
C-CORE: Using Communication Cores for High Performance Network Services

Sanjay Kumar, Ada Gavrilovska, Karsten Schwan, Srikanth Sundaragopalan
Georgia Institute of Technology

Center for Experimental Research in Computer Systems
Atlanta, Georgia 30332, USA�

ksanjay, ada, schwan, srikanth � @cc.gatech.edu

Abstract

Recent hardware advances are creating multi-core sys-
tems with heterogeneous functionality. This paper ex-
plores how applications and middleware can utilize systems
comprised of processors specialized for communication vs.
computational tasks. The C-CORE execution environment
enables applications, through middleware and underlying
system functionality, to utilize both the computational capa-
bilities of general purpose CPUs and the high performance
communication hardware provided by specialized commu-
nication processors. Such future heterogeneous multi-core
hardware is emulated by attaching a representative net-
work processor – Intel’s IXP2400 processor – to a general
purpose CPU via a dedicated interconnect. For this plat-
form, C-CORE provides abstractions to represent an appli-
cation’s communication actions, to efficiently couple such
actions with application-level computations, and to dynam-
ically create and configure the platform-resident ‘chains’ of
computational and communication actions used by applica-
tions. C-CORE’s functionality is evaluated with representa-
tive, communication-intensive applications. Measurements
on our experimental platform establish the performance ad-
vantages afforded to applications by C-CORE.

1. Introduction

Large-scale distributed applications increasingly use
middleware to efficiently utilize underlying systems’ com-
putational and communication services. Middleware, in
turn, dynamically deploys processing along the data paths
of application-level overlays [16]. Processing ranges from
simple data routing and forwarding, to the boolean func-
tions carried out in distributed publish/subscribe [21] in-
frastructures, to application-specific actions that manipu-
late, transform, aggregate, and/or distribute information on
sets of source-to-sink paths. For instance, in commercial
applications like the operational information systems used

by airlines [13], middleware services execute simple busi-
ness rules to transform and route business events between
the company’s central processing site and remote sites like
airport terminals or baggage agents. In distributed scien-
tific collaborations, scientists rely on middleware services
to monitor and steer remote experiments, accessing the sub-
sets of experiments’ outputs relevant to their current inter-
ests, at levels of detail appropriate for their local platforms
(e.g., PCs vs. high end workstations) or their communica-
tion resources (e.g., available network bandwidth). An im-
portant attribute of all such applications is that they exhibit
substantial dynamics in terms of data sources and clients,
platform resources or end-user interests; this means that
overlays and overlay services must be constructed, config-
ured, and tuned at runtime.

Our research goal is to improve systems’ abilities
to deliver high performance communication services to
application-level overlay services. We leverage current
hardware trends [4, 6], which indicate that future processors
will be multi-core systems comprised of many processing
cores (processors) on the same chip. Moreover, there will
be both homogeneous (like SMPs but more tightly coupled)
and heterogeneous multi-core systems, the latter consisting
of different cores optimized for different purposes. One ex-
ample is IBM’s cell processor [4], which has cores special-
ized for gaming applications. The example considered in
this paper is a multi-core platform with computational and
communication cores, emulated by using a general purpose
CPU with an attached network processor (NP). In particu-
lar, we are using an IXP2400 NP attached to a general Intel
P4 Linux host through a dedicated PCI bus.

Our approach to improving the performance of
middleware-based applications is to enable them to ‘best’
use the heterogeneous, computational vs. communication-
centric processors present in underlying hardware plat-
forms. Toward this end, the C-CORE execution environ-
ment provides a set of abstractions (1) to represent an ap-
plication’s overlay services, (2) to enable application-level
computations to be executed on different cores, and (3)



to dynamically create and configure the platform-resident
‘chains’ of services computational and communication ac-
tions.

While the basic C-CORE model can be applied to any
streaming data application, in this paper, C-CORE is used
with applications using the publish/subscribe messaging
model [15, 21]. Supporting this model is particularly chal-
lenging because of the potential presence of a large num-
ber of subscribers to the same information, each of which
may require data to be customized before receiving it. Cus-
tomization is expressed with data filters provided by sub-
scribers that must be executed on messages. A specific ex-
ample is a set of filters that extract different information
from the flight records such as those that extract passen-
ger vs. baggage vs. meal preference information. The
role of C-CORE, in this context, is to permit middleware to
construct efficient ‘processing chains’ for application-level
messages, and to appropriately and dynamically map such
chains across the computational and communication cores
of underlying machine platforms. More generally, the dis-
tributed brokers [15, 21] or overlay networks constructed by
middlewares are mapped to sets of C-CORE execution en-
vironments. Middleware functions realized with C-CORE
and deployed across distributed nodes execute functionality
that includes data distribution, manipulation, and transfor-
mation, between data sources and sinks.

