4

Sender S Receiver R

It is required that for every MeMsgSp and every K that can be output by
K, D(K,E(K,M))=M

¢ Often the key generation algorithm simply picks a random

string from some key space KeySp (e.g. {0,1}k for some
integer k).

« In this case we will say that a scheme SE is defined by
KeySp and two algorithms: SE=(KeySp,E,D)

¢ The encryption algorithm can be either
* randomized (take as input a random string)

« or stateful (take as input some state (e.g. counter) that it
can update)

Block cipher modes of operation

* Modes of operation define how to use a block
cipher to encrypt long messages

* We will often assume that the message space
consists of messages whose length is multiple
of a block length




Electronic Code Book (ECB) mode

Let E:{0,13Kx{0,13"+{0,13" be a block cipher. ECB=({0,1}¥,E,D):

Encryption
algorithm €

Decryption
algorithm D

Electronic Code Book (ECB) mode

algorithm Ex (M)
if (|M|modn # 0 or |[M|=0) then return L
Break M into n-bit blocks M([1]--- M[m]
for i« 1tom do
Ol — Exc(Mi)
C —C[]---Cm]

return C'

algorithm Dk (C)
if (|C|modn # 0 or |C| =0) then return L
Break C' into n-bit blocks C[1]---C[m]
for i —1tomdo
M[i] — EZN(C[i])
M — M[]-- Mim]
return M

Cipher-block chaining (CBC) mode with random IV

Let E:{o,1}kx{o,1}”—~<0,1)” be a block cipher. CBC$=({0,1}k,f,D):
Encryption algorithm £

wvéo" [ v | [mig]

(21 ]
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Decryption E—l

algorithm D K
7

M[1]

Cipher-block chaining (CBC) mode with random IV

algorithm Ex (M)
if (|M|mod n # 0 or M| = 0) then return L
Break M into n-bit blocks M[1]--- M[m]
Clo] — 1V & 0,1}
for i+ 1tom do
Cli) — Ex(Cli—1] & Mli])
C —C[]---C[m]
return (IV,C)

algorithm Dy ((IV,C))
if (|C| mod n # 0 or |M|=0) then return L
Break C' into n-bit blocks C[1]-- - C[m]
clo] —1v
for i —1tom do
Mli] — EZ'(Cli)) ® Cli — 1))
M — M[1]-- M[m]
return M




Stateful Cipher-block chaining (CBC) mode with counter IV

Let E:{0,1}k><{0,1}n—~{0,1}n be a block cipher. CBCC=({O,1}k,f,D):
Encryption algorithm £

ctre0" ‘ cr
The counter ctr is
incremented for
each new
message
‘ ctr
[ ot
Decryption
algorithm D
L

Stateful Cipher-block chaining (CBC) mode with counter IV

algorithm Exc(M)
static ctr — 0
if (|M|modn # 0 or [M|=0) then return L
Break M into n-bit blocks M (1] --- M[m)
if ctr > 2" then return L
Cl0] — IV  [ctr],
for i — 1tom do
Cli] — Ex(Cli — 1] & M[i])
¢ —C[1]---Clm]
ctr — ctr +1
return (IV,C)

algorithm Dy ((IV,C))
if (|C|modn # 0 or |C| = 0) then return 1
Break C into n-bit blocks C[1] -~ Cfm]
if IV + m > 2" then return L
o] —1v
for i< 1tomdo
Mli] — EZ'(Cli)) @ Cli — 1])
M — M[1]--- M[m]
return M

Randomized counter mode (CTR$)

Let F:{0,13¥x{0,13*-{0,1}" be a function family. CBC$=({0,1}K,E,D):
Encryption algorithm £

rRE{0,1)¢
i —
[ & ][ecw]
[® ] [re1]
Decryption
algorithm D

Randomized counter mode (CTR$)

algorithm Ex (M)
m — [|M|/L]
R+ {01}
Pad — F(R+1) | Fx(R+2) || -+ | Fx(R+m)
Pad «— the first |M| bits of Pad
C" — M & Pad
C—R|C
return C'

algorithm Dy (C)
if |C| < (then return L
Parse C into R || €’ where |R| = {
m —[|C'|/L]
Pad — F(R+1) || Fx(R+2) ]| --- || Fx(R+m)
Pad « the first |C”| bits of Pad
M « C" @ Pad
return M
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Stateful counter mode (CTRC)
Let F:{0,1}*x{0,13*~{0,13" be a function family. CBC$=({0,1}¥,E,D):
Encryption algorithm £

ctr is initially of

A current counter
ctr is maintained as a

state M[1]

