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Abstract
One of the key challenges in natural language pro-
cessing (NLP) is to obtain good performance across
application domains and languages. In this work,
we investigate the robustness of the mention de-
tection systems, one of the fundamental tasks in
information extraction, via recurrent neural net-
works (RNNs). The advantage of RNNs over
the traditional approaches is their capacity to cap-
ture long range contexts and implicitly adapt the
word embeddings, trained on a large corpus, into a
task-specific word representation, but still preserve
the original semantic generalization to be help-
ful across domains. Our systematic evaluation for
RNN architectures demonstrates that RNNs outper-
form a very strong baseline for mention detection
in the cross-domain setting for English and are sig-
nificantly better than the traditional methods on the
similar task of named entity recognition for Dutch
(up to 22% relative error reduction).

1 Introduction
One of the crucial steps toward understanding natural lan-
guages is mention detection (MD), whose goal is to iden-
tify entity mentions, whether named, nominal (the president)
or pronominal (he, she), and classify them into some prede-
fined types of interest in text such as PERSON, ORGANIZA-
TION or LOCATION. This is an extension of the named en-
tity recognition (NER) task which only aims to extract entity
names. MD is necessary for many higher-level applications
such as relation extraction, knowledge population, informa-
tion retrieval, question answering and so on.

Traditionally, both MD and NER are formalized as sequen-
tial labeling problems, thereby being solved by some linear
graphical models such as Hidden Markov Models (HMMs),
Maximum Entropy Markov Models (MEMMs) or Condi-
tional Random Fields (CRFs) [Lafferty et al., 2001]. Al-
though these graphical models have achieved the top perfor-
mance for MD, there are still at least three problems we want
to focus on this work:

(i) The first problem is the performance loss of the mention
detectors when they are trained on some domain (the source
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domain) and applied to other domains (the target domains).
The problem might originate from various mismatches be-
tween the source and the target domains (domain shifts) such
as the vocabulary difference, the distribution mismatches etc
[Daume, 2007; Plank and Moschitti, 2013].

(ii) Second, in mention detection, we might need to cap-
ture a long context, possibly covering the whole sentence, to
correctly predict the type for a word. For instance, consider
the following sentence with the pronominal “they”:

Now, the reason that France, Russia and Germany are
against war is because they have suffered much from the past
war.

In this sentence, the correct type GPE1 for “they” can only
be inferred from its GPE references: “France”, “Russia” and
“Germany” which are far from the pronominal “they” of in-
terest. The challenge is to come up with the models that can
encode and utilize these long-range dependency contexts ef-
fectively.

(iii) The third challenge is to be able to quickly adapt the
current techniques for MD so that they can perform well on
new languages.

In this paper, we propose to address these problems for
MD via recurrent neural networks (RNNs) which offer an ef-
fective recurrent mechanism to embed the sentence context
into a distributed representation and employ it to decode the
sentences. Besides, as RNNs replace the symbolic forms of
words in the sentences with their word embeddings, the dis-
tributed representation that captures the general syntactic and
semantic properties of words [Turian et al., 2010], they can
alleviate the lexical sparsity, induce more general feature rep-
resentation, thus generalizing well across domains [Nguyen
and Grishman, 2015b]. This also helps RNNs to quickly and
effectively adapt to new languages which just require word
embeddings as the only new knowledge we need to obtain.
Finally, we can achieve the task-specific word embeddings for
MD to improve the overall performance by updating the ini-
tial pre-trained word embeddings during the course of train-
ing in RNNs.

The recent emerging interest in deep learning has produced
many successful applications of RNNs for NLP problems
such as machine translation [Cho et al., 2014a; Bahdanau et
al., 2015], semantic role labeling [Zhou and Xu, 2015] etc.
However, to the best of our knowledge, there has been no
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previous work employing RNNs for MD on the cross-domain
and language settings so far. To summarize, the main contri-
butions of this paper are as follows:

1. We perform a systematic investigation on various RNN
architectures and word embedding techniques that are moti-
vated from linguistic observations for MD.

2. We achieve the state-of-the-art performance for MD in
the cross-domain setting with the bidirectional modeling ap-
plied to RNNs.

3. We demonstrate the portability of the RNN models for
MD to new languages by their significant improvement with
large margins over the best reported system for named entity
recognition in Dutch.

