Object Based Requirements Modeling for Process Continuity

A.L Anton (anton@cc.gatech.edu)
T.A. Gale (tomgQ@cc.gatech.edu)
W.M. McCracken (mike@cc.gatech.edu)
J.J. Shilling (shilling@cc.gatech.edu)

Center for Information Management Research
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280

Abstract

The re-engineering of information systems and
business processes that occurs during enterprise anal-
ysis demands a robust, rigorous, and expressive tech-
nique for modeling elicited system requirements. The
requirements models must also be easily understood by
end users. This paper presents a hybrid object based
modeling technique which supports progressive formal-
ization of requirements models with minimal irans-
formations. The technique sirives to impose consis-
tency and coherence on the modeling process yielding
a higher level of process continuity, enhancing end-
user comprehension, and facilitating communication
between analysts and end users.

1 Introduction

As new paradigms emerge, it is important for or-
ganizations to re-examine and perhaps even re-design
their enterprise analysis process in order to ensure that
the organization’s current needs are being satisfied in
a relevant manner. Enterprise analysis attempts to
rebuild businesses around information. The ultimate
goal of re-engineering is to identify new methods of
re-designing information systems and organizational
structures. The focus of the research presented in this
paper is the requirements portion of the enterprise
analysis process. Specifically, our endeavor encom-
passes the creation of a representation that aids the
user comprehension element of the process. This pa-
per presents a representation and modeling technique
for the information gathered as a result of require-
ments elicitation.

0-8186-1060-3425/93 $03.00 © 1993 IEEE

191

Traditionally, the requirements elicitation and
modeling process uses techniques and representations
that are difficult for a user to understand and often
forces transformations to occur when communication
takes place between the user and analyst. In other
cases, representations are informal (to promote com-
munications, such as natural language), and suffer the
inherent problems of inconciseness, ambiguity and in-
completeness. The need to formalize requirements to
maximize correctness has been well documented in the
literature [7] [8] [15], and represents a significant im-
provement in specifying systems (this has been shown
both experimentally as well as in actual application
of these techniques). The problem of communicat-
ing with users who are not mathematically inclined
or computer literate still exists. If a specification is
written using VDM [15], for example, and the user is
not well versed in the representation, then a transla-
tion has to occur to communicate the analyst’s under-
standing of the problem to the user. This translation
1s typically from a formal representation to an infor-
mal natural language representation.

Coad proposes that object based modeling tech-
niques enhance the requirements elicitation and mod-
eling processes by providing a common vocabulary fa-
miliar to both users and analysts [6]. An object based
requirements modeling technique can be accessible to
non-technical / computer naive users, and yet is rig-
orous enough to allow for translation into a full object
oriented design. An object based model jointly devel-
oped by both the analyst and a group of end users,
using a simple notation with different levels of com-
plexity and abstraction, may provide a model that is
easily understood and readily accepted by both par-
ties. Object based modeling techniques may allow

dynamic simulation of the requirements model dur-
ing the requirements elicitation process to shorten the
evaluation/feedback/modification cycle.

The initial phases of our research in requirements
modeling techniques included the development of a
rigorous, highly expressive object based modeling
technique which is described in this paper. This repre-
sentation is the final form into which the requirements
model will be translated. The object based model will
be reduced and simplified, maintaining the rigor, but
hopefully ensuring at all times that it is easily under-
stood by non-technical end users.

2 Requirements for an Adequate Mod-
eling Technique

Many requirements modeling techniques yield poor
end user comprehension due to either misinterpreta-
tions of the elicited requirements by the analyst or be-
cause the modeling representation fails to convey the
appropriate meaning. These factors further compli-
cate the already difficult communication process which
takes place between analyst and end user. In or-
der to address these and other problems, we believe
that an adequate requirements representation tech-
nique should exhibit the following characteristics:

¢ Facilitate communication between analysts and
end users

o Increase user comprehension

o Make it easy for analysts to modify the knowledge
content without making structural changes to the
model

o Facilitate the reuse of artifacts from the software
development process (software, designs, require-
ments, etc.)

¢ Employ a single evolvable uniform notation (with
minimal transformations)

These characteristics serve as a basis for our pro-
posed modeling technique.

Since end users may have a difficult time under-
standing the representation of the requirements as
stated by analysts, an adequate representation should
minimize this lack of understandability in order to in-
crease user comprehension. The model must be un-
derstandable by end users and customers. It should
also serve as an efficient communication vehicle be-
tween both parties. Iterative refinement of the model
should also be supported at all phases.

Modifications to the knowledge content should be a
simple process for the analyst and these modifications

192

should not necessarily result in changes to the actual
structure of the model. In addition, a requirements
technique should employ a single notation that is us-
able throughout the entire requirements and design
process. The notation should be evolvable from infor-
mal to more formal notations as progression toward
implementation ensues.

