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Abstract
Deep learning is a powerful tool for labeling images
in computer vision. We apply deep learning to se-
lect subgoals in the simulated game environment of
Minecraft. Prior work showed that subgoal selection
could be learned with off-the-shelf machine learning
techniques and full state knowledge. We extend that
work to learn subgoal selection from raw pixels. In
a limited pilot study where a virtual chracter must
overcome obstacles, we show that AlexNet can learn
an effective policy 93% of the time with very little
training.

1 Introduction
Deep Learning (DL) has played an integral role in the field
of computer vision in the form of Convolutional Neural Net-
works (CNN) [Krizhevsky et al., 2012] in recent years. These
networks have utility in classification problems bridging the
gap between the highly complex domain of pixels in an image
and a rigid classification label understood by a human.

Deep Learning has recently been brought into the domain of
video games including Atari [Mnih et al., 2015] [Lipovetsky
et al., 2015]. This work combines DL with Reinforcement
Learning (RL) to perform a different task; instead of focusing
on which classification label to generate for a given image
the network is tasked with accomplishing a goal. These goals,
such as achieving a high score in a video game, are accom-
plished by selecting the appropriate sequence of actions (e.g.,
moving, blocking, jumping). The selection process can be
either supervised (and trained by a human expert) or unsuper-
vised. The initial research by [Mnih et al., 2015] demonstrates
how DL can be used as a part of a system for recognition and
control in decision making processes.

While the DL+RL approach used was immensely success-
ful at many of the arcade games, it favors environments that
provide immediate and somewhat dense reward signals[Mnih
et al., 2015]. This research has shown poorer performance
in games which involve long sequences of events including
the Atari game Montseuma’s Revenge. Here the agent must
learn to pick up a key to open a door or that it must use a
torch to explore the pyramid. Hierchical planning can buttress
this weakness by providing a more sparse decision space for
selecting among subgoals, thus abstracting away such long

sequences of actions and focusing exploration toward subgoals
that are known to be useful1. Making decisions at the subgoal
level requires a controller that translates the chosen subgoal
into a sequence of actions.

In this paper, we focus on the problem of classifying the
game images in Minecraft to overcome simple obstacles by
selecting subgoals such as walking, creating bridges, destroy-
ing obstacles, and building stairs. We build on previous work
by Roberts et al. (2016) who show that subgoal selection can
be learned using a supervised learning method and full state
information. Here, we learn the mapping from raw images to
select a best subgoal using the guidance of an “expert”. This
technical approach momentarily leads us toward classification
and away from RL, but we identify in our future work dis-
cussion our plans for returning to a DL+RL framework and
learn this selection policy using RL. We find that a DL method
can learn a subgoal-selection policy that is 87.1% accurate. In
some cases the failures resulted from occlusions that we are
working to address. Our results show that combining DL with
hierarchical planning successfully leverages the strengths of
both.

2 Goal Reasoning and A C T O R S I M

We augment the model of online planning and execution by
Nau (2007) with a goal reasoning loop (see Figure 1). Our
work builds on a recent model of goal reasoning that is based
on Goal-Task Network (G T N) planning [Alford et al., to
appear]. G T N planning is a hybrid model by Alford et al.
(2016) that merges hierarchical task network planning [Nau
et al., 2003] with hierarchical goal network planning [Shiv-
ashankar et al., 2013]. Nodes in a gtn can be either a goal (i.e.,
a state to achieve) or a task to perform. Thus G T N planning
provides a natural formalism for representing knowledge in
a way that can decompose complex tasks into combinations
of subgoals or subtasks and was the basis for a recent for-
mal model and semantics for goal reasoning by Roberts et al.
(2016). For this paper we focus more on a simple goal-task
network (see Figure 3).

The Actor Simulator, A C T O R S I M (Figure 2), implements
the goal lifecycle and G T N semantics. It complements ex-
isting open source planning systems with a standardized im-

1Although we do not consider temporal planning in this work, it
is one direction for future work.



Figure 1: Relating goal reasoning with online planning, where
the G R P R O C E S S can modify the objectives of the system.