The technical contributions of this paper are (1) the C-
CORE execution environment supporting the processing of
application-level messages across multiple, heterogeneous
execution engines on single machines and ultimately, across
distributed systems, (2) measurements on a prototype het-
erogeneous multi-core platform that demonstrate the per-
formance advantages derived from using C-CORE to imple-
ment the communication functionality of distributed infor-
mation flow applications, and (3) experimental results that
illuminate what application-level functions are suitable to
run on different cores of future multi-core machines. The
latter goes beyond standard publish/subscribe message fil-
tering and forwarding functionality, by implementing some
of the database-like query operations present in the informa-
tion flow graphs considered in distributed information flow
applications [11].

2. The C-CORE Hardware Platform

Our goal is to create a runtime environment for ef-
ficiently carrying out the functions executed by broker
(overlay) nodes in content distribution systems like pub-
lish/subscribe or distributed information flows. The novel
hardware platform being considered is comprised of both
general purpose and specialized communication cores,
termed g- and c-cores, respectively. G- and c-cores are
tightly coupled, able to efficiently access shared memory,

and each c-core can interact with multiple physical network
interfaces. Three assumptions underlie this research. First,
it assumes that g- and c-cores are tightly coupled, more so
than current combined host-NP architectures, implying, for
example, the ability to share certain cache resources. Sec-
ond, it assumes that c-cores will have some of the charac-
teristics of current network processor architectures, special-
ized to efficiently execute communication stacks. Third, it
is not concerned with other specialized cores in future ma-
chines, such as those focused on graphics or storage tasks.

2.1 Communication Core

c-core that is similar to those of current NPs, with
many internal processing units, each independently pro-
grammable and with sufficient resources to support a single
communication stream at link speed. In Intel’s IXP NPs, for
instance, the c-core has hardware processing units termed
microengines that can operate in parallel, have their own
registers and small amounts of program memory, and have
shared access to hierarchically arranged memories of differ-
ent speeds. These engines are programmed such that one or
more of them can be allocated for control plane operations,
and others can be allocated for data-plane operations. In
addition, engine actions can be chained to form processing
pipelines that implement more complex messaging opera-
tions. Engines have direct access to high speed network
interfaces, with additional hardware present (in some IXP
processors) for specialized processing tasks like encryption.

3. Using C-Cores in a Middleware System

This section presents an architecture that enhances the
capabilities of traditional publish/subscribe middleware,
making it ‘c-core aware’, by enabling it to dynamically cre-
ate, deploy, and configure c-core processing.

Programming c-cores is not a task for arbitrary appli-
cation developers. Instead, as with mathematical libraries
supported by FPGA coprocessors in modern Cray ma-
chines [5], c-cores will typically be used with libraries that
implement standard communication functionality. The con-
tribution of our work is to go beyond such library-based
c-core usage to also enable them to execute application-
specific functionality, by using middleware as the ‘me-
diator’ between applications and communication proces-
sors. The goal is to permit c-cores to perform meaningful
application-specific actions, thereby permitting applications
to directly leverage their abilities to run at physical link
speeds, close to the physical network, tightly linked with
standard communication processing actions, and utilize
hardware optimized for communication processing [14, 20]
(e.g., multiple hardware queues, direct low latency access
to physical network links, etc.).



Rx handler1 handlern Tx

General Purpose Core

Communication
Core

resource
manager

handler data−xfer
manager module

control
context

resource
managermanager
handler Middleware

Daemon
xfer
module

data−

Figure 1. Architecture overview: communication-
core aware middleware system.

Rx Classifier +
Messagifier

TxPacketizer
Worker Engines

XScale Core
IXP2400 as a
Communication
Core

Linux Host (General Purpose Core)

Middleware
Daemon

Figure 2. Architecture overview: using IXP2400 in
a c-core aware middleware system.

