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Administrivia
• PS 3: 

• Check Piazza  - good conversations.  In fact some pretty 
explicit solutions…

• The F matrix: the actual numbers may vary quite a bit.  But 
check the epipolar lines you get. 

• Normalization:  read extra credit part.  At least try removing the 
centroid.  Since we’re using homogenous coordinates (2D 
homogenous have 3 elements) it’s easy to have a transformation 
matrix that subtracts off an offset.

• Go back an recheck slides:  A 3 vector in these projective 
geometry is both a point and a line.   
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• Want to compute transformation from one image to the other
• Overall strategy: 

• Compute features
• Match matching features (duh?)
• Compute best transformation (translation, affine, homography) from 

matches

Matching with Features
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An introductory example:

Harris corner detector

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988
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Harris Detector: Mathematics

Measure of corner response:
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Harris corner response function

“Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

2
2121

2 )()(trace)det( λλαλλα +−=−= MMR

• R depends only on 
eigenvalues of M, but 
don’t compute them (no 
sqrt, so really fast!

• R is large for a corner

• R is negative with large 
magnitude for an edge

• |R| is small for a flat
region
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Key point localization
• General idea: find robust 

extremum (maximum or 
minimum) both in space and in 
scale.

• SIFT specific suggestion: use 
DoG pyramid to find maximum 
values (remember edge 
detection?)  – then eliminate 
“edges” and pick only corners.

• More recent: use Harris 
detector to find maximums in 
space and then look at the 
Laplacian pyramid (we’ll do this 
later) for maximum in scale. 

Blur 

Resample

Subtract

Each point is compared to 
its 8 neighbors in the 
current image and 9 
neighbors each in the 
scales above and below.
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• We know how to detect points
• How to match them? Two parts:

• Compute a descriptor for each and make the descriptor both 
as invariant and as distinctive as possible.  (Competing goals) 
SIFT one example.

Point Descriptors

?
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Idea of SIFT 

SIFT Features

• Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters
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SIFT vector formation
• 4x4 array of gradient orientation histograms over 4x4 pixels

• not really histogram, weighted by magnitude

• 8 orientations x 4x4 array = 128 dimensions
• Motivation:  some sensitivity to spatial layout, but not too 

much.

showing only 2x2 here but is 4x4
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• We know how to detect points
• How to match them? Two parts:

• Compute a descriptor for each and make the descriptor both 
as invariant and as distinctive as possible.  (Competing goals) 
SIFT one example

• Need to figure out which point matches which..

Point Descriptors

?
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Feature-based alignment outline

• Extract features
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Feature-based alignment outline

• Extract features
• Compute putative matches – e.g. “closest descriptor”
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Feature-based alignment outline

• Extract features
• Compute putative matches – e.g. “closest descriptor”
• Loop:

• Hypothesize transformation T from some matches
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Feature-based alignment outline

• Extract features
• Compute putative matches– e.g. “closest descriptor”
• Loop:

• Hypothesize transformation T from some matches
• Verify transformation (search for other matches consistent 

with T)
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Feature-based alignment outline

• Extract features
• Compute putative matches– e.g. “closest descriptor”
• Loop:

• Hypothesize transformation T from some matches
• Verify transformation (search for other matches consistent 

with T)

• Apply transformation
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How to get “putative” matches?
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Feature matching
• Exhaustive search

• for each feature in one image, look at all the other features 
in the other image(s) – pick best one

• Hashing
• compute a short descriptor from each feature vector, or hash 

longer descriptors (randomly)

• Nearest neighbor techniques
• k-trees and their variants
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Feature-space outlier rejection
• Let’s not match all features, but only these that 

have “similar enough” matches?
• How can we do it? 

• SSD(patch1,patch2) < threshold
• How to set threshold?
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Feature-space outlier rejection
• A better way [Lowe, 1999]:

• 1-NN: SSD of the closest match
• 2-NN: SSD of the second-closest match
• Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
• That is, is our best match much better than the next?
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Feature matching
•Exhaustive search

• for each feature in one image, look at all the other features in the 
other image(s) – pick best one

•Hashing
• compute a short descriptor from each feature vector, or hash 

longer descriptors (randomly)
•Nearest neighbor techniques

• k-trees and their variants
• But…
• Remember: distinctive vs invariant competition?  Means:

• Problem:  Even when pick best match, still lots (and lots) of 
wrong matches – “outliers”
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Another way to remove mistakes
• Why are we doing matching?