plementation of goal reasoning and also provides links to
simulators that can simulate multiple agents interacting within
a dynamic environment. The Core provides the interfaces and
minimal implementations of the platform. It contains the es-
sential abstractions that apply across any simulator. This com-
ponent contains information about Areas, Locations, Actors,
Vehicles, Symbols, Maps, Sensors, and configuration details.
The Planner contains the interfaces and minimal implemen-
tations for linking to existing open source planning systems.
This component unifies Mission Planning, Task Planning, Path
Planning, and Motion Planning. It currently includes simple,
hand-coded implementations of these planners, although we
envision linking this component to many open source planning
systems. Connector links to existing simulators directly or
through a network protocol. Currently supported simulators
include George Mason University’s MASON2 and two com-
puter game simulators: StarCraft and Minecraft. We envision
links to common robotics simulators (e.g., Gazebo, ROS, Ope-
nAMASE), additional game engines (e.g., Mario Bros., Atari
arcade, Angry Birds), and existing competition simulators
(e.g., RDDLSim). We plan to eventually link A C T O R S I M
to physical hardware. Coordinator (not shown in the figure)
houses the interfaces that unify all the other components. This
component contains abstractions for Tasks, Events, Human
interface Interaction, Executives (i.e., Controllers), and Event
Notifications. It uses Google’s protocol buffers3 for messaging
between distributed components. The Goal Refinement Li-
brary is a standalone library that provides goal management
and the data structures for transitioning goals throughout the
system. It contains the default implementations for goals, goal
types, goal refinement strategies, the goal memory, domain
loading, and domain design.

3 The Game of Minecraft
Here we discuss how goal reasoning can be used in the video
game Minecraft. This video game contains complex environ-

2
http://cs.gmu.edu/˜eclab/projects/mason/

3
https://developers.google.com/protocol-buffers/

ments in terms of both imagery and planning. We also define
the A C T O R S I M Connector, a tool which allows us to apply
goal reasoning techniques to this game.

3.1 Applications of Goal Reasoning in Minecraft
We study goal reasoning in Minecraft, a popular game where
a human player moves a character, named Steve, to explore
a 3D virtual world while gathering resources and surviving
dangers. Managing the complete game is challenging. The
character holds a limited inventory to be used for survival.
Resource blocks such as sand, dirt, wood, and stone can be
crafted into new items, which in turn can be used to construct
tools (e.g., a pickaxe for mining or a shovel for digging) or
structures (e.g., a shelter, house, or castle). Some blocks are
dangerous to the character (e.g., lava or water). Hostile non-
playing characters like creepers or skeletons, generally called
mobs, can damage the characters health. Steve can only fall
two blocks without taking damage. We focus on the problem
of navigating obstacle courses. The set of possible choices are
staggering; for navigating a 15x15 maze in Minecraft, Abel
et al. (2014) estimate the state space to be nearly one million
states.

Researchers have recently begun using the Minecraft game
for the study of intelligent agents [Aluru et al., 2015]. In previ-
ous work, researchers developed a learning architecture called
the Brown-UMBC Reinforcement Learning and Planning
(BURLAP) library, which they implemented in their variant of
Minecraft, BURLAPCraft [Abel et al., 2015] BURLAPCraft
allows a virtual player to disregard certain actions that are not
necessary for achieving goals such as navigating a maze.

Similar to that research, we task the G R P R O C E S S , act-
ing as a virtual player, with controlling Steve to achieve the
goal of navigating to a gold block through an obstacle course.
However, our technical approach differs from prior research.
Our aim is to develop a G R P R O C E S S that can incorporate
increasingly sophisticated goal-task networks and learned ex-
perience about when to apply them. At a minimum, this
requires thinking about how to compose action primitives into
tasks that the G R P R O C E S S can apply and linking these tasks
into a gtn. Thus, we construct these tasks and build a gtn that
uses them.

Figure 3 shows the gtn consisting of a top goal of moving
to the gold block and the four descriptive subgoals that help
the character lead to that objective. These subgoals do not
contain operational knowledge. For example, preconditions on
actions ensure that Steve will not violate safety by falling too
far or walking into a pool of lava or water. For moving toward
the goal, the block at eye level must be air, the block stepped
on cannot be lava or water, and Steve cannot fall more than a
height of two blocks. A staircase requires a wall with a height
of two blocks and the ability to move backwards in order to
place a block. Mining is only applicable if the obstacle has a
height of three blocks.

The order of subgoal choice impacts performance. For
example, suppose the subgoal to step forward is selected when
lava is directly in front of Steve. Steve’s Controller disallows
this step because it violates safety and the subgoal will fail,
which will require additional goal reasoning to resolve the
failure.



Figure 2: The Component Architecture of A C T O R S I M.

Figure 3: The gtn for the G R P R O C E S S in our study.
‘

Three features of our goal representation complement prior
research in action selection (e.g., reinforcement learning or
automated planning). First, we model the subgoal choice at
a descriptive level, assuming that committing to a subgoal
results in an effective operational sequence (i.e., a plan) to
achieve the goal. We rely on feedback from the Controller
running the plan to resolve the subgoal. Second, the entire state
space from start to finish is inaccessible to the G R P R O C E S S
so it cannot simply perform offline planning or interleave
full planning with online execution. Each obstacle course is
distinct and there must be an interleaving of perception, goal
reasoning, and acting. Third, the operational semantics of
committing to a subgoal are left to the Controller. Thus, the
G R P R O C E S S must learn to rank the subgoals based on the
current state using prior experience.