Decryption
algorithm D

Stateful counter mode (CTRC)

algorithm x (M)
static ctr — 0
m — [|M|/L]
If ctr + m > 2 then return L
Pad « Fic(ctr +1) || Fic(ctr +2) || -+ || Fx(ctr +m)
Pad « first | M| bits of Pad
C M & Pad
ctr Cl
return (ctr —m.C)

m

algorithm Dy ((i,C))

m — [|C|/L]

Pad « Fi(i + 1) | Fg(i+2) || -+ || Fx(i +m)
Pad — the first |C] bits of Pad

M «— Pad & C

return M

What is a secure encryption scheme?

Recall, perfectly secure schemes are impractical

We assume that adversaries are computationally
bounded

* A scheme is secure when it is not insecure.

Insecure = adversaries can do bad things.

Bad things: an adversary, who sees ciphertexts
* can compute the secret key

¢ can compute some plaintexts

¢ can compute the first bit of a plaintext

* can compute the sum of the bits of a plaintext
* can see when equal messages are encrypted

¢ can compute ...........

So what is a secure encryption scheme?

Informally, an encryption scheme is secure if no
adversary with “reasonable” resources who sees
several ciphertexts can compute any* partial
information about the plaintexts, besides some
a-priori information.

* Any information, except the length of the
plaintexts. We assume the length of the
plaintexts is public.

* Note, that the above implies that the bad things
we mentioned do not happen. And the other
“bad” things.

* While the above “definition” captures the right
intuition, it's too informal to be useful.
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Indistinguishability under chosen-plaintext attacks
Fix SE=(KeySp,E,D)

K~$—KeySp
For an adversary A and a bit b consider an experiment Expi;:d'q’a'h(A)
b
I
1
B0 [ gy [ o)
( )
#
A VOB e (R ()
Experiment Expite ™ (4) | Experiment Explte ®*°(4)
ld K&K K&K
45 AFK(RC1) & ASK(LR(.0))

The experiment returns d Return d Return d

The IND-CPA advantage of A is:
AQVEEPHA) = Pr[Expl P (4) = 1] - Pr [Expld(4) = 1
A symmetric encryption scheme SE is indistinguishable under chosen-

plaintext attacks (IND-CPA secure) if for any adversary A with “reasonable”
resources Advis " (4) is “small” (close to 0).

Alternative interpretation
Fix SE=(KeySp,E,D)
K& KeySp

For an adversary A consider an experiment Expg‘t‘.l""a’cg(A)

@

o -/

Experiment Explss (A4)
Mo,M: S
M RG] Bk bE{01); KK

( > B & ASK(LR(0)

if b=V then return 1 else return 0

£l

Proof of the claim

Pr [Bxpld s (4) = 1]
= Prib=1
= Prlpb=V[b=1]-Prp=1]+Pr[b=V|b=0]-Prp=0]

. 1 1

= Prlb=¥[b=1]-5+Prb=V]b=0] -5

= Pr[t=1|b=1] J+I>U’7ntfo} !

= Pr[y=1b=1]- 5+ Pr[=0b=0]-;

q 1 q 1

= Prly=1]b=1]-5+(1-Pr[y=1]b=0))-3
1 1 v —1] = —

= gty (P =11b=1]-Pr['=1]b=0])
1.1 ind-cpa- ind-cpa-t

= 5ty (Pr[BxplE () = 1] - pr [BxpldO(a) = 1])
1.1 ind-cpa,

= gty AdVET()

Why IND-CPA ensures that no partial information is leaked?

Fix SE=(KeySp,E,D) with MsgSp=(0,1}™. Assume there exists an adversary B that
after seeing a few plaintexts-cipertexts pairs and a challenge ciphertext can
compute the challenge plaintext. Namely, in

« Experiment Exp; ™ (B) AdVEET(B) = Pr [Expg'g‘ (g =1
K&K

. M E {0, 13 is non-negligible
C & E(M)

M & BEO(C)
If M = M’ then return 1 else return 0

Then SE is not IND-CPA secure.