The C-CORE software environment for executing
application-level functions on communication cores has two
main components, one resident on the generic computa-
tional core (g-core), the other resident on the communica-
tion core (c-core). These two components permit applica-
tions, via middleware, to establish pipeline-structured sets
of communication actions that span g- and c-cores. On the
g-core, such actions are executed at application-level, using
a reservation-based approach to give hosts access to cer-
tain communication resources, and use a specialized net-
work driver to provide what appears to be a standard net-
work connection between g- vs. c-core-resident communi-
cation actions. The remainder of this section describes the
C-CORE environment’s main components or modules, the
functionality it provides, and its programming abstractions.

3.1. C-CORE Software Architecture

Figure 1 depicts the main components of the C-CORE
software architecture. The architecture provides c-core res-
ident processing contexts able to run middleware-provided
handlers. Processing contexts and handlers are managed by
a set of components that include:� a resource manager that monitors the c-core resources

(buffers, CPU cycles, network bandwidth) used by
handlers running on processing contexts and reports
to the g-core to reflect current c-core load; handlers
are classified into communication- and computation-
centric ones;� a handler manager that controls handler deployment,
implements handler hot-swapping, and manages han-
dler state information; and� a data transfer module that handles packet transfers
between g- and c-cores.

A typical set of actions carried out by these components
is the following. When the publish/subscribe middleware
used in our experimentation receives a subscription request
from a new client, along with a handler implementing the
subscription’s logic, middleware can choose to install the

handler on the g- or c-cores of its publish/subscribe broker
node, or, in the more sophisticated publish/subscribe mid-
dleware now being developed by our group, middleware
can dynamically compile handler functionality into some
suitable chain of primitive handlers mapped across both g-
and c-cores [1]. In either case, the C-CORE software archi-
tecture’s role is to support the dynamic creation and man-
agement of such handler chains. The sequence of actions
taken to install a chain begins with a request that checks the
c-core’s current work load and resources (e.g., its buffers,
CPU cycles, etc.), and if affirmative, creates a handler chain
by installing suitable handler representations on g- and c-
cores. The aforementioned data transfer module handles
packet transfers between the two cores. Another option is
to create a new sub-channel for an already established com-
munication channel, where a subscriber simply provides a
new handler, which is then used to install an additional han-
dler chain across suitable g- and c-cores associated with the
same communication links.

Since handlers process application-level messages, the
C-CORE execution environment implements basic protocol
processing functionality, including message fragmentation
and reassembly and in our current implementation, a vari-
ant of reliable UDP running on one of the IXP microengines
does message fragmentation and reassembly. In addition,
C-CORE maintains information about the type and struc-
ture of application-level messages, using an efficient binary
message format developed in our previous research [3]. In
ongoing work, we are also considering binary XML mes-
sage formats. In any case, C-CORE provides sufficient
functionality to essentially make c-cores ‘message-aware’,
by maintaining message format information passed by the
data source to the C-CORE during channel creation and then
using such information for message assembly and for allow-
ing handlers to interpret message contents. We note that C-
CORE only assembles those messages to which application-
level handlers must be applied, thereby avoiding such over-
heads for other data flowing through a c-core.



Dealing with heterogeneity. Since g- and c-cores are opti-
mized for computational vs. communication tasks, we sim-
ilarly separate the handlers executed by publish/subscribe
middleware into computation- vs. communication-centric
code fragments. Our current work manually identifies the
nature of handlers, relying on developers to determine pos-
sible handler execution sites. [7] describes automatic meth-
ods for determining whether certain handlers are suitable
for c-core execution, at minimum involving assessments
of handler resources requirements and corresponding re-
source availabilities on c-cores. Our future work will de-
velop compiler-based techniques to dynamically generate
handlers and determine their appropriate execution sites.
Handler and data formats. Our previous work [8]
has developed the basic functionality needed to repre-
sent application-provided code on c-cores, described as
stream handlers, and to efficiently describe the structure
of application-level messages via message formats. This
paper uses stream handlers and message formats from [8],
but extends that functionality by (1) providing the ability to
hot-swap stream handlers, (2) implementing an explicit rep-
resentation for the chains of handlers applied to the end-to-
end stream data path across g- and c-cores, termed service
paths, and (3) realizing data structures that explicitly rep-
resent the different message formats used by handlers. The
idea of (3) is to permit a single handler to process messages
with differing formats.