• To compute a model of the relation between entities

• So this is really “model fitting”
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Source: K. Grauman

Fitting
•Choose a parametric model to represent a set of 

features – remember this???

simple model: lines simple model: circles

complicated model: car
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Fitting: Issues

• Noise in the measured feature locations
• Extraneous data: clutter (outliers), multiple lines
• Missing data: occlusions

Case study: Line detection

Slide: S. Lazebnik
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Total least squares

•Distance between point 
(xi, yi) and line ax+by=d 
(a2+b2=1):

|𝑎𝑎𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑏𝑏𝑖𝑖 – 𝑑𝑑|
(xi, yi)

ax+by=d

w

(xj, yj)

Unit normal: 
w=(a, b)

d
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Total least squares
•Distance between point 
(xi, yi) and line ax+by=d   
(a2+b2=1):

𝑎𝑎𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑏𝑏𝑖𝑖 – 𝑑𝑑

• Find (a, b, d) to minimize the 
sum of squared 
perpendicular distances

∑=
−+=
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i ii dybxaE
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(xi, yi)

ax+by=d

w

(xj, yj)

Unit normal: 
w=(a, b)

d
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Least squares as likelihood maximization
• Generative model: line 

points are corrupted by 
Gaussian noise in the 
direction perpendicular to 
the line
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Least squares as likelihood maximization
• Generative model: line 

points are corrupted by 
Gaussian noise in the 
direction perpendicular to 
the line
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Likelihood of points given line parameters (a, b, d):
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Least squares: Lack of robustness to (very) non-Gaussian noise

• Least squares fit to the red points:
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Least squares: Lack of robustness to (very) non-Gaussian noise

• Least squares fit with an outlier:

Problem: squared 
error heavily 
penalizes outliers
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Robust estimators
• General approach: minimize

ri (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ

( )( )σθρ ;,ii
i

xr∑

The robust function ρ
behaves like squared 
distance for small 
values of the residual 
u but saturates for 
larger values of u
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Choosing the scale: Just right

The effect of the outlier is minimized
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The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small
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Choosing the scale: Too large

Behaves much the same as least squares
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• Some points (many points) are static in the world
• Some are not
• Need to find the right ones so can compute pose.
• Well tried approach:

• Random Sample Consensus (RANSAC)

“Find consistent matches”???
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Simpler Example
• Fitting a straight line

“Correct” 
line

“Best fit” 
line
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Discard Outliers
• Assume few real points with distance 𝑑𝑑 > θ

• RANSAC:
• RANdom SAmple Consensus
• Fischler & Bolles 1981
• Copes with a large proportion of outliers

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.

http://www.ai.sri.com/pubs/files/836.pdf
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Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using sample
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

(RANdom SAmple Consensus) 
RANSAC

Illustration by Savarese
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Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using sample 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example
RANSAC
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Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using sample 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Illustration by Savarese

Line fitting example
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δ

6iC =

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using the sample
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Illustration by Savarese

Line fitting example
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Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using sample 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

δ 14jC =

RANSAC

Illustration by Savarese

Line fitting example
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The fundamental RANSAC assumption: 

More support implies better fit..
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RANSAC for general model
• A given model has a minimal set – the smallest number of 

samples from which the model can be computed.
• Line:  2 points

• Image transformations are models.  
Minimal set of s of point pairs/matches:
• Translation: pick one point pair
• Homography (for plane) – pick 4 point pairs
• Fundamental matrix – pick 8 point pairs (really 7 but lets not go there)

• Algorithm
• Randomly select s points (or point pairs) to form a sample
• Instantiate a model
• Get consensus set 𝐶𝐶𝑖𝑖
• If | 𝐶𝐶𝑖𝑖 | > 𝑇𝑇, terminate and return model
• Repeat for N trials, return model with max | 𝐶𝐶𝑖𝑖 |
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Distance Threshold
•Let’s assume location noise is  Gaussian with 𝜎𝜎2

•Then the distance 𝑑𝑑 has Chi distribution with k 
degrees of freedoms where k is the dimension of the 
Gaussian. 

