CS 4495 Computer Vision RANdom SAmple Consensus

Aaron Bobick
School of Interactive
Computing

Administrivia

- PS 3:
- Check Piazza - good conversations. In fact some pretty explicit solutions...
- The F matrix: the actual numbers may vary quite a bit. But check the epipolar lines you get.
- Normalization: read extra credit part. At least try removing the centroid. Since we're using homogenous coordinates (2D homogenous have 3 elements) it's easy to have a transformation matrix that subtracts off an offset.
- Go back an recheck slides: A 3 vector in these projective geometry is both a point and a line.

Matching with Features

- Want to compute transformation from one image to the other
- Overall strategy:
- Compute features
- Match matching features (duh?)
- Compute best transformation (translation, affine, homography) from matches

An introductory example:

Harris corner detector

C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Harris Detector: Mathematics

$$
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

Measure of corner response:

$$
R=\operatorname{det} M-\alpha(\operatorname{trace} M)^{2}
$$

$$
\begin{aligned}
\operatorname{det} M & =\lambda_{1} \lambda_{2} \\
\operatorname{trace} M & =\lambda_{1}+\lambda_{2}
\end{aligned}
$$

(α - empirical constant, typically 0.04-0.06)

Harris corner response function

$$
R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

- R depends only on eigenvalues of M , but don't compute them (no sqrt, so really fast!
- R is large for a corner
- R is negative with large magnitude for an edge
- $|R|$ is small for a flat region

Key point localization

- General idea: find robust extremum (maximum or minimum) both in space and in scale.
- SIFT specific suggestion: use DoG pyramid to find maximum values (remember edge detection?) - then eliminate "edges" and pick only corners.
- More recent: use Harris detector to find maximums in space and then look at the Laplacian pyramid (we'll do this later) for maximum in scale.

Each point is compared to its 8 neighbors in the current image and 9 neighbors each in the scales above and below.

Point Descriptors

- We know how to detect points
- How to match them? Two parts:
- Compute a descriptor for each and make the descriptor both as invariant and as distinctive as possible. (Competing goals) SIFT one example.

Idea of SIFT

- Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

SIFT Features

SIFT vector formation

- 4×4 array of gradient orientation histograms over 4×4 pixels
- not really histogram, weighted by magnitude
- 8 orientations x 4×4 array $=128$ dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

showing only 2 x 2 here but is 4×4

Point Descriptors

- We know how to detect points
- How to match them? Two parts:
- Compute a descriptor for each and make the descriptor both as invariant and as distinctive as possible. (Competing goals) SIFT one example
- Need to figure out which point matches which..

Feature-based alignment outline

- Extract features

Feature-based alignment outline

- Extract features
- Compute putative matches - e.g. "closest descriptor"

Feature-based alignment outline

- Extract features
- Compute putative matches - e.g. "closest descriptor"
- Loop:
- Hypothesize transformation T from some matches

Feature-based alignment outline

- Extract features
- Compute putative matches- e.g. "closest descriptor"
- Loop:
- Hypothesize transformation T from some matches
- Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

- Extract features
- Compute putative matches- e.g. "closest descriptor"
- Loop:
- Hypothesize transformation T from some matches
- Verify transformation (search for other matches consistent with T)
- Apply transformation

How to get "putative" matches?

Feature matching

- Exhaustive search
- for each feature in one image, look at all the other features in the other image(s) - pick best one
- Hashing
- compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
- k-trees and their variants

Feature-space outlier rejection

- Let's not match all features, but only these that have "similar enough" matches?
- How can we do it?
- SSD(patch1,patch2) < threshold
- How to set threshold?

Feature-space outlier rejection

- A better way [Lowe, 1999]:
- 1-NN: SSD of the closest match
- 2-NN: SSD of the second-closest match
- Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
- That is, is our best match much better than the next?