C-CORE relies on information about message formats
embedded in application-level messages. These formats
specify data size and layout, offsets, and sizes of the
application-level data fields that comprise the data unit. The
actions applied to a message are determined by a combina-
tion of data format and network-level information, which
is maintained in a format cache, used by handlers to ac-
cess specific data fields. Stream handlers are used to imple-
ment C-CORE ’s operators applied to information streams.
By dynamically deploying operators across g- and c-cores
and by chaining and configuring them, we construct linked
service paths, described by execution contexts that execute
operators and the formats of stream data accepted by oper-
ators.
Dynamic resource management and reconfiguration.
The resource manager on the c-core monitors current re-
source usage and availability. On g-cores, middleware dis-
covers all c-cores and their states through querying them
for their current resource availabilities and usage. We ex-
pect this functionality to balance and dynamically reassign
workload across different c-cores. Dynamic assignment can
involve runtime code generation and specialization. The C-
CORE execution environment supports this by enabling run-
time handler configuration and hot-swapping. This paper
uses these capabilities to better match the behavior and per-
formance of c-core handlers to current application needs.

An effective way to improve the performance of
resource-limited c-cores is to dynamically specialize mes-
sage handlers. Specifically, consider a generic deployed
handler. Such a handler must read information about data
formats and/or the current parameters to be used when in-
terpreting application-level data from memory. However, if
the handler is going to operate on some particular stream
with fixed parameters, the handler manager can rewrite the
handlers with the stream format and parameter information
hardcoded in its implementation. Alternatively, format and
parameter information can be cached in processor registers.
Experiments show that such specialization has substantial
benefits for computationally intensive stream handlers.

4. Implementation

Our prototype implementation of the C-CORE architec-
ture uses a Linux host to represent a g-cores, and IXP2400
network processors [10] to represent a c-core, both intercon-
nected via a dedicated PCI interface. The 8 microengines
available on the IXP2400 provide the C-CORE architectures
processing contexts and run either dedicated components of
the execution environment like message fragmentation and
reassembly or provide processing contexts available for ex-
ecuting middleware-provided stream handlers. The XScale
core on the IXP runs control and initialization operations,
facilitates data transfers across the PCI interface, and per-
forms c-core reconfiguration (e.g., deployment of new han-
dlers on the c-core). As shown in Figure 2, all 8 micro-
engines are assigned to different tasks, able to work in paral-
lel on different message streams and/or in a pipelined fash-
ion for a single stream. In our current implementation, four
microengines remain available to execute handlers or chains
of handlers on application-level messages. We expect fu-
ture c-cores to have additional execution engines available
for application-level processing tasks.

The remainder of this section describes the elements of
our implementation needed to help explain and motivate
the experimental results presented in Section 5, including
(1) how we describe the structure of application-level mes-
sages and how handlers access messages and use such struc-
ture information and (2) how handlers are chained to enable
more complex operations on message contents. (3) We also
describe the implementation of handler hot-swapping.
Understanding application-level messages. In order to
enable the association of handlers with application-level
messages, we rely on (1) IP header information and se-
quence numbers to assemble the message, (2) the PBIO [3]
representation of the binary message data format to under-
stand message layout in memory, and (3) unique stream
identifiers. The stream identifier represents a combination
of source-destination address pair and port number and the
PBIO format id. This triple is used to classify application-