• If one dimension, e.g.distance off a line, then 1DOF

𝑓𝑓 𝑑𝑑 =
2𝑒𝑒−( 𝑑𝑑

2

2𝜎𝜎2)

𝜋𝜋𝜎𝜎
,𝑑𝑑 ≥ 0
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Distance Threshold
For 95% cumulative threshold 𝑡𝑡 when Gaussian with 𝜎𝜎2

𝑡𝑡2 = 3.84𝜎𝜎2

That is:  if 𝑡𝑡2 = 3.84𝜎𝜎2 then 95% probability  that  
𝑑𝑑 < 𝑡𝑡 when point is inlier

But…

Usually set by “empirically”… 
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How many samples should we try?
• We want: at least one sample with all inliers 

• With random samples we can’t guarantee.  But with 
probability 𝑝𝑝 we can,  e.g. 𝑝𝑝 = 0.99
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Choosing the parameters
•Initial number of points 𝑠𝑠

• Typically minimum number needed to fit the 
model

•Distance threshold 𝑡𝑡
• Choose t so probability for inlier is high (e.g. 0.95) 
• If zero-mean Gaussian noise with std. dev. 𝜎𝜎: 𝑡𝑡2 =

3.84𝜎𝜎2

•Number of samples 𝑁𝑁
• Choose N so that, with probability 𝑝𝑝, at least one 

random sample is free from outliers (e.g.𝑝𝑝 = 0.99) 
• Need to set N based on outlier ratio: 𝑒𝑒

Source: M. Pollefeys
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Calculate N
1. 𝑠𝑠 – number of points to compute solution
2. 𝑝𝑝 – probability of success
3. 𝑒𝑒 – proportion outliers, so %  inliers = (1 − 𝑒𝑒)
4. 𝑃𝑃(𝑠𝑠𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑒𝑒 𝑠𝑠𝑒𝑒𝑡𝑡 𝑤𝑤𝑖𝑖𝑡𝑡𝑤 𝑎𝑎𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑒𝑒𝑖𝑖𝑠𝑠) = (1 − 𝑒𝑒)𝑠𝑠

5. 𝑃𝑃(𝑠𝑠𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑒𝑒 𝑠𝑠𝑒𝑒𝑡𝑡 𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠 𝑤𝑎𝑎𝑎𝑎𝑒𝑒 𝑎𝑎𝑡𝑡 𝑠𝑠𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡 𝑜𝑜𝑖𝑖𝑒𝑒 𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖𝑒𝑒𝑖𝑖) =
(1 − (1 − 𝑒𝑒)𝑠𝑠)

6. 𝑃𝑃(𝑎𝑎𝑠𝑠𝑠𝑠 𝑁𝑁 𝑠𝑠𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑒𝑒𝑠𝑠 𝑤𝑎𝑎𝑎𝑎𝑒𝑒 𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖𝑒𝑒𝑖𝑖) = (1 − (1 − 𝑒𝑒)𝑠𝑠) 𝑁𝑁

7. We want 𝑃𝑃(𝑎𝑎𝑠𝑠𝑠𝑠 𝑁𝑁 𝑠𝑠𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑒𝑒𝑠𝑠 𝑤𝑎𝑎𝑎𝑎𝑒𝑒 𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖𝑒𝑒𝑖𝑖) < (1 − 𝑝𝑝)
8. So: 1 − 1 − 𝑒𝑒 𝑠𝑠 𝑁𝑁 < (1 − 𝑝𝑝)

log(1 ) / log(1 (1 ) )sN p e> − − −



RANSACCS 4495 Computer Vision – A. Bobick

𝑁𝑁 for probability 𝑝𝑝 of at least one sample with only inliers

• Set p=0.99 – chance of getting good sample

𝑠𝑠 = 2, 𝑒𝑒 = 5% => N=2
𝑠𝑠 = 2, 𝑒𝑒 = 50% => N=17
𝑠𝑠 = 4, 𝑒𝑒 = 5% => N=3
𝑠𝑠 = 4, 𝑒𝑒 = 50% => N=72
𝑠𝑠 = 8, 𝑒𝑒 = 5% => N=5
𝑠𝑠 = 8, 𝑒𝑒 = 50% => N=1177

• N increases steeply with s

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

log(1 ) / log(1 (1 ) )sN p e> − − −
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𝑁𝑁 for probability 𝑝𝑝 of at least one sample with only inliers