2 Related Work
Both named entity recognition [Ando and Zhang, 2005;
Ratinov and Roth, 2009; Turian et al., 2010; Cherry and
Guo, 2015] and mention detection [Florian et al., 2006] have
been extensively studied with various evaluations in the last
decades: MUC6, MUC7, CoNLL’02, CoNLL’03 and ACE.
The previous work on MD has examined the cascade mod-
els [Florian et al., 2006], transferred knowledge from rich-
resource languages to low-resource ones via machine transla-
tion [Zitouni and Florian, 2008] or improved the systems on
noisy input [Florian et al., 2010]. Besides, some recent work
also tries to solve MD jointly with other tasks such as relation
or event extraction to benefit from their inter-dependencies
[Li and Ji, 2014a; Li et al., 2014b]. However, none of these
work investigates RNNs for MD on the cross-domain and lan-
guage settings as we do in this paper.

Regarding neural networks, a large volume of work has
been devoted to the application of deep learning to NLP in the
last few years, centering around several network architecture
such as convolutional neural networks (CNNs) [Kalchbren-
ner et al., 2014], recurrent/recursive neural networks [Socher
et al., 2012; Bahdanau et al., 2015], to name a few. For
NER, Collobert et al. [2011] propose a CNN-based frame-
work while Mesnil et al. [2013] and Yao et al. [2014] investi-
gate the RNNs for the slot filling problem in spoken language
understanding. Although our work also examines the RNNs,
we consider the mention detection problem with an emphasis
on the robustness of the models in the domain shifts and lan-
guage changes which has never been explored in the literature
before.

Finally, for the robustness in the domain adaptation setting,
the early work has focused on the sequential labeling tasks
such as part-of-speech tagging or name tagging [Daume,
2007]. Recent work has drawn attention to other informa-
tion extraction tasks such as relation extraction [Plank and
Moschitti, 2013; Nguyen et al., 2015a] and event detection
[Nguyen and Grishman, 2015b].

3 Models
We formalize the mention detection problem as a sequential
labeling task. Given a sentence X = w1w2 . . . wn, where
wi is the i-th word and n is the length of the sentence, we
want to predict the label sequence Y = y1y2 . . . yn for X ,
where yi is the label for wi. The labels yi follow the BIO2

encoding to capture the entity mentions in X . Note that this
work focuses on the extraction of the entity mention heads,
following Florian et al. [2006] and Li and Ji [2014a].

In order to prepare the sentence for RNNs, we first trans-
form each word wi into a real-valued vector using the con-
catenation of two vectors ei and fi: wi = [ei, fi]

2, where:

• ei is the word embedding vector ofwi, obtained by train-
ing a language model on a large corpus (discussed later).
• fi is a binary vector encompassing different features for
wi. In this work, we are utilizing four types of features:
capitalization, gazetteers, triggers (whetherwi is present
in a list of trigger words3 or not) and cache (the label that
is assigned to wi sometime before in the document).

We then enrich this vector representation by including the
word vectors in a context window of vc for each word in
the sentence to capture the short-term dependencies for pre-
diction [Mesnil et al., 2013]. This effectively converts wi

into the context window version of the concatenated vectors:
xi = [wi−vc , . . . , wi, . . . , wi+vc ].

Given the new input representation, we describe the RNNs
to be investigated in this work below.

3.1 The Basic Models
In standard recurrent neural networks, at each time step (word
position in sentence) i, we have three main vectors: the input
vector xi ∈ RI , the hidden vector hi ∈ RH and the output
vector oi ∈ RO (I , H and O are the dimensions of the input
vectors, the dimension of the hidden vectors and the number
of possible labels for each word respectively). The output
vector oi is the probabilistic distribution over the possible la-
bels for the word xi and obtained from hi via the softmax
function ϕ:

oi = ϕ(Whi), ϕ(zm) =
ezm∑
k e

zk

Regarding the hidden vectors or units hi, there are two ma-
jor methods to obtain them from the current input and the
last hidden and output vectors, leading to two different RNN
variants:

• In the Elman model, called ELMAN, the hidden vec-
tor from the previous step hi−1, along with the input in
the current step xi, constitute the inputs to compute the
current hidden state hi:

hi = Φ(Uxi + V hi−1) (1)

• In the Jordan model, called JORDAN, the output vec-
tor from the previous step oi−1 is fed into the current
hidden layer rather than the hidden vector from the pre-
vious steps hi−1. The rationale for this topology is to
introduce the label from the preceding step as a feature
for current prediction:

hi = Φ(Uxi + V oi−1) (2)
2For simplicity, we are using the word wi and its real-valued

vector representation interchangeably.
3Trigger words are the words that are often followed by entity

names in sentences such as “president”, “Mr.” etc.