level messages. Based on classification outcome, messages
may be transferred to the g-core, or they may be queued to
a queue corresponding to the format id for additional pro-
cessing on other microengines. There are different queues
for different format ids, and a particular handler picks up
messages from the queue corresponding to the format iden-
tifier on which it is operating.
Handlers and their execution environment. Handlers are
specified in microcode object format (.uof), which has the
capability to represent multiple processing contexts and also
has information about which processing context should be
run on which microengine. The loader reads this informa-
tion from the handler header and copies the specific contexts
to their respective microengines’ instruction memories. The
current implementation of C-CORE assumes that handlers
are provided by the upper middleware layers or sent by sub-
scribers (clients), as precompiled binary executables. We
are now extending C-CORE with a dynamic code genera-
tion mechanism to recognize handlers provided by clients
in some higher level language (e.g., Microengine C) and
dynamically call the appropriate compiler to generate exe-
cutable code.
Pipelined implementation of handler chains. Represent-
ing more complex application-level processing actions as
sets of chained handlers enables us to split the execution of
time-consuming processing across multiple microengines,
to gain pipeline parallelism, and to prevent any one exe-
cution context from becoming a bottleneck. The C-CORE
pipeline implementation uses non-copying message queue-
ing between different pipeline stages and implements an ef-
ficient handoff protocol.
Processing deployment on IXP. In order to deploy a stream
handler, C-CORE relies on runtime resource management
and on information provided with the handler, to determine
correct and suitable handler deployment. If the stream han-
dler is to be deployed on a specific context on the c-core,
the handler manager (the XScale in this case) initiates the
reconfiguration, maps the handler to the appropriate micro-
engine(s), copies the handler code to its instruction mem-
ory, initializes the corresponding state and data paths, and
kick-starts the ‘new’ microengine (pipeline).
Dynamic reconfiguration through hot-swapping. In or-
der to best utilize resources and match current applica-
tion needs and platform resources, handlers need to be de-
ployed and configured dynamically (hot-swapping of han-
dlers). This can be initiated in response to changes in sys-
tem resources or in end user interests. Simple reconfigu-
rations involve changes to stream handler parameters, such
as changing the selection criteria in a select query handler.
More complex configurations involve hot-swapping stream
handlers, including to address limitations in the amount
of instruction memory in the microengines. Hot-swapping
of handler code is also required for handler specialization

50 100 150 200 250 300 350 400
0

20

40

60

80

Outgoing data size (B)

Th
ro

ug
hp

ut
 (M

bp
s)

Host
NP

64 116 216 316 416 516
0

50

100

150

200

250

300

Outgoing data size (B)

P
ro

ce
ss

in
g 

tim
e 

(c
yc

le
s)

receive
select/project
join

(A) 

(B) 

Figure 3. A) Query throughput on g-core vs. c-core, and
B) Processing time of various pipeline stages

where a handler is redesigned to specialize it for its current
execution environment and redeployed in place of its older
version. Automatic handler specialization, based on run-
time monitoring as in other specialization systems has not
yet been implemented.

The current implementation of hot-swapping keeps one
of the microengines in idle state, while others are used to
run handlers. During hot-swapping, the new handler is
loaded onto the idle microengine and then the control is
switched from the old microengine to the new one. The idle
microengine is started while the old microengine is stopped
and becomes the idle microengine to be used for next hot-
swap. This implies that the actual downtime for handler
processing is equivalent to the costs of stopping one mi-
croengine and starting the other one. Measurements show
that this can be done in about 30 microseconds as compared
to around 400 microseconds when the same microengine is
stopped, new handler code is loaded and then restarted. The
drawback of this method is that one of the IXP2400 micro-
engines must be kept idle for hot-swapping.

5. Evaluation

We next present an experimental analysis of the proto-
type C-CORE implementation on Linux hosts and their at-
tached IXP2400s. The experimental testbed is comprised of
8 Dell Poweredge 2650 Machines (4 Xeon 2.8 GHz each),
each having one IXP2400 (Radisys’ ENP2611 board) at-
tached to it via a PCI interface. IXPs are interconnected
via a Gigabit LAN. Results demonstrate the importance
and feasibility of enabling the execution of application-level
data manipulations on c-cores. They also analyze the pro-
cessing costs and specific benefits derived from the c-core
execution of select handlers representing commonly used



publish/subscribe services.
Feasibility of handler execution. The first set of experi-
ments evaluates the c-core’s ability to execute middleware-
provided handlers. Our evaluation uses an implementation
of ‘continual database queries’ [11], comparing its perfor-
mance with a corresponding g-core based implementation.
Queries implemented by operators are applied to streaming
data in order to create customized/personalized represen-
tations of that stream for different clients. The operators
evaluated are the database operators (i.e., select, project,
join) used in publish/subscribe infrastructures like IBM’s
Gryphon [21] product. The following specific test case is
used.

Two publishers generate data streams and send them to
a single broker. In addition, two subscribers submit queries
to the broker, one query doing select/project on individ-
ual streams and the other doing join operation on the two
streams. Total three sub-streams are generated, two cor-
responding to individual streams and the third is join sub-
stream. In the c-core based implementation, the broker’s
g-core receives the query handler from a subscriber and de-
ploys it on the c-core. The query operators are applied to
data streams that carry data from the operational informa-
tion system of an airline (see [13] for more detail on that
application). These data streams are directly sent to the c-
core via its gigabit links. Similarly, the sub-streams pro-
duced by the c-core are directly sent, via its output links, to
the subscribers that desire them. On the c-core, operators
are executed in pipelined fashion. In comparison, the g-
core implementation deploys query operators on the g-core,
using a multithreaded approach, where the same message
streams are processed with the same select, project, and join
operators as those used in the c-core scenario.