In addition to the above characteristics, we believe
that an adequate modeling technique should also sup-
port extensive reuse (see section 6.5). It is our opinion
that the use of the object based paradigm throughout
the software development process enables the reuse of
artifacts other than software including requirements
and design.

3 Why Functional Techniques Are In-
adequate

Traditional requirements analysis techniques, for
the most part, have been functional in nature (i.e.
SADT [17], SREM [1], etc.). The requirements analy-
sis process is composed of two main tasks: elicitation
and modeling [14]. Requirements are typically elicited
from end users via interviews or questionnaires of the
user group community. It is then the responsibility of
the analyst to synthesize the gathered information and
create a model or representation that can be validated
by end users [16]. As stated in Section 2, the model or
representation developed by the analyst is often not
easily understood by the end users. In addition, as
progression from an informal towards a more formal
representation occurs, the representation changes not
only in level of formality and level of detail, but in
the actual appearance (i.e. notation, diagrams, struc-
ture, etc.) and possibly in its intuitive appeal to the
customer. As formality increases the level of compre-
hension of the model for the end users often decreases.

Structured Analysis (SA) techniques emphasize
functional decomposition [16]. The main focus is in
the actual functions provided by the system to the
users [18]. The system is organized around these func-
tions or their corresponding procedures. According to
Coad [5], the object oriented (OO) approach provides
a better fit to end users’ mental models. He proposes
that people organize complex concepts by breaking
down the organizational thought process into aggre-
gation, classification and differentiation. He claims
that OO methods fit this model. This suggests that
functional techniques may not be as intuitive to end
users since they may view the world in terms of objects
rather than functions (see section 4.1). In functional

decomposition, modifications have more potential for
far reaching repercussions and side effects than in OO
systems. Clearly defined system boundaries are in-
herent in SA designs making extensions more difficult
than in OO techniques. “An object oriented technique
is more resilient to change and more extensible” [19].

Functional decomposition in SA techniques is arbi-
trary and is dependent on those persons involved in
decomposing the problem into processes and subpro-
cesses. However, in OO techniques, the decomposition
is based on the objects in the particular problem do-
main. Analysts working on different systems in a par-
ticular domain tend to identify similar objects. This
increases reusability of components from one project
to the next {19).

The structural changes that often times occur
throughout the progression of a requirements model
from an informal representation to a more formal rep-
resentation may contribute to the difficulties in com-
munication between the analyst and the user. The
transition from requirements to design may be diffi-
cult for end users to follow due to structural changes.
Functional modeling techniques do not provide what
we consider to be the necessary evolutionary formal-
ization. This may make user verification and valida-
tion more difficult than they need be.

4 Why Object Based Techniques Show
Promise

One type of modeling technique which has received
significant attention in recent years is object based
modeling [3] (5] [18] [20]. This section describes why
we believe object based techniques may be capable
of satisfying the requirements for modeling techniques
presented in Section 2.

4.1 User Comprehension

Object based modeling techniques may provide a
higher level of end user comprehension than that
achieved via more traditional modeling techniques.
The primary reason for this is that real world entities
are modeled as objects which the user may already
be familiar with. This may improve several aspects of
user comprehension including:

o Mental models - When the object being modeled
maps directly to an entity which the user is famil-
iar with, it provides an initial frame of reference
(mental model) that allows the user to quickly
comprehend the entity.

193

o Visualization - Each object being modeled pro-
vides a convenient subcomponent of the system
which can be visualized in isolation. This can aid
the user in understanding what the overall system
of interacting objects is trying to accomplish by
allowing users to visualize and comprehend each
object separately rather than being forced to com-
prehend the entire system as a monolith.

4.2 Reusable Artifacts

In object based modeling techniques, the system is
decomposed into encapsulated objects which may be
modeled in isolation, as a component of a subsystem,
or as a framework of objects. Since each object or
framework of objects is a stand alone entity or sub-
system with all necessary capabilities and data struc-
tures, these object models may be reused in a fashion
similar to their software counterparts. The require-
ments model and formalized design for these objects
may be utilized in other systems which require classes
of objects with similar capabilities.

Although this paper focuses primarily on the re-
quirements analysis and design phases of the soft-
ware development lifecycle, our observations about the
reusability of requirements, design, and implementa-
tion artifacts are applicable to all phases of the soft-
ware lifecycle.

4.3 Minimizing Transformations

Transformations that are required throughout the
transition from the object based requirements model
to the final implementation are reduced due to the di-
rect correlation between object based modeling tech-
niques and commonly used object oriented design and
programming techniques. The initial use of an ob-
ject based model allows the transformations required
to transition from analysis to design and implemen-
tation to be viewed simply as a formalization of the
model rather than one that involves radical structural
changes.