In the formula above, Φ is the sigmoid activation function:
Φ(z) = 1

1+e−z and W , U , and V are the same weight matri-
ces for all time steps, to be learned during training.

3.2 Gated Recurrent Units
The ELMAN and JORDAN models are basically the stacks
of the standard feed-forward neural networks. Unfortunately,
this stacking mechanism is prone to the “vanishing gradient”
problem [Bengio et al., 1994], making it challenging to train
the networks properly in practice. This problem can be al-
leviated by long-short term memory units (LSTM) [Hochre-
iter and Schmidhuber, 1997] that propose the idea of memory
cells to allow the information storage and access over a long
period of time.

In this work, we use a variant of LSTM, called the Gated
Recurrent Units (GRUs) by Cho et al. [2014a]. GRU is
shown to be simpler than LSTM in terms of computation and
implementation but still achieves comparable performance
[Józefowicz et al., 2015].

The introduction of GRUs into the models ELMAN
and JORDAN amounts to two new models, named EL-
MAN_GRU and JORDAN_GRU respectively, with two new
methods to compute the hidden vectors hi. The formula for
ELMAN_GRU is adopted directly from Cho et al. [2014b]
and given below:

hi = zi � ĥi + (1− zi)� hi−1

ĥi = Φ(Whxi + Uh(ri � hi−1))

zi = Φ(Wzxi + Uzhi−1)

ri = Φ(Wrxi + Urhi−1)

(3)

where Wh,Wz,Wr ∈ RH×I , Uh, Uz, Ur ∈ RH×H and�
is the element-wise multiplication operation.

We cannot directly apply the formula above to the JOR-
DAN_GRU model since the dimensions of the output vec-
tors oi and the hidden vector hi are different in general. For
JORDAN_GRU, we first need to transform the output vec-
tor oi into the hidden vector space, leading to the following
formula:

hi = zi � ôi + (1− zi)� ti−1

ti−1 = Toi−1

ôi = Φ(Woxi + Uo(ri � ti−1))

zi = Φ(Wzxi + Uzti−1)

ri = Φ(Wrxi + Urti−1)

(4)

where T ∈ RH×O.

3.3 The Bidirectional Networks
One of the limitations of the four basic models presented
above is their incapacity to incorporate the future context in-
formation that might be crucial to the prediction in the current
step. For instance, consider the first word “Liverpool” in the
following sentence:

Liverpool suffered an upset first home league defeat of the
season, beaten 1-0 by a Guy Whittingham goal for Sheffield
Wednesday.

In this case, the correct label ORGANIZATION can only
be detected if we first go over the whole sentence and then
utilize the context words after “Liverpool” to decide its label.

The limitation of the four models originates in their mech-
anism to perform a single pass over the sentences from left
to right and make the prediction for a word when they first
encounter it. Guided by this intuition, we propose to employ
the bidirectional networks to solve the MD problem.

The bidirectional networks involve three passes over the
sentence, in which the first two passes are designated to
encode the sentence while the third pass is responsible for
decoding. The procedure for the sentence X = x1x2 . . . xn
is below:

(i) Run the first RNN Ref from left to right over
x1x2 . . . xn to obtain the first hidden vector or output vec-
tor sequence (depending on whether Ref is an Elman or Jor-
dan network respectively): Ref (x1x2 . . . xn) = l1, l2, . . . , ln
(forward encoding).

(ii) Run the second RNN Reb from right to left over
x1x2 . . . xn to obtain the second hidden vector or output vec-
tor sequence: Reb(xnxn−1 . . . x1) = rn, rn−1, . . . , r1 (back-
ward encoding).