A representative query for stream A is as fol-
lows: select passengerList, mealPreference from A where
A.source=”Atlanta” AND A.destination=”Paris” AND
A.departTime=”20:40 pm”. Note that query operators can
substantially differ in complexity, where complexity not
only derives from the number of conditions tested and eval-
uated, but also from the number of different message fields
accessed, the sizes of such fields, and the sizes of the mes-
sages created for output sub-streams.

The experiment shown in Figure 3.A compares the ex-
ecution of a set of these queries on c- vs. g-core. The re-
sults shown are the attained throughput for c-core and g-
core for different query complexities. We observe that for
all data sizes, the c-core is capable of delivering improved
throughput levels compared to the host. Note that the rea-
sons for these improvements are complex, involving both
the innate differences in hardware structures and capabili-
ties on g- vs. c-cores and the general vs. specialized nature
of g- vs. c-core execution environments, in the critical data
path involving an entire Linux OS on the g-core vs. min-

imal runtime support on c-cores. Additional results on the
IXP’s capabilities to execute selected application-level han-
dlers appear in [7].

Ability to deploy handler chains. We next analyze the
ability of constructing and deploying query chains on the
IXP c-core.

Figure 3.B presents time in terms of the processing
cycles required by different components of the applica-
tion, and by different query handlers (for different mes-
sage sizes). We observe that query operations can be ex-
ecuted in approximately the same amount of time as the re-
ceive operation for output data streams of the same size.
This demonstrates that the c-core is capable of supporting
chained queries. Moreover, we can hypothesize from these
results that when operators reduce the amounts of data pro-
duced vs. received (e.g., a sub-stream contains a subset of
the information contained in the arrival stream), similar per-
formance results will be attained. We note that of course,
by executing stream processing on the c-core, the g-core is
freed to carry out other application-level tasks.

We next determine the limits to which the IXP2400 can
sustain query processing by increasing stream throughput.
The case measured constitutes a worst case in that it does
not reduce the size of output compared to input data (us-
ing 600 byte messages). Table 1 shows that the IXP2400
can sustain close to 350 Mbps of throughput. Beyond that,
packet drops become significant. We expect to be able to
sustain higher levels of throughput for queries that lead
to reduced size output streams (approximating link rates).
Measurements also show the overheads incurred in query
execution. In fact, overheads increase as the input speed in-
creases because of memory and other resource contention
issues. Please note that the output throughput is more than
the input throughput in some cases. This is because we send
two input streams (of 100000 packets each) but output three
sub-streams, two corresponding to the individual streams
and the third sub-stream as a result of a join query opera-
tion on the two streams.

Scalable data distribution services. Multicast protocols
are similar to publish/subscribe middleware in nature due
to their one-to-many semantics. We have implemented an
application-level multicast service using the architecture de-
scribed in this paper. The service implements subscription
channels by building an application-level multicast over-
lay. Specifically, the C-CORE environment on the g-core
of the broker host builds a multicast table and passes it to
the c-core. This table is then shared with the microengines
executing the multicast handler. Messages are assembled,
classified into streams, and passed to the multicast handler,
which forwards them to every address in the destination ta-
ble. The implementation of the multicast services is de-
scribed in greater detail in [18].



I/P Thrput O/P Thrput Overhead(usec) pkts sent pkts processed pkts dropped
200 Mbps 200 Mbps 31 200000 255000 0
350 Mbps 350 Mbps 32 200000 230000 20000
495 Mbps 450 Mbps 35 200000 160000 80000
695 Mbps 450 Mbps 50 200000 160000 105000

Table 1. Query throughput and overhead calculation for various input stream speeds on the IXP2400.

I/P Rate O/P Rate Time per Pkt I/P pkts O/P pkts dropped pkts
50 Mbps 250 Mbps 1.6 usec 100000 500000 0

100 Mbps 500 Mbps 16.4 usec 100000 500000 0
150 Mbps 750 Mbps 39.8 usec 100000 500000 0
200 Mbps 1000 Mbps 42.8 usec 100000 469246 6150

Table 2. Multicast throughput and overhead calculation for 5 destinations on the IXP2400.