Feature matching

- Exhaustive search
- for each feature in one image, look at all the other features in the other image(s) - pick best one
- Hashing
- compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
- k-trees and their variants
- But...
- Remember: distinctive vs invariant competition? Means:
- Problem: Even when pick best match, still lots (and lots) of wrong matches - "outliers"

Another way to remove mistakes

- Why are we doing matching?
- To compute a model of the relation between entities
- So this is really "model fitting"

Fitting

- Choose a parametric model to represent a set of features - remember this???

simple model: lines simple model: circles

complicated model: car

Fitting: Issues

Case study: Line detection

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Total least squares

-Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d$ $\left(a^{2}+b^{2}=1\right):$

$$
\left|a x_{i}+b y_{i}-d\right|
$$

Total least squares

-Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d$ $\left(a^{2}+b^{2}=1\right)$:

$$
\left|a x_{i}+b y_{i}-d\right|
$$

- Find ($\mathrm{a}, \mathrm{b}, \mathrm{d}$) to minimize the
 perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

Least squares as likelihood maximization

- Generative model: line points are corrupted by Gaussian noise in the direction perpendicular to the line

$$
\binom{x}{y}=\binom{u}{v}+\varepsilon\binom{a}{b}
$$

Least squares as likelihood maximization

- Generative model: line points are corrupted by Gaussian noise in the direction perpendicular to the line

$$
\binom{x}{y}=\binom{u}{v}+\varepsilon\binom{a}{b}
$$

Likelihood of points given line parameters (a, b, d):
$P\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n} \mid a, b, d\right)=\prod_{i=1}^{n} P\left(x_{i}, y_{i} \mid a, b, d\right) \propto \prod_{i=1}^{n} \exp \left(-\frac{\left(a x_{i}+b y_{i}-d\right)^{2}}{2 \sigma^{2}}\right)$
Log-likelihood: $L\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n} \mid a, b, d\right)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}$

Least squares: Lack of robustness to (very) non-Gaussian noise

- Least squares fit to the red points:

Least squares: Lack of robustness to (very) non-Gaussian noise

- Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators

- General approach: minimize

$$
\sum_{i} \rho\left(r_{i}\left(x_{i}, \theta\right) ; \sigma\right)
$$

$r_{i}\left(x_{i}, \theta\right)$ - residual of ith point w.r.t. model parameters θ ρ - robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large

Behaves much the same as least squares

"Find consistent matches"???

- Some points (many points) are static in the world
- Some are not
- Need to find the right ones so can compute pose.
- Well tried approach:
- Random Sample Consensus (RANSAC)

Simpler Example

- Fitting a straight line

Discard Outliers

- Assume few real points with distance $d>\theta$
- RANSAC:
- RANdom SAmple Consensus
- Fischler \& Bolles 1981
- Copes with a large proportion of outliers
M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

RANSAC

(RANdom SAmple Consensus)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using sample
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

 Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using sample
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

 Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using sample
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

 Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using the sample
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

 Line fitting exampleAlgorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using sample
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

The fundamental RANSAC assumption:

More support implies better fit.

RANSAC for general model

- A given model has a minimal set - the smallest number of samples from which the model can be computed.
- Line: 2 points
- Image transformations are models. Minimal set of s of point pairs/matches:
- Trans/ation: pick one point pair
- Homography (for plane) - pick 4 point pairs
- Fundamental matrix - pick 8 point pairs (really 7 but lets not go there)
- Algorithm
- Randomly select s points (or point pairs) to form a sample
- Instantiate a model
- Get consensus set C_{i}
- If $\left|C_{i}\right|>T$, terminate and return model
- Repeat for N trials, return model with max $\left|C_{i}\right|$

Distance Threshold

- Let's assume location noise is Gaussian with σ^{2}
- Then the distance d has Chi distribution with k degrees of freedoms where k is the dimension of the Gaussian.
-If one dimension, e.g.distance off a line, then 1DOF

$$
f(d)=\frac{\sqrt{2} e^{-\left(\frac{d^{2}}{2 \sigma^{2}}\right)}}{\sqrt{\pi} \sigma}, d \geq 0
$$

Distance Threshold

For 95% cumulative threshold t when Gaussian with σ^{2}

$$
t^{2}=3.84 \sigma^{2}
$$

That is: if $t^{2}=3.84 \sigma^{2}$ then 95% probability that $d<t$ when point is inlier

But...

Usually set by "empirically"...

How many samples should we try?