(iii) Obtain the concatenated sequence α = α1, α2, . . . , αn

where αi = [li, ri].
(iv) Decode the sentence with the third RNN Rd (the

decoding model) using α as the input vector, i.e, replacing xi
by αi in the formula (1), (2), (3) and (4).

Conceptually, the encoding RNNs Ref and Reb can be
different but in this work, for simplicity and consistency,
we assume that we only have a single encoding model, i.e,
Ref = Reb = Re. Note that Re and Rd can be any model in
{ELMAN, JORDAN, ELMAN_GRU, JORDAN_GRU}.

The observation is, at the time step i, the forward hidden
vector li represents the encoding for the past word context
(from position 1 to i) while the backward hidden vector ri is
the summary for the future word context (from position n to
i). Consequently, the concatenated vector αi = [li, ri] consti-
tutes a distributed representation that is specific to the word at
position i but still encapsulates the context information over
the whole sentence at the same time. This effectively pro-
vides the networks a much richer representation to decode
the sentence.

3.4 Training and Inference
We train the networks locally. In particular, each training ex-
ample consists of a word xi and its corresponding label yi in a
sentence X = x1x2 . . . xn (denoted by E = (xi, yi, X)). In
the encoding phase, we first compute the necessary inputs ac-
cording to the specific model of interest. This can be the orig-
inal input vectors x1, x2, . . . , xn in the four basic models or
the concatenated vectors α1, α2, . . . , αn in the bidirectional
models. Eventually, in the decoding phase, an sequence of vd
input vectors preceding the current position i is fed into the
decoding network Rd to obtain the output vector sequence.
The last vector in this output sequence corresponds to the
probabilistic label distribution for the current position i, to
be used to compute the objective function. For example, in



the bidirectional models, the input sequence for the decoding
phase is αi−vdαi−vd+1 . . . αi while the output sequence is:
Re(αi−vd

αi−vd+1 . . . αi) = oi−vdoi−vd+1 . . . oi.
In this work, we employ the stochastic gradient de-

scent algorithm4 to update the parameters via minimizing
the negative log-likelihood objective function: nll(E) =
− log(oi[yi]).

Finally, besides the weight matrices in the networks, the
word embeddings are also optimized during training to obtain
the task-specific word embeddings for MD. The gradients are
computed via back-propagation and inference is performed
by running the networks over the whole sentences and taking
argmax over the output sequence: yi = argmax(oi).

4 Word Representation
Following Collobert et al. [2011], we pre-train word embed-
dings from a large corpus and employ them to initialize the
word representations in the models. One of the state-of-the-
art models to train word embeddings have been proposed re-
cently in Mikolov et al. [2013b] that introduce two log-linear
models, i.e the continuous bag-of-words model (CBOW) and
the continuous skip-gram model (Skip-gram). The CBOW
model attempts to predict the current word based on the aver-
age of the context word vectors while the Skip-gram model
aims to predict the surrounding words in a sentence given
the current word. In this work, besides the CBOW and skip-
gram models, we examine a concatenation-based variant of
CBOW (C-CONCAT) to train word embeddings and compare
the three models to gain insights into which kind of model is
effective to obtain word representations for the MD task. The
objective of C-CONCAT is to predict the target word using
the concatenation of the vectors of the words surrounding it,
motivated from our strategy to decide the label for a word
based on the concatenated context vectors. Intuitively, the
C-CONCAT model would perform better than CBOW as the
concatenation mechanism helps to assign different weights
to different context words, thereby being more flexible than
CBOW that applies a single weight for all the context words.

5 Experiments
5.1 Dataset
In order to investigate the robustness across domains, follow-
ing the prior work [Plank and Moschitti, 2013; Nguyen et
al., 2015a], we utilize the ACE 2005 dataset which contains
6 domains: broadcast news (bn), newswire (nw), broadcast
conversation (bc), telephone conversation (cts), weblogs (wl),
usenet (un) and 7 entity types: person, organization, GPE, lo-
cation, facility, weapon, vehicle. The union of bn and nw is
considered as a single domain, called news. We take half of
bc as the only development data and use the remaining data
and domains for evaluation. Some statistics about the do-
mains are given in Table 1. As shown in Plank and Moschitti
[2013], the vocabulary of the domains is quite different.