The next set of measurements evaluates the limits to
which the IXP2400 can sustain multicast throughput (for
5 destinations) as input speed is increased. Table 2 shows
that the IXP2400 can sustain approximately 1 Gbps of out-
put rate (5 destinations) without dropping packets, which
is the IXP’s line rate. Please note that the dropped pack-
ets are the input packets. The conclusion is that this c-core
can sustain almost 1 Gbps speed for application-level mul-
ticasting. Further experiments are needed to evaluate mul-
ticast combined with customization operations for this c-
core. Additional results comparing the ability of the IXP
c-core to enable data distribution services to the general pur-
pose host, demonstrate that the c-core implementation can
sustain throughput levels as the number of destination in-
creases, while with the g-core implementation performance
rapidly degrades.

Effects of handler specialization. Our final measure-
ments demonstrate the importance of dynamic handler spe-
cialization. Table 3 shows the specialized handler’s (com-
pared to Table 1) performance when the stream format and
query parameters are hardcoded into its implementation.
Clearly, the specialized handler can sustain much higher
throughput (closer to 700 Mbps). This is because we are
avoiding reading format and parameters information from
memory for every message, thereby also reducing potential
memory bus contention for other memory accesses. Having
demonstrated the importance of this functionality, we are
now building a mechanism to cache stream format and han-
dler parameters, avoiding memory reads and taking advan-
tage of the improved performance of specialized message
handlers.

6. Related Work

The work presented in this paper builds on our previ-
ous research to create integrated platforms of hosts and at-

tached network processors (NPs), so as to enable the execu-
tion of application-specific services onto the programmable
NP and closer to the network [7]. The programmability of
network processors has been widely exploited in both in-
dustry and academia, for delivering more flexible network-
and application-level services [9, 19]. Our current work as-
sumes that these integrated host-NP platforms exemplify fu-
ture heterogeneous, multi-core systems.

The utility of executing compositions of various
protocol- vs. application-level actions in different process-
ing context is already widely acknowledged. Examples in-
clude splitting the TCP/IP stack across general purpose pro-
cessors and dedicated network devices, such as network
processors, FPGA-based line cards, or dedicated proces-
sors in SMP systems [2, 17], or splitting the application
stack as with content-based load balancing for an http server
or for efficient implementations of media services. Simi-
larly, in modern interconnection technologies, the network
interfaces represent separate processing contexts with ca-
pabilities for protocol off-load, direct data placement, and
OS-bypass [12, 20]. In addition to its focus on multi-
core platforms, our work differs from these efforts by en-
abling and evaluating the joint execution of networking and
application-level operations on communications hardware,
thereby delivering additional benefits to applications.

Finally, the services targeted by the architecture de-
scribed in this paper are those of publish/subscribe middle-
ware systems, such as those described in [15, 21]. However,
the C-CORE architecture is sufficiently general to apply to
a wide range of distributed or Grid applications that rely
on the ability of underlying middleware to deliver and dis-
tribute ‘useful’ data to select nodes in the application over-
lay, and to transform the application data stream ‘in-transit’.



I/P Thrput O/P Thrput Overhead(usec) pkts sent pkts processed pkts dropped
330 Mbps 445 Mbps 15 200000 279000 0
495 Mbps 705 Mbps 11 200000 275000 2000
695 Mbps 705 Mbps 12 200000 240000 6000
830 Mbps 701 Mbps 12 200000 203000 10000

Table 3. Query throughput and overhead calculation for a specialized handler.

7. Conclusions and Future Work

The goal of the C-CORE software architecture is to ef-
ficiently exploit the communication cores of future hetero-
geneous multi-core systems. The architecture is shown to
offer improved levels of performance for applications writ-
ten with publish/subscribe middleware compared to solu-
tions that use standard processors and operating systems.
Improvements are attained by permitting middleware to run
application-specific functions on c-cores, as single client-
provided handlers or as complex handlers realized as pro-
cessing pipelines. Efficient implementations of continual
database queries and of application-level multicast are used
to evaluate the architecture.

The C-CORE software architecture is not yet complete.
Still being implemented are (1) the mechanism to dynami-
cally characterize a handler as computation vs. communica-
tion centric and (2) the mechanism to safely execute client-
provided handlers on c-cores. Further, our current imple-
mentation is integrated with publish/subscribe middleware,
but it is now being generalized to work with a wider variety
of information flow middleware and applications.