This seamless process of migrating the object model
from analysis into design and implementation has sev-
eral advantages:

o Loss of information is minimized - The amount of
information lost in the transformation process is
proportional to how radical the transformation is.
The more radical the transformation, the higher
the probability that some initial requirements in-
formation will be lost. It appears logical that by
reducing structural transformations, loss of infor-
mation is also reduced.

o Customer validation is simplified - The amount
of effort required from a customer to compre-
hend and validate the design of the system is re-
duced because the final design and implementa-
tion mimic the object model created during the
initial requirements phase.

e Process fluidity is enhanced - The development
lifecycle becomes a much more coherent process
with the model ‘flowing’ through the analysis,
design, and implementation phases, being en-
hanced, formalized, and refined throughout its
progression, but with its overall structure remain-
ing intact.

4.4 Evolving Formalism

The initially object based model resulting from the
requirements elicitation and modeling process is itera-
tively refined into a more formal representation, suit-
able for migration into the design phase. The actual
objects which have been identified still exist, but the
details of what these objects do and how it is accom-
plished becomes progressively more formalized.

The initial object based requirements model may
identify several classes of required objects and may
contain a natural language description of the capabili-
ties and attributes of those objects. The initial model
of the dynamic behavior of an object may include a
list of the set of possible states the object may enter as
well as a natural language description of what causes
an object to transition from one state to another.

As the model is further refined, these natural lan-
guage descriptions are replaced by more formal nota-
tions which describe the model in sufficient detail so as
to clearly indicate the correct performance expected of
each object.

The iterative formalization process described above
produces an object model of sufficient rigor such that
it may be used with minimal modification as the over-
all design of the system.

5 A Hybrid Object Based Technique

5.1 Modifying Current Object Based
Modeling Techniques

While there are a plethora of object based modeling
techniques currently in use, some modification of these
techniques is needed in order to meet our goals. The
proposed technique is a combination of several features

194

of existing object based techniques, with some addi-
tional features intended specifically to better meet our
criteria (see Section 2).

5.2 Three Views Within the Model

The object model consists of three different views
of the requirements to be specified. This three view-
point approach was adopted from the Object Modeling
Technique (OMT) [18] [19].

The three views included in the model are:

e Static model - provides a representation of all
static aspects of the objects in a system. In par-
ticular, all capabilities (methods) and data struc-
tures (attributes) associated with each individual
object class and all relationships between objects.

e Dynamic model - contains a state/transition
based model of the interaction between objects
in a system.

o Functional model - provides all of the functional
detail regarding the capabilities of each object
class presented in the static model and used in
the dynamic model.

The static and dynamic model are presented in dia-
grammatic form, while the functional model is in tex-
tual format. The following sections detail each of the
views listed above. As an example, the modeling tech-
nique will be used to model the workings of a simple
traffic light system.

5.2.1 Static Model

OMT provides an expressive notation for diagram-
ming the methods, attributes, and relationships of ob-
Ject classes [18] [19]. Each object class is contained
within a rectangle with round corners which is divided
into three sections:

e Class name - Descriptive name for the object
class.

e Methods - List of all methods (capabilities) of
the object class. As the model is formalized, the
method list will specify data types for all argu-
ments and return values.

o Attributes - List of all data attributes of the ob-
ject class. As the model migrates from informal
to formal through iterative refinement such de-
tails as data types and initial values are added.

The OMT static model also diagrams all relation-
ships between object classes. The technique has ro-
bust and expressive notations for indicating attributes
of relations such as cardinality and inheritance.

Class name;

Timer

Methods:

stanTimer()
setnterval(delay: Integer)

Class aame:

Traffic Ligh

Methods:

setNSLight(color: {Red, Yellow, Green})
setEWLight(color: {Red. Yellow, Green})
startYeilowTimer()

stantRedTimer()

Anibutes;
nsLight: (Red. Yellow, Green} = Green
ewLight: {Red. Yellow, Green| = Red
yellowinterval: Integer = 5 seconds

val: [nteger = 60 d
timer: Timer

timerinterval() am> [nteger
timerActive() ==> Boolean

Auributes:
delay: Integer = 0

Figure 1: Static model for traffic light

Figure 1 shows a static model example for a traffic
light system. This example depicts two classes, the
traffic light class and the timer class. The timer class
will be used to control the intervals at which the lights
change color.