Regarding the robustness across languages, we further
evaluate the RNN models on the CoNLL 2002 dataset for

4We try the AdaDelta algorithm and the dropout regularization
but do not see much difference.

Domain #Docs #Sents #Mentions
news 332 6487 22460
bc 60 3720 9336
cts 39 5900 9924
wl 119 2447 6538
un 49 2746 6507
Total 599 21300 54765

Table 1: ACE 2005 Dataset

Dutch Named Entity Recognition5 [Carreras et al., 2002;
Tjong Kim Sang, 2002]. The CoNLL dataset comes along
with the training data, validation data and test data, annotated
for 4 types of entities: person, organization, location and mis-
cellaneous.

5.2 Resources and Parameters
In all the experiments for RNNs below, we employ the con-
text window vc = 5, the decoding window vd = 9. We find
that the optimal number of hidden units (or the dimension of
the hidden vectors) and the learning rate vary according to
the dataset. For the ACE 2005 dataset, we utilize 200 hid-
den units with learning rate = 0.01 while these numbers are
100 and 0.06 respectively for the Dutch CoNLL dataset. Note
that the number of hidden units is kept the same in both the
encoding phase and the decoding phase.

For word representation, we train the word embeddings for
English from the Gigaword corpus augmented with the news-
groups data from BOLT (Broad Operational Language Tech-
nologies) (6 billion tokens) while the entire Dutch Wikipedia
pages (310 million tokens) are extracted to train the Dutch
word embeddings. We utilize the word2vec toolkit6 (modi-
fied to add the C-CONCAT model) to learn the word repre-
sentations. Following Baroni et al. [2014], we use the context
window of 5, subsampling set to 1e-05 and negative sampling
with the number of instances set to 10. The dimension of the
vectors is set to 300 to make it comparable with the word2vec
toolkit. Finally, we use the standard IOB2 tagging schema for
both ACE 2005 and Dutch CoNLL datasets.

5.3 Model Architecture Evaluation
In this section, we evaluate different RNN models by train-
ing the models on the news domain and report the perfor-
mance on the development set. As presented in the previous
sections, we have 4 basic models M = {ELMAN, JORDAN,
ELMAN_GRU, JORDAN_GRU} and 16 bidirectional mod-
els (4 choices for the encoding and decoding models Re, Rd

inM ). The performance for the basic models and the bidirec-
tional models are shown in Table 2 and Table 3 respectively7.

There are several important observations from the three ta-
bles:

-Elman vs Jordan: In the encoding phase, the Elman mod-
els consistently outperform the Jordan models when the same
decoding model is applied in the bidirectional architecture.
In the decoding phase, however, it turns out that the Jordan

5
http://www.cnts.ua.ac.be/conll2002/ner/

6
https://code.google.com/p/word2vec/

7The experiments in this section use C-CONCAT to pre-train
word embeddings.



models are better most of the time over different model archi-
tectures (basic or bidirectional).

-With vs Without GRUs: It is clear from the tables that
GRUs are very helpful in the encoding part of the bidirec-
tional architecture for MD. However, for the decoding part,
we can only see the clear benefit of GRUs in the basic models
and the bidirectional architecture when Re is a Jordan model.

-Regarding different model architectures, in general, the
bidirectional models are more effective than the basic mod-
els, confirming the effectiveness of bidirectional modeling to
achieve a richer representation for MD.

The best basic model (F1 = 81.06%) and the best bidi-
rectional model (F1 = 82.37%) are called BASIC and BIDI-
RECT respectively. In the following, we only focus on these
best models in the experiments.

Model(Rd) F1
ELMAN 80.70
JORDAN 80.46
ELMAN_GRU 80.85
JORDAN_GRU 81.06

Table 2: The basic models’ performance

Rd Re ELMAN ELMAN_GRU
ELMAN 80.99 81.42
JORDAN 81.14 81.68
ELMAN_GRU 80.53 81.16
JORDAN_GRU 80.98 82.37

Rd Re JORDAN JORDAN_GRU
ELMAN 79.12 79.64
JORDAN 79.21 80.85
ELMAN_GRU 79.80 80.41
JORDAN_GRU 79.76 81.02

Table 3: The bidirectional models’ performance

5.4 Word Embedding Evaluation

Word Model
Embeddings BASIC BIDIRECT
RANDOM 79.30 79.76
FIXED 80.36 81.52
WORD2VEC 80.92 81.41
CBOW 78.61 79.74
SKIP-GRAM 81.45 81.96
C-CONCAT 81.06 82.37