• Set p=0.99 – chance of getting good sample

𝑠𝑠 = 2, 𝑒𝑒 = 5% => N=2
𝑠𝑠 = 2, 𝑒𝑒 = 50% => N=17
𝑠𝑠 = 4, 𝑒𝑒 = 5% => N=3
𝑠𝑠 = 4, 𝑒𝑒 = 50% => N=72
𝑠𝑠 = 8, 𝑒𝑒 = 5% => N=5
𝑠𝑠 = 8, 𝑒𝑒 = 50% => N=1177

• N increases steeply with s

log(1 ) / log(1 (1 ) )sN p e> − − −
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How big does N need to be?

• So 𝑁𝑁 = 𝑓𝑓 𝑒𝑒, 𝑠𝑠,𝑝𝑝

• What is N not a function of? 

log(1 ) / log(1 (1 ) )sN p e> − − −

𝑁𝑁 = 𝑓𝑓 𝑒𝑒, 𝑠𝑠, 𝑝𝑝 , but not the number 
of points(matches)! 
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Matching features

What do we do about the “bad” matches?
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RAndom SAmple Consensus (1)

Select one match, count inliers
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RAndom SAmple Consensus (2)

Select one match, count inliers
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Least squares fit

Find “average” translation vector
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2D transformation models

2 matches:
Similarity
(translation, 
scale, rotation)

3 matches:
Affine

4 matches: 
Projective
(homography)

Source: S. Lazebnik
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RANSAC for estimating, say, homography
RANSAC loop:
1. Select four feature pairs (at random)
2. Compute homography 𝑯𝑯k (exact)
3. Compute inliers where  𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝𝑖𝑖’,𝑯𝑯k 𝑝𝑝𝑖𝑖 ) < 𝜀𝜀
4. Keep 𝑯𝑯𝒌𝒌, if 𝐶𝐶𝑘𝑘 is the largest set of inliers 
5. For a while go to 1
6. Re-compute least-squares 𝑯𝑯 estimate on all of the 

𝐶𝐶𝑘𝑘 inliers
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Adaptively determining the number of samples

• Inlier ratio 𝑒𝑒 is often unknown a priori, so pick worst 
case, e.g. 50%, and adapt if more inliers are found, 
e.g. 80% would yield e=0.2 

• Adaptive procedure:
• N= ∞, sample_count =0, 𝑒𝑒 = 1.0
• While N >sample_count

• Choose a sample and count the number of inliers
• Set e0 = 1 – (𝑖𝑖𝑜𝑜𝑠𝑠𝑏𝑏𝑒𝑒𝑖𝑖 𝑜𝑜𝑓𝑓 𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑒𝑒𝑖𝑖𝑠𝑠)/(𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠 𝑖𝑖𝑜𝑜𝑠𝑠𝑏𝑏𝑒𝑒𝑖𝑖 𝑜𝑜𝑓𝑓 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠)
• If 𝑒𝑒0 < 𝑒𝑒 Set 𝑒𝑒 = 𝑒𝑒0 and recompute 𝑁𝑁 from 𝑒𝑒:

• Increment the sample_count by 1

( ) ( )( )sepN −−−= 11log/1log

Source: M. Pollefeys
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RANSAC for recognition
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RANSAC for fundamental matrix
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Putative matches (motion) by cross-correlation (188) 
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RANSAC for fundamental matrix

Inliers (99)  Outliers (89)  
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Point cloud planes
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Find the plane and object in realtime
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2D transformation models

•Similarity
(translation, 
scale, rotation)

•Affine

•Projective
(homography)

Source: S. Lazebnik
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RANSAC conclusions

The good…
• Simple and general
• Applicable to many different problems, often 
works well in practice

• Robust to large numbers of outliers
• Applicable for larger number of parameters 
than Hough transform

• Parameters are easier to choose than Hough 
transform
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RANSAC conclusions

The not-so-good…
• Computational time grows quickly with the 
number of model parameters 

• Sometimes problematic for approximate 
models
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RANSAC conclusions

Common applications
• Computing a homography (e.g., image 
stitching) or other image transform

• Estimating fundamental matrix (relating two 
views)

• Pretty much every problem in robot vision
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