This example depicts the finalized formal version of
the static model. This model should contain sufficient
detail about the static information associated with the
system to transition the model into the system design
phase. For brevity, some information has been omitted
from this model, but normally the final version of the
static model should contain the following information:

Data types for all attributes

Initial values for all attributes

Formal parameter descriptions for all methods
Data types of return values for all methods

For clarity, titles have been added to each of the
three sections of the static object model so that each
section’s contents may be easily identified. In OMT
the use of titles is omitted. We believe that titles
increase comprehension by providing important cues
to users who may only occasionally view these models.

The initial version of the static model formed dur-
ing requirements elicitation would use a natural lan-
guage notation for the description of attributes and
methods. The transition into this more formal syntax
would occur as the requirements analysis phase pro-
'gressed. Because the overall structure of the object
classes remains constant throughout this transition,
user comprehension is enhanced.

Note that the timer class is an excellent candidate
for requirements reuse. Many event driven or reactive
systems require the use of timers to cause some ac-
tivity on a regular basis. If the object model require-

195

ments repository contained a timer object, it could
quickly be integrated into other requirements models.

5.2.2 Modifications to the OMT Static Mod-
eling Notation

The following list summarizes the minor modifications
which we have made to the original OMT static mod-
eling technique:

o Titles were added to each section of the object
class to make the contents of each section of each
object unambiguously clear.

o Objects which this object has relations to are
listed explicitly as attributes of the object. The
motivation for this modification was to provide
as much information as possible during the times
when the object might be viewed in isolation.
This might be the case in some situations of
browsing through libraries of reusable require-
ments.

o Methods are listed before attributes within the
static model to allow the object classes to be dis-
played with the attributes suppressed. The sup-
pression of attribute information is used to view
the external (visible) interface of an object while
encapsulating internal attribute information.

5.2.3 Dynamic model

The dynamic model of a system describes all of the
run-time interactions between object classes. These
interactions specify how work is accomplished in the
OO system. The exercise of detailing all object inter-
action within the system has the side effect of exposing
what services each class of object must support. The

Traffic Light

North-South light

red

timer. Timeout()/
self.setNSLighu(Red).
self setEWLight(Green).
self . startRedTimen()

self.setNSLight(Green)

yellow

timer.Timeout()/
self setNSLight(Yellow),
self startYellow Timer()

———o @
/self stanRedTimer()

o

East-West light

self.setEWLight(Green)

red

timer. Timeout()/

self setEWLight(Red),
self.setNSLight(Green).
self santRedTimer()

yellow

timer. Timeout(V
self.setEWLight(Yellow).
self.stantYellow Timer()

Figure 2: Dynamic model for the traffic light

dynamic modeling process produces all information
about a class required for the static model. These ser-
vices required from a class become the methods which
this class must support. In detailing these methods,
internal attributes required to maintain state informa-
tion required by these methods may also be exposed.

The representation which we have adopted is an ob-
ject based extension to Harel’s state charts [10]. Be-
cause of the ability for state charts to represent parallel
states and their inter-STD communication capability,
state charts lend themselves nicely to the modeling of
object based systems.

In the dynamic model, each object class will be
modeled as one state chart. The interactions between
object classes will be modeled using the inter-STD
communication notations of state charts. Since each
object instance will maintain its own state indepen-
dent of other objects of the same class, each instance
of an object class will have its own copy of the state
chart for the object class.

The Object Charts [3] and OMT [18] techniques
have also based their dynamic models on state charts.
The primary difference between these two notations
and ours lies in the identification of those events within
the system which are allowed to cause state tran-
sitions, and what actions can occur when an event
occurs. These events and actions are specified on
the transitions between states, and are separated by
a slash. The event within the object system which
caused the state transition appears on the left hand
side (LHS) of the slash. The actions to be taken when
the event occurs are specified on the right hand side
(RHS) of the slash. This is similar to notations used
in traditional state transition diagrams [8]). See sec-
tions 5.2.4 and 5.2.5 for a detailed description of the
semantics of our events and actions.

196

We refer the reader to [18] for a general discussion
of the use of state charts for modeling the dynamic as-
pects of OO systems. We will point out the differences
between their notations and ours by detailing what is
allowed on the LHS and RHS of state transitions.

Figure 2 shows a state chart for the traffic light
object class. The dashed line between the two STDs
indicate that object instances of this class have two
parallel states, which in this case are the colors of the
north/south and east/west lights. The transition ar-
row which has no source state (arrow emitting from
the dot) indicates the start state of each of the par-
allel states. In this case the start states indicate that
when an instance of the traffic light class is created,
the color of the north/south light will be green, and
the color of the east/west light will be red.

Note several aspects of this diagtanll:

e On the state transitions, the information on the
left hand side of the slash indicates the event
within the system which causes this object to
transition between the two states at the source
and destination of the transition arc. If there is
no slash embedded in the transition information,
the text specifies the event which causes the tran-
sition, and there are no actions to be taken on the
transition.