Table 4: Word Embedding Comparison
The section investigates the effectiveness of different tech-

niques to learn word embeddings to initialize the RNNs for
MD. Table 4 presents the performance of the BASIC and
BIDIRECT models on the development set (trained on news)
when the CBOW, SKIP-GRAM and C-CONCAT techniques
are utilized to obtain word embeddings from the same English
corpus. We also report the performance of the models when
they are initialized with the word2vec word embeddings from
Mikolov et al. [2013b] (trained with the Skip-gram model on
100 billion words of Google News) (WORD2VEC). All of
these word embeddings are updated during the training of the
RNNs to induce the task-specific word embeddings . Finally,

for comparison purpose, the performance for the following
two scenarios is also included: (i) the word vectors are initial-
ized randomly (not using any pre-trained word embeddings)
(RANDOM), and (ii) the word vectors are loaded from the C-
CONCAT pre-trained word embeddings but fixed during the
RNN training (FIXED).

The first observation is that we need to borrow some pre-
trained word embeddings and update them during the train-
ing process to improve the MD performance (comparing C-
CONCAT, RANDOM and FIXED). Second, C-CONCAT is
much better than CBOW, confirming our intuition in Section
4. Third, we do not see much difference in terms of MD
performance when we enlarge the corpus to learn word em-
beddings (comparing SKIP-GRAM and WORD2VEC that is
trained with the skip-gram model on a much larger corpus).
Finally, we achieve the best performance when we apply the
C-CONCAT technique in the BIDIRECT model. From now
on, for consistency, we use the C-CONCAT word embed-
dings in all the experiments below.

5.5 Cross-Domain Experiments
This section evaluates the MD systems on the cross-domain
settings to gain an insight into their operation when the do-
main changes. The state-of-the-art systems for MD have been
the joint extraction system for entity mentions and relations
from Li and Ji [2014a], the information networks to unify
the outputs of three information extraction tasks: entity men-
tions, relations and events using structured perceptron from
Li et al. [2014b] and the Maximum Entropy Markov Model
(MEMM) system from Florian et al. [2006]. These sys-
tems extensively hand-design a large set of features (parsers,
gazetteers, word clusters, coreference etc) to capture the use-
ful structures for MD. In this work, we use the MEMM sys-
tem in Florian et al. [2006] as the baseline and compare it
with the RNN systems. The reason for this choice is twofold:
(i) as shown in Section 5.4 of Li and Ji [2014a], the perfor-
mance of the joint systems are comparable to the MEMM
system in Florian et al. [2006], and (ii) similar to our work,
the MEMM system in Florian et al. [2006] only focuses on
the MD task while the joint systems in Li et al. [2014a;
2014b] involves the predictions for other tasks, making it less
comparable to our work, especially on the cross-domain set-
ting for MD. Evaluating the joint models in Li et al. [2014a;
2014b] on the cross-domain setting for MD is another im-
portant dimension, however, out of the scope of the current
paper.

We note that the performance of the MEMM system re-
ported in this work is obtained from the actual system in Flo-
rian et al. [2006] and the feature set of the MEMM8 system
also includes the four features we are using in the RNN mod-
els (Section 3).

Following the previous work on the cross-domain set-
tings for the ACE 2005 dataset [Plank and Moschitti, 2013;
Nguyen et al., 2015a], we treat news as the source domain
and the other domains: bc, cts, wl and un as the target do-
mains. We then examine the systems on two scenarios: (i)
the systems are trained and tested on the source domain via

8We also tried the CRF model with the same feature set as the
MEMM system but it is worse in our case.



System Without Features With Features
In-Domain bc cts wl un In-Domain bc cts wl un

MEMM 76.90 71.73 78.02 66.89 67.77 82.55 78.33 87.17 76.70 76.75
BASIC 79.01 77.06 85.42 73.00 72.93 81.99 78.75 86.51 76.60 76.94
BIDIRECT 80.00† 76.27† 85.64† 73.79† 73.88† 82.52 79.65† 88.43† 76.70 77.03

Table 5: System’s Performance on the Cross-domain Setting. Cells marked with †designate the BIDIRECT models that signif-
icantly outperform (p < 0.05) the MEMM model on the specified domains.