- We want: at least one sample with all inliers
- With random samples we can't guarantee. But with probability p we can, e.g. $p=0.99$

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is high (e.g. 0.95)
- If zero-mean Gaussian noise with std. dev. $\sigma: t^{2}=$ $3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$)
- Need to set N based on outlier ratio: e

Calculate N

1. s - number of points to compute solution
2. p-probability of success
3. e-proportion outliers, so $\%$ inliers $=(1-e)$
4. $\quad P($ sample set with all inliers $)=(1-e)^{s}$
5. $P($ sample set will have at least one outlier $)=$

$$
\left(1-(1-e)^{s}\right)
$$

6. $\quad P($ all N samples have outlier $)=\left(1-(1-e)^{s}\right)^{N}$
7. We want $P($ all N samples have outlier $)<(1-p)$
8. So: $\left(1-(1-e)^{s}\right)^{N}<(1-p)$

$$
N>\log (1-p) / \log \left(1-(1-e)^{s}\right)
$$

N for probability p of at least one sample with only inliers

$$
N>\log (1-p) / \log \left(1-(1-e)^{s}\right)
$$

- Set p=0.99 - chance of getting good sample

$$
\begin{array}{ll}
s=2, e=5 \% & \Rightarrow \mathrm{~N}=2 \\
s=2, e=50 \% & \Rightarrow \mathrm{~N}=17 \\
s=4, e=5 \% & \Rightarrow \mathrm{~N}=3 \\
s=4, e=50 \% & \Rightarrow \mathrm{~N}=72 \\
s=8, e=5 \% & \Rightarrow \mathrm{~N}=5 \\
s=8, e=50 \% & \Rightarrow \mathrm{~N}=1177
\end{array}
$$

proportion of outliers e								
s	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

- N increases steeply with s

N for probability p of at least one sample with only inliers

$$
N>\log (1-p) / \log \left(1-(1-e)^{s}\right)
$$

- Set p=0.99 - chance of getting good sample

$$
\begin{array}{ll}
s=2, e=5 \% & \Rightarrow \mathrm{~N}=2 \\
s=2, e=50 \% & \Rightarrow \mathrm{~N}=17 \\
s=4, e=5 \% & \Rightarrow \mathrm{~N}=3 \\
s=4, e=50 \% & \Rightarrow \mathrm{~N}=72 \\
s=8, e=5 \% & \Rightarrow \mathrm{~N}=5 \\
s=8, e=50 \% & \Rightarrow \mathrm{~N}=1177
\end{array}
$$

- N increases steeply with s

How big does N need to be?

$$
N>\log (1-p) / \log \left(1-(1-e)^{s}\right)
$$

- So $N=f(e, s, p)$
- What is N not a function of?
$N=f(e, s, p)$, but not the number
of points(matches)!

Matching features

What do we do about the "bad" matches?

RAndom SAmple Consensus (1)

Select one match, count inliers

RAndom SAmple Consensus (2)

Select one match, count inliers

Least squares fit

2D transformation models

2 matches:
Similarity
(translation,
scale, rotation)

3 matches:
Affine

RANSAC for estimating, say, homography

RANSAC loop:

1. Select four feature pairs (at random)
2. Compute homography $\boldsymbol{H}_{\mathrm{k}}$ (exact)
3. Compute inliers where $\operatorname{SSD}\left(p_{i}{ }^{\prime}, \boldsymbol{H}_{\mathrm{k}} p i\right)<\varepsilon$
4. Keep $\boldsymbol{H}_{\boldsymbol{k}}$, if $C_{\boldsymbol{k}}$ is the largest set of inliers
5. For a while go to 1
6. Re-compute least-squares \boldsymbol{H} estimate on all of the C_{k} inliers

Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50\%, and adapt if more inliers are found, e.g. 80% would yield $\mathrm{e}=0.2$
- Adaptive procedure:
- $\mathrm{N}=\infty$, sample_count $=0, e=1.0$
- While N >sample_count
- Choose a sample and count the number of inliers
- Set $\mathrm{e}_{0}=1$ - (number of inliers)/(total number of points)
- If $e_{0}<e$ Set $e=e_{0}$ and recompute N from e :

$$
N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
$$

- Increment the sample_count by 1

RANSAC for recognition

RANSAC for fundamental matrix

Putative matches (motion) by cross-correlation (188)

RANSAC for fundamental matrix

Inliers (99)
Outliers (89)

Point cloud planes

Find the plane and object in realtime

2D transformation models

- Similarity (translation, scale, rotation)

- Affine

- Projective (homography)

RANSAC conclusions

The good...

- Simple and general
- Applicable to many different problems, often works well in practice
- Robust to large numbers of outliers
- Applicable for larger number of parameters than Hough transform
- Parameters are easier to choose than Hough transform

RANSAC conclusions

The not-so-good...

- Computational time grows quickly with the number of model parameters
- Sometimes problematic for approximate models

RANSAC conclusions

Common applications

- Computing a homography (e.g., image stitching) or other image transform
- Estimating fundamental matrix (relating two views)
- Pretty much every problem in robot vision