The information on the right hand side of the
slash on the state transitions indicates any actions
which should be taken as a result of the event
which caused the transition to occur.

This diagram, like the static model shown in sec-
tion 5.2.1 uses formal notations for the events
and actions on the state transitions. This model
reflects a formalized version of the traffic light
model. In the requirements analysis process, this

model would have initially been created with nat-
ural language specifications for events and ac-
tions. It would be progressively formalized and
refined throughout the requirements phase, and
would eventually evolve into the formalized nota-
tions depicted above. This notation is sufficiently
rigorous to create an OO design for the traffic
light. It is important to note, however, that the
overall structure and layout of the dynamic model
will not change as the state transition informa-
tion is formalized. The states generally remain
the same. This provides continuity during the
formalization of the requirements and enhances
user comprehension.

The following sections detail exactly what can ap-
pear on the left and right sides of the slash on a state
transition. These constraints and the formal nota-
tions used to model them are the primary modifica-
tions which we have made to the Object Charts [3]
and OMT [18] techniques.

5.2.4 Events Which Can Cause State Transi-
tions

The contents on the left hand side of a state transi-
tion (preceding the slash) indicates what significant
event occurrence in the system causes this state tran-
sition. The expressions which are allowed on the left
hand and right hand side of the transitions provide
the power and expressiveness in the dynamic modeling
technique. Some limitations are required, however, in
order to allow for smooth transition into an OO design
and implementation.

In our dynamic modeling technique, the following
expressions may occur on the left hand side of the
slash in a state transition:

o External event - an event caused by some agent
outside the system. This may be from a device or
from some other external stimuli.

o Internal event - an event generated by some ob-
ject instance which this object has as an attribute.
For example, the traffic light object has a timer as
an attribute. The traffic light can therefore detect
timeout events generated by this timer. Requir-
ing that objects may only detect events generated
by objects to which they have direct relations
(through explicit attributes) enhances the com-
prehensibility of the system because the reader
will never have to search to find what object gen-
erated this event. Events provide the capability
for objects to cause some action to occur within

197

the system without requiring that the object gen-
erating the event know explicitly who the receiver
objects will be. This enhances the reusability of
object classes by reducing inter-class coupling.

o Local method invocation - a message being sent
to this object to invoke a method may also cause
a state transition.

e Guard condition becoming true - guards are
boolean conditions which, when satisfied, will
cause a state transition. See [10] for a discussion
of the use of guards in state charts.

Both events and method invocations used on state
transitions may have parameters. These parameters
may be used in actions taken as a result of the transi-
tion or within guard statements.

5.2.5 Actions Taken on a State Transition

The right hand side of the slash on a state transition
specifies any actions which are taken as a result of the
transition. Allowable actions include:

e Send a message to itself
e Send a message to another object
e Cause an external or internal event

5.2.6 Actions Upon Entering a State

States may have a continuous or single-shot execution
of an action which takes place upon entering a state.
This can be signified by a DO: action in the state.
This notation is taken directly from OMT [18] [19].

5.2.7 Syntactical conventions

The following examples illustrate the syntactical con-
ventions used for the above event and action specifica-
tions in the dynamic model. Events and object names
begin with an upper-case letter, while methods begin
with a lower-case character.

Events causing a transition:
timer. Timeout()
Method invocations causing a transition, or as actions
on transitions:
self.set EWLight(Yellow)
timer.timerActive()
Broadcast events used as actions on transitions:
Broadcast. Timeout()

The last example uses the keyword Broadcast to
indicate that this object is causing an internal event
with unknown recipients.

Class: Traffic Light

Service: sanRedTimer()

Attributes read: redInterval
Attributes modified: None
Objects read: None
Objects modifled: timer
Pre-conditioas:
timer timerActive() = False
redinterval © 0
Post-conditions:
timer.timerinterval() = redinterval
timer.timerActive() = True
Algorithes:

timer.setTimerinterval(redInterval)
timer.stanTimer()

Figure 3: Functional model for start Red Timer method

5.2.8 Functional Model

In our view, the functional view of the object model is
simply an annotation to the dynamic model. The dy-
namic model provides all necessary information about
the run-time interaction of objects, but may not pro-
vide the level of detail needed in order to actually cre-
ate an OO design for the system. These details are
specified in the functional model:

o Error conditions in the system
e Algorithms for methods used in the dynamic
model

The error conditions are specified in the form of pre-
conditions which must be true in order for the method
to be executed and post-conditions which must be true
after the method’s execution.

There should be a functional model specified for
every method in every object class within the sys-
tem. Note that the functional model for a method
does not show any contextual information about how
and when a method will be used. This information is
contained in the dynamic model. This lack of contex-
tual information is the main reason why we view the
functional model as adding annotative information to
the dynamic model rather than being a stand-alone
model.