There is significant security risk in permitting client-
provided handlers to run in the communication core. While
general purpose hosts offer efficient hardware techniques to
address this issue, the IXP2400 used in this work does not
have the hardware needed for full isolation across different
processing contexts. The implementation of isolation for
handlers and for the state they use is an important topic of
future research.

References

[1] S. Agarwala, G. Eisenhauer, and K. Schwan. Morphable
Messaging: Efficient Support for Evolution in Distributed
Applications. In Proc. of the CLADE Workshop, 2004.

[2] F. Braun, J. Lockwood, and M. Waldvogel. Protocol wrap-
pers for layered network packet processing in reconfigurable
networks. IEEE Micro, 22(1), 2002.

[3] F. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener.
Efficient Wire Formats for High Performance Computing. In
Proc. of Supercomputing 2000, Dallas, TX, Nov. 2000.

[4] Cell Processor Architecture Explained.
http://www.blachford.info/computer/Cells/Cell0.html.

[5] Cray XD1 Overview. http://www.cray.com/products/xd1/.

[6] Intel Dual-Core Processor.
www.intel.com/technology/computing/dual-core/.

[7] A. Gavrilovska. SPLITS Stream Handlers: Deploying
Application-level Services to Attached Network Processors.
PhD thesis, Georgia Institute of Technology, 2004.

[8] A. Gavrilovska, S. Kumar, S. Sundagaropalan, and
K. Schwan. Platform Overlays: Enabling In-Network
Stream Processing in Large-scale Distributed Applications.
In Proc. of NOSSDAV 2005, WA, 2005.

[9] J. Guo, J. Yao, and L. Bhuyan. An Efficient Packet Schedul-
ing Algorithm in Network Processors. In Infocom, 2005.

[10] Intel Corporation. Intel Network Processor Family. develo-
per.intel.com/design/network/producs/npfamily/.

[11] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and
K. Schwan. Resource-Aware Distributed Stream Manage-
ment using Dynamic Overlays. Proc. of ICDCS-25, 2005.

[12] P. Mehra. Apsara: The Quest for the Perfect Server for Net-
work Computing Applications. In Proc. of NCA-3, keynote
address, Cambridge, MA, 2003.

[13] V. Oleson, K. Schwan, G. Eisenhauer, B. Plale, C. Pu, and
D. Amin. Operational Information Systems - An Example
from the Airline Industry. In First Workshop on Industrial
Experiences with Systems Software (WIESS), Oct. 2000.

[14] F. Petrini, J. Fernandez, A. Moody, E. Frachtenberg, and
D. Panda. NIC-based Reduction Algorithms for Large-scale
Clusters. International Journal of High Performance Com-
puting and Networking (IJHPCN), 2005.

[15] P. Pietzuch and S. Bhola. Congestion Control in a Reliable,
Scalable Message-Oriented Middleware. In Proc. of Mid-
dleware 2003, Rio de Janeiro, Brazil, 2003.

[16] B. Raman and R. Katz. An Architecture for Highly Avail-
able Wide-Area Service Composition. Computer Communi-
cations Journal, May 2003.

[17] G. Regnier, D. Minturn, G. McAlpine, V. Saletore, and
A. Foong. ETA: Experience with an Intel Xeon Processor
as a Packet Processing Engine. In Hot Interconnects, 2003.

[18] S. Sundaragopalan, A. Gavrilovska, S. Kumar, and
K. Schwan. An Approach Towards Enabling Intelligent Net-
working Services for Distributed Multimedia Applications.
In Proc. of IMMCN’05, 2005.

[19] K. Yocum and J. Chase. Payload Caching: High-Speed Data
Forwarding for Network Intermediaries. In Proc. of USENIX
Technical Conference, Boston, MA, June 2001.

[20] X. Zhang, L. N. Bhuyan, and W. chun Feng. Anatomy of
UDP and M-VIA for Cluster Communications. Journal on
Parallel and Distributed Computing, 2005.

[21] Y. Zhao and R. Storm. Exploiting Event Stream Interpreta-
tion in Publish-Subscribe Systems. In Proc. of ACM Sympo-
sium on Principles of Distributed Computing, Aug. 2001.