Claim. [IND-CPA=PR-CPA] Fix SE=(KeySp,E,D) with MsgSp={0,1}m. Then for
every adversary B there exists an adversary A such that
AdvEET(B) < AdviedPN(A) + zi

and 44 =qp+ 1 o= pp+mta =ty = O(u+m+c)
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* Proof. We define A as follows:
o Adversary ASKERC0)
Mo <= {0,1}™; My < {0,1}™
. C  Eg(LR(My, My, b))
Run adversary B on input C, replying to its oracle queries as follows
When B makes an oracle query X do
. Y — Ex(LR(X, X,b))
return Y to B as the answer

When B halts and outputs a plaintext M
. If M = M, then return 1 else return 0

* We now analyze the adversary:

Pr [Expgg"m"m) = 1] > AdvRE™(B)
Pr[Expd ™ 0(4) =1] < 2
.

L AVETT () = Pr [Explye(4) = 1] - Pr [Bxplid (1) = 1]
> AdvRIP(B) -2

The resources of A are justified by the description of A. 21

Analysis of the ECB mode.

Let E:{0,13Kx£0,13"={0,1}" be a block cipher. ECB=({0,1}X,E,D):

Encryption
algorithm €

Conjecture. ECB is PR-CPA secure.

Is ECB a good encryption scheme?

Is ECB IND-CPA secure?

22

ECB is not IND-CPA

Adversary ASx(LR(.b)
My — 02" My — 0" || 1"
C1]C[2] « Ex(LR(My, My,b))
It C[1] = C[2] then return 1 else return 0

AdVEG T (A) = Pr [Expt ™ (4) =1 | — Pr [ Explidy ™ (a) = 1] =1-0=1

23

¢ Claim. Any deterministic, stateless scheme is
not IND-CPA

* Why?
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Analysis of the CTRC

Let F:{0,13¥x{0,1}/~{0,1}\ be a function family. CBC$=({0,1}%,E,D):
Encryption algorithm £

ctr is initially of
A current counter

ctr is maintained as a
state

The scheme is used to encrypt at most 2 blocks (so that the counter does not wrap around)

* How good is the scheme?
¢ The flaws seem hard to find.
* Q. But may be they exist and we just don’t see them?

* A. The mode is as good as it can be and we can prove it.

Security of CTRC
* Theorem. For any adversary A there exists an adversary B such that
o AdVELE(A) <2-Advy (B)
where 15 =14+0(qs+ (HL}l%),qs = ‘%Mz =M

Proof idea. We present an adversary B who needs to distinguish whether

it is given an oracle access to a truly random function or an instance of
F. B will use A’s ability to break the CTRC encryption scheme. B will run
A as a subroutine, simulating the ind-cpa experiment for it. B will
answer A’s oracle queries using its own oracle. Finally, if A wins, B will
win.

* Proof. Let A be any “ind-cpa” adversary attacking CTRC. We present a
“prf” adversary B:

b&{0,1} g is a random instance of Func(¢L)

Eorr O

B can simulate the CTRC encryption algorithm
MO'MII because it makes only “oracle” use of the
underlying function F.
Adversary BY

b
2,
B
b {01}

Run adversary A, replying to its oracle queries as follows
When A makes an oracle query (Mo, M;) do
C & E(My)
Return C to A as the answer

>

Until A stops and outputs a bit o’
If ¥’ = b then return 1 else return 0

* Let us analyze B. Note that

epa 1.1 ind-cpa 1
o PrExpit(B)=1] = Pr[Expldia)=1] = 55 AdVEE(A)
5 Dri-0( py _ — Py [fypgind-cpa-cg - 1.1 ind-cpa.
o Pr[Eeptm) 1] = PB4 =1] PR AV 1y (4)
and thus
Advl'(B) = Pr [Exp’;?“(l?)* 1] —Pr [Exp’;"'“(ﬂ)* 1]

) = 5 - AdVERE 1) (4)
We will show that AdvE{Ere,  (4) = 0

and the statement of the theorem follows.Finally the resources of B are
justified by the algorithm for B.
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Adv‘s“‘?;u":c([_m(/\) = 0 because all the values corresponding to the red dots
on the picture below are random and independent (since they are the
results of a random function applied to distinct points) and thus

C[1],...,C[m] are also random values, independent from the adversary A’'s
challenge bit.

H
Mif—§

[Cetr ] [c] [ cra1 |
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Analysis of the CTR$

Let F:{0,13¥x£0,1}/~{0,1}L be a function family. CBC$=({0,1}%,E,D):
Encryption algorithm £

RE£0,1)
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Security of CTR$

Theorem. For any adversary A there exists an adversary B such that

P
ind—cp ) 0
Adv(e(4) < 2-Advy (B) + T

where 13 =15+ 0(gs+ (I JrL)%).q,Z "TA_,A,; =

* What does the security statement tell us?