An example functional model for the startRed-
Timer() method in the traffic light class is shown in
Figure 3.

6 Analysis of the Technique

This section provides an analysis of the proposed
object based modeling technique.

198

6.1 Integration of different views

It is important to model elicited requirements from
different perspectives, perhaps even based on the do-
main and problem space, in order to provide multiple
views of the problem. Each of the views in our tech-
nique (static, dynamic, and functional) is directly re-
lated to each other and each provides additional com-
plimentary information to the next. For example, the
information provided by the static model may be used
to provide a class hierarchy and class layout. The
information provided by the dynamic and functional
models may be jointly used to determine the contents
of different object methods.

In order for the OMT [19] to meet our criteria, it
is felt that a tighter coupling between the dynamic
and functional models is needed. The functional and
dynamic models in OMT provide orthogonal views of
the same information. They appear to be redundant
with no clear integration or mapping between the two.
The dynamic model provides all necessary data and
control flow information. We feel the functional model
should then be used to further augment the dynamic
model.

8.2 User Comprehension

In any form, the representation of requirements
should be easy to understand. It may be the case
that a function-based approach is better than an ob-
ject based approach in some domains. However, we
believe that end users can, for the most part, interact
more easily with object based models because of the
association of real world objects with the users’ men-
tal models. Rumbaugh addresses the issue of objects
viewed as real-world entities [18] [19].

The concept of an object being in a certain initial
state and then changing state is intuitive. With min-
imal training, users can adopt the notion of modeling
objects in states. Statechart notations provide spec-
ifications of processes, objects, and their interactions
that are both unambiguous and concise {8] [10]. Davis
states that there is a tendency to resort to “extremely
formal notations” in order to ensure less ambiguity,
verifiability, completeness, and consistency [8]. He ad-
vocates the use of formal notations but points out the
need for a ‘translation’ tool to automatically translate
the formal specification into an easily understood ver-
sion. Our technique may eliminate the need for this
translation by making the model easier to understand.
It is in fact possible that the object model may actu-
ally be created by the end users themselves with the
aid of an analyst.

6.3 Minimizing transformations

Traditionally in requirements elicitation there has
been no direct correlation between the analysts’ syn-
thesis of the stated requirements and the user’s view
of the model or representation [16]. We have identified
the need to provide a mapping between the user model
and the model needed for the actual implementation.
Continuity is essential during the entire process so that
as users see successive refinements to the model, they
will continue to recognize and understand it.

The overall format of each of the models remains
structurally the same but the formality is increased
throughout the requirements process. This provides
for the development of a model with multiple views
which eventually becomes sufficiently formal to base a
design and implementation on. In order to better un-
derstand the concept of minimizing transformations,
see the discussion of overlays in section 6.4. It is our
opinion that the lack of structural transformations ac-
cords consistency and coherence to the development
process and simplifies the formalization process.

6.4 Evolving Formalism

When requirements are first elicited from users, the
resulting representation is usually natural language
based. The object based approach presented in this
paper allows for a model that may evolve easily from a
natural language representation to a more formal rep-
resentation. In order to attain ‘evolving formalism’,
varying levels of abstraction need to be established.
The levels of abstraction and formalism may be dic-
tated by the desires of the development team and the
customer. Eventually, this model may be formalized
into a VDM like notation [15] [11] if that level of for-
malism is desired.

We can view the formalization process as simply
adding more information and/or detail to the initial
model (or structure) via the use of overlays. FEach
successive overlay of the initial structure offers more
detail and formalism which enable the users and an-
alysts to view the system at the appropriate level of
formalism respectively.

One issue that needs to be addressed is the preser-
vation of information as the degree of formalism pro-
gresses. It is vital to allow for the translation (or evo-
lution) of an abstract view to a more detailed view
without the introduction of errors (i.e. correctness
preservation). As explained in the previous section,
the addition of detail in each successive refinement of
the model (in particular the dynamic model) is accom-
plished via the use of overlays. Although structural

199

consistency and coherence are maintained, the cor-
rectness of the information preserved is an issue which
must be resolved. The use of overlays is a mechanism
for preserving layers of abstraction (and formalisms),
serving as a communication vehicle between analysts
and end users. However, there is no panacea. This
method is as suspect as any other translation mecha-
nism. However, the key to this approach is that the
representation is consistent throughout the entire pro-
cess. The representation is not changed during the
development of the specification. Many methods and
techniques depend on initial natural language require-
ments descriptions prior to development of a formal
specification (for example, using VDM) as expressed
by the contractual model [4].