MEMM BIDIRECT BIDIRECT-MEMM
bc cts wl un bc cts wl un bc cts wl un

bc 75.20 86.60 70.25 72.38 75.49 87.51 70.75 73.04 0.29 0.91† 0.50† 0.66†
cts 66.91 89.76 68.74 69.72 68.23 91.24 68.82 70.27 1.32† 1.48† 0.08 0.55†
wl 74.94 86.53 77.07 75.90 74.73 86.79 76.35 75.37 -0.21 0.26 -0.72 -0.53
un 72.72 86.75 72.04 73.47 73.53 88.29 73.16 74.00 0.81† 1.45† 1.12† 0.53†

Table 6: Comparison between MEMM and BIDIRECT. Cells marked with †designate the statistical significance (p < 0.05).
The columns and rows correspond to the source and target domains respectively. BIDIRECT-MEMM implies performance
substraction.

5-fold cross validation (in-domain performance), and (ii) the
systems are trained on the source domain but evaluated on
the target domains. Besides, in order to understand the effect
of the features on the systems, we report the systems’ perfor-
mance both including and excluding the features described in
Section 3. Table 5 presents the results.

To summarize, we find that the RNN systems significantly
outperform the MEMM system across all the target domains
when the features are not applied. The BIDIRECT system
still yields the best performance among systems being inves-
tigated (except in domain bc). This is also the case when the
features from Section 3 are included and demonstrates the ro-
bustness of the BIDIRECT model in the domain shifts. We
further support this result in Table 6 where we report the per-
formance of the MEMM and BIDIRECT systems (with fea-
tures) on different domain assignments for the source and the
target domains. Finally, we also see that the features are very
useful for both the MEMM and the RNNs.

5.6 Named Entity Recognition for Dutch
The previous sections have dealt with mention detection for
English. In this section, we want to explore the capacity of
the systems to quickly and effectively adapt to a new lan-
guage. In particular, we evaluate the systems on the named
entity recognition task (the simplified version of the MD task)
for Dutch using the CoNLL 2002 dataset. The state-of-the-
art performance for this dataset in the CoNLL evaluation is
due to Carreras et al. [2002] who utilize the AdaBoost clas-
sifier. In Nothman et al. [2013], the authors leverage data
from Wikipedia and are able improve the state-of-the-art per-
formance for Dutch. Very recently, while we are preparing
this paper, Gillick el al. [2015] introduce a multilingual lan-
guage processing system based on bytes and also report the
performance on this dataset. Table 7 compares the systems.

We note that the system in Gillick el al. [2015] is also
based on RNNs and the row labeled with * for Gillick el al.
[2015] corresponds to the system trained on multiple datasets
instead of the single CoNLL dataset for Dutch, so not being
comparable to ours.

The most important conclusion from the table is that the
RNN models in this work significantly outperform MEMM

System P R F1
State-of-the-art in CoNLL 77.83 76.29 77.05
Nothman et al. [2013] - - 78.60
Gillick el al. [2015] - - 78.08
Gillick el al. [2015]* - - 82.84
MEMM 80.25 77.52 78.86
BASIC 82.98 81.53 82.25
BIDIRECT 84.08 82.82 83.45

Table 7: Performance on Dutch CoNLL 2002.

as well as the other comparable system by large margins (up
to 22% reduction in relative error). This proves that the pro-
posed RNN systems are less subject to the language changes
than MEMM and the other systems. Finally, BIDIRECT is
also significantly better than BASIC, testifying to its robust-
ness across languages.

6 Conclusion

We systematically investigate various RNNs to solve the MD
problem which suggests that bidirectional modeling is a very
helpful mechanism for this task. In particular, the bidi-
rectional model outperforms a very strong baseline of the
feature-based exponential models in the cross-domain setting,
thus demonstrating its robustness across domains. We also
show that the bidirectional model is more portable to new
languages as it is significantly better than the best reported
systems for NER in Dutch (up to 22% reduction in relative
error). In the future, we plan to apply the bidirectional model-
ing technique to other tasks as well as study the combination
of different network architectures and resources to further im-
prove the performance of the systems.
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