* Let F be AES, /=L=128. Assume one encrypts q=230 messages, 1 Kb
13, . G
each (27 bits), recall Adv/y(4) Szz",—'gg
Advmd*(hu(/‘> < E2_4112\155
CTRS - 128
. 4.9%2

1
1282278~ 25

* Proof idea. As in the proof of the previous theorem.
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Proof. The adversary B is exactly like one in the proof of the previous
theorem. But now we claim that

ind—cpa 4
AdVerrsiFunc ) (A) < TR

Given this and the previous proof, the statement of the theorem follows.

To prove the claim note that after q queries A made the inputs to the
random function are

reb L T2 e, Ty Let NoCol be the event that these values are all
rotl, 1242, oo, Todma distinct, and Col is the complement of NoCol.

: : Then
Tat L g2 e, rtmg

ind—c
AdeJTRS{/;'(er'(I 0)(A4)

= Prfd=1]-Pr[A=1]
= Pri[A=1]|Coll - Pr; [Col] + Pr; [A = 1| NoCol| - Pr; [NoCol]

— Prg[A = 1] Col] - Prg [Col] — Pry [A = 1| NoCol] - Prg [NoCol]
= (Pri[A=1] Col] — Prg[A = 1| Coll) - Prg [Col]

< Pro[Col]
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¢ It remains to calculate Pr[Col] (we drop the subscript 0 in the notation)

Pr(Col] = Pr[Col,] (Col;is the event that there is is collision in the first i rows)
= Pr[Coly_1] + Pr[Col, | NoCol,_1] - Pr [NoCol,_1]
< Pr[Coly_1] + Pr[Col, | NoCol,—1]

a
< Pr[Coli]+ Y Pr[Col; | NoCol;
i

q
= > Pr[Col;| NoCol; 1] .
(mi+mi = 1)+ (mi+ma— 1)+ + (mi +miy — 1)
2f
(i =Dmi+mii+--+m —(i—1)
2f

Pr[Col; | NoCol;1] <

q
Pr(Col] < 3 Pr[Coli| NoCol;_y]
=1

1A

(i — 1)m; +mi_y + -+ my
PR TR
_ (g=1)(mi+--+my)
-
The statement follows after we

note that my +...+mg = s/l 33

Security of CBCC

Let E:{0,1}kx{o,1}"—~{o,1}” be a block cipher. CBCC=((O,1)k,E,D):
Stateful Encryption algorithm £

ctre-0" [er [[ma] [me21]
incremented (1

for each new
message

[ ar |[crn] [cra]

* Theorem. There exists an adversary A such that Adv/e."(A) = 1

 Proof idea. Adversary ASx(-RC0)

1o

(IV1, 1) <& E(LR(A
.Ca) & E(LR(2 )
If C; = C then return 1 else return 0 34

Security of CBC$

Let E:{o,1}kx{o,1}”—~<0,1)” be a block cipher. CBC$=({0,1}k,E,D):
Encryption algorithm £

e [V [[min] [z

[ v |[car] [cra]

* Theorem. For any adversary A there exists an adversary B such that

2
Ha
n2oon

o AVl (A) <2-Advy (B) +

Ha
where 13 =1a+0(qa+a), g = e =

35

Did we get all we wanted?

Is IND-CPA security definition strong enough (does it take
into account all the bad things that can happen?)

.

An adversary wants to win: to get some partial
information about the plaintext from a challenge
ciphertext

.

What if the adversary can make the receiver to decrypt
other ciphertexts of the adversary’s choice, learn the
plaintexts and this helps it to win?

Our definition didn’t consider such “chosen-ciphertext”
attacks
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Indistinguishability under chosen-ciphertext attacks
Fix SE=(KeySp,E,D)

K& Keysp
For an adversary A and a bit b consider an experiment Expls “* *(A)
b
|
VoM Ais not allowed to query
O | IR() its decryption oracle on
( \ —l ciphertexts returned by
— its LR encryption oracle
\ C=ExM, !
# KM (LR

Id
The experiment returns d

The IND-CCA advantage of A is:
AdvZ4e(A) = Pr [ Expitd “"'(A) = 1] — Pr [Expltd < 0(4) = 1]

A symmetric encryption scheme SE is indistinguishable under chosen-
ciphertext attacks (IND-CCA secure) if for any adversary A with “reasonable”
resources Advg’ﬁ"‘“(A) is “small” (close to 0).
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