6.5 Reusable Artifacts

It is difficult to demonstrate that organizing a sys-
tem around ‘objects’ is better for users than organiz-
ing a system around ‘functions’. Although the issue of
understandability may be difficult to verify, the issue
of maintainability is readily accepted and understood.

Developing and maintaining software systems is
expensive. Studies estimate that maintenance costs
range from 50 to 85 percent of the total cost of a
software product [1] [2]. Fjeldstad and Hamlen es-
timate that 47% of the time devoted to maintenance
activities are for actual enhancement and correction
tasks while 62% is dedicated to comprehension activi-
ties [13]. These figures suggest that maintenance costs
may be significantly reduced if efforts are devoted to
increasing the level of comprehension of the system
specifications. An object based modeling representa-
tion provides modularity by way of information hid-
ing and encapsulation [12]. This modularity supports
software reuse, not only for purposes of maintenance
but also, for purposes of designing and building sim-
ilar systems that can employ (or reuse) components
of another systems software requirements library. We
refer the reader to [12] for further discussion of how
object oriented languages promote reusable software.

The three models in the proposed object based
technique represent a stand-alone description of an
object so that it may be included in a reusable re-
quirements library and design system. Groups of in-
teracting object class models might be incorporated
into a framework of objects which cooperate to per-
form some high level task. Frameworks support reuse
by providing ‘abstract designs’ which may be used by
object systems with similar requirements or for “fam-
ilies of related problems” [12].

7 Conclusions

The concept of objects being a more natural and ef-
fective method of representing requirements has been
discussed in the literature [6]. The method and rep-
resentation described in this paper was motivated by
our reviewing contemporary approaches to enterprise
analysis, not by our need to develop yet another object
modeling technique. We began this project with the
goal of understanding enterprise analysis in the con-
text.of using collaboration technologies as a method
of elicitation. We quickly came to the conclusion that
the representations discussed in the literature had fo-
cused on traditional representations and were forcing
analysts to translate user needs into abstractions that
may be unfamiliar to users.

The goals of this work have not changed. We in-
tend to develop a collaborative requirements elicita-
tion method that allows users to represent their busi-
ness processes and to interact directly with a set of
tools that support representing those processes. We
also intend to experiment with this technique to en-
sure that it is in fact a more viable technique than
using traditional representations.

8 Future Research Directions
8.1 Enterprise Analysis

Previous studies in collaborative requirements anal-
ysis for business information systems have focused on
natural language representation of the elicited require-
ments. Often times, the translation of the elicited re-
quirements into a more formal representation leads to
information loss resulting in a representation which
is inconsistent with the content and structure of the
originally elicited requirements. One area of research
interest is the development of a collaborative tech-
nique that would mitigate these problems. We antici-
pate that the object based representation presented in
this paper would be a useful starting point in collab-
orative requirements development. In particular, we
are interested in the effects of eliciting requirements
from groups of users by way of objects as opposed to
functions. Minimizing information loss as progression
from an informal to formal representation ensues has
not received significant attention in previous studies.
We feel that this coupled with the ability to elicit ob-
Jject based requirements from groups of users would
perhaps simplify the elicitation and modeling process.
Studies could be conducted to determine whether elic-
iting requirements in this fashion is actually feasible

200

and whether the loss of information could be mini-
mized in order to increase correctness and user com-
prehension of the final model.

8.2 Automated Tool Support

The technique outlined in this paper lends itself
to automated tool support. We are currently investi-
gating the development of several classes of tools to
support the overall requirements modeling process:

o Modeling tools - would allow users and analysts to
create the static, dynamic, and functional models
described within this paper. These tools would
also support the progression from informal to
more formalized notations.

o Simulation tools - would allow users to trace the
flow of control within the system as well as the
interaction between objects.

e Code generation tools - would allow automated
code generation from the formalized models.

¢ Reusability tools - would support the reuse of re-
quirements, designs, and other artifacts of the ob-
ject system which is being modeled.

References

(1] M. Alford, “SREM at the Age of Eight: The Dis-
tributed Computing Design System,” IEEE Com-
puter, Vol. 18(4), April 1985.

[2] B. W. Boehm, Software Engineering Economics,
Prentice Hall, 1981.

[3] D. Coleman, F. Hayes, and S. Bear, “Introducing
Objectcharts or how to use Statecharts in Object
Oriented Design,” IEEE Transactions on Software
Engineering, Vol. 18(1), pp 9-18, January 1992.

[4] B. Cohen, “Justification of Formal Methods for
System Specification,” IEE Software and Mi-
crosystems, August 5, 1982.

[6] P. Coad and E. Yourdon, Object Oriented Analy-
sts, Yourdon Press, 1990 (First edition).

[6] P. Coad and E. Yourdon, Object Oriented Analy-
sis, Yourdon Press, 1991.

[7] A. M. Davis, “The Analysis and Specification
of Systems and Software Requirements,” in Sys-
tem and Software Requirements Engineering, Eds.
Richard H. Thayer and Merline Dorfman, IEEE
Computer Society Press Tutorial, 1990.

[8] A. M. Davis, Software Requirements: Analysis and
Specification, Prentice-Hall, 1992.

[9] R. Daniels, A. Dennis, G. Hayes, J. Nunamaker
Jr. and J. Valacich, “Enterprise Analyzer: Elec-
tronic support for group requirements elicitation,”
University of Arizona, 1991.

[10] D. Harel, “On Visual Formalisms,” Communica-
tions of the ACM, Vol. 31(5), pp. 514-530, May
1988.

[11] F. Hayes and D. Coleman, “Coherent Models
for Object Oriented Analysis,” in Proceedings of
OOPSLA 91, pp. 171-183, 1991.

[12] R.E. Johnson and B. Foote, “Designing Reusable
Classes,” JOOP, Vol. 1(2), pp. 22-35, June-July
1988.

[13] R.K. Fjelstad and W.T. Hamlen, “Application
Program Maintenance Study: Report to Our Re-
spondents,” in Proceedings GUIDE 48, Philadel-
phia, PA, 1979 (Tutorial on Software Maintenance.
G. Parikh and N. Zvegintozov, editors, IEEE
Computer Society, April 1983, IEEE Order No.
EM453).

[14] J.C.S.P. Leite and P.A. Freeman, “Requirements
Validation Through Viewpoint Resolution,” IEEE
Transactions on Software Engineering, Vol. SE-
17(12), December 1991.

[15] B. Meyer, “On Formalism in Specifications,”
IEEFE Software, pp. 6-26, January 1985.

[16] D.T. Ross, “Structured Analysis (SA): A Lan-
guage for Communicating Ideas,” IEEE Transac-
tions on Software Engineering, Vol. SE-3(1), Jan-
uary 1977.

[17] D.T. Ross, “Applications and Extensions of
SADT,” IEEE Computer, Vol. 18(4), April 1985.

[18] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy
and W. Lorensen, Object Oriented Modeling and
Design, Prentice Hall, 1991.

[19] J. Rumbaugh, “The evolution of bugs and sys-
tems,” JOOP, pp. 48-52, November-December
1991.

[20] S. Shlaer and S.J. Mellor, Object Lifecycles Mod-
eling the World in States, Yourdon Press Comput-
ing Series, Prentice-Hall, 1992.

201

A Modeling Example

This appendix presents a simple information sys-
tems example using the modeling technique described
in this paper. The object class presented is a produc-
tion order which might be used within a manufactur-
ing enterprise. The production order maintains infor-
mation about the current state of an order of parts to
be manufactured.

The production order is normally used in the fol-
lowing way:

o The order object is created and opened when an
order is received from a customer.

o The order is then entered into the manufacturing
enterprise’s production scheduling process.

e Once the order has been scheduled, it may enter
the actual production process.

o Eventually, the order is completed, then closed
out.

Note that this class, which would normally be used
in the context of many other classes representing the
various artifacts of the manufacturing enterprise, may
be viewed in isolation with its full semantics in evi-
dence. This is largely due to the fact that this nota-
tion presents each other object class which the pro-
duction order class has a relationship to as an explicit
attribute of the object class rather than relying on
a graphical notation (such as arcs between the boxes
representing different classes) to indicate all relation-
ships. Since each class can be viewed in isolation, it
makes the notation more amenable to requirements
reuse and reusability tool support.

Class name;

Production Order

Methods:

open(orderNumber: Integer. quantity: Integer. product: ProductiD)
schedul ledCl r‘ ionDate: Date)
start()

finish()

close(acmaiCompletionDate: Date)
cancel()

revise(newQuantity: [nteger)

Aunibutes:

orderNumber: [nteger

quantity: [nteger

product: Product/D
scheduledDeliveryDate: Date
actualDeliveryDate: Date

Figure 4: Static model for Production Order class

Production Order

scheduled ’\““0
schedule()
started finish()
opened cancel()

: close()
cancel() e b\

canceled

open()

Figure 5: Dynamic model for Production Order class

Class: Production Order

Service: open(orderNumber: Integer. quantity: Integer. product: ProductD)

Attributes read: None

Attributes modified: orderNumber, quantity, product

Objects read: None

Objects modified: self

Pre-coaditions: None

Post-conditions:
self.orderNumber = orderNumber
seif.product = product
self.quantity = quantity

Algorithm:
self.orderNumber = orderNumber
self.product = product
self.quantity = quantity

Figure 6: Functional model for open method

202