Prior work by Roberts et al. (2016) examined how making
effective choices at the G T N level can be done by learning
from traces (i.e., examples) that lead to more efficient behavior,
where improved efficiency was measured as reaching the goal
in fewer steps or failing less frequently. In this paper, we focus
on learning a subgoal selection policy from an expert. We next
describe how A C T O R S I M connects to Minecraft and how
we collect that expert experience.

3.2 The A C T O R S I M Connector for MineCraft
The A C T O R S I M Connector integrates A C T O R S I M ab-
stractions with a reverse-engineered game plugin called the
Minecraft Forge API (Forge), which provides methods for

manipulating Minecraft. We implemented basic motion primi-
tives such as looking, moving, jumping, and placing or destroy-
ing blocks. These motion primitives compose the operational
plans for the four sub-goals: walking forward, creating stairs,
removing obstacles, and bridging obstacles. Although some
of this functionality was present in BURLAPCraft [Abel et
al., 2015], our implementation better matches with the abstrac-
tions provided by the A C T O R S I M Core and A C T O R S I M
Coordinator.

We have simplified Steve’s motions to be axis aligned. Steve
always faces North and the course is constructed such that the
gold block is North of Steve in a straight line. Steve is 1.8
meters high; voxels in Minecraft are 1 meter square. So, Steve
occupies roughly a 1x2 meter space. Steve interacts with a
limited set of world objects: cobblestone, emerald, air, lava,
water, and gold.

The A C T O R S I M Connector for MineCraft constructs the
obstacle courses for our study. Figure 4 (top) shows six of the
nine sections the G R P R O C E S S may encounter:lava, pond,
short wall, tall wall, obstacle, empty, stairs, arch, and comb.
Figure 4 (bottom) displays a course composed of three sec-
tions.

Each obstacle has an appropriate subgoal choice. For lava
or pond, the best choice is a bridge; alternatively the G R P R O -
C E S S may also move closer and go around the pond. For the
short wall, the best subgoal is to create a single stair and step
up. For the tall wall or pillar, which are both three blocks high,
the best subgoal is to mine through the wall; alternatively, the
G R P R O C E S S may also move closer and go around the pillar.
Observations Figure 5 shows the set of states around Steve
that the G R P R O C E S S can observe. These include the eight
blocks directly around Steve’s feet, the two blocks directly
behind and in front of Steve, one block behind and below
Steve, the block just above Steve’s head to the front, and the
block three down and in front of Steve as shown in Figure
5. A state is labeled with a unique string using the relative
position left/right (l), front/back (f), and height (h) with ei-
ther a positive (p) or negative (n) offset, where zero is de-
noted as a positive number. For example, the block immedi-
ately in front of Steve’s feet would be left positive 0, front
positive 1, height negative 1 creating the string designation



Figure 4: Six example section types (top left to bottom right)
include arch, comb, lava, pillar, short wall, and steps. The
bottom image shows a portion of an obstacle course where the
G R P R O C E S S must traverse from the emerald block behind
it at the start (not shown) to a gold block at the opposite end
in front of it (not shown). The course is covered with a clear
top to prevent Steve from walking along the wall.

”LP0FP1HN1”. Each state is assigned a unique string (shown
in each box) to denote the world object in that position.
Collecting Traces of Experience The original study collected
various kinds of experience. However, in this study we use
traces from the expert training procedure, which is hand-
coded (by an author of the previous study) and examines
detailed state information to select the best subgoal. The
expert procedure never fails to reach the gold block but also
represents extremely biased knowledge about which subgoal
is appropriate.

The subgoal selected by the expert trace is used to train a
convolutionoal neural network which is given both imagery
and the corresponding subgoal. We then study how effective
the convolutional neural network can predict the subgoal given
imagery alone.

4 Approach
The camera view we chose for this study contains the obstacles
and the agent (see Figure 6). Because of this it is possible
that the blocks in front of Steve are occluded by Steve himself,
hindering navigation.

The subgoal selection procedure that A C T O R S I M uses is
informed by state information that is read directly from the

Figure 5: Observable blocks around Steve from the top view
(top), where the player is facing “up” and the side view (bot-
tom), where the player is facing to the right.

MineCraft environment. However, the expert procedure is
blind to the imagery that would be directly used by a human
player. In this section we describe the technique we use to
train a DL network to select the optimal subgoal as shown
in Figure 7. During training, the network uses information
provided by A C T O R S I M as well as imagery. During testing,
the DL network uses imagery only to predict which subgoal
should be used to navigate the course.

4.1 Data Generation
Obstacle courses are generated using the A C T O R S I M Con-
nector. These obstacle courses are then run by Steve using
the expert training procedure as described in Section 3. We
modified ActorSim to generate an image prior to every sub-
goal selection. Many subgoals may be required to overcome
a single obstacle. For example, when encountering an arch,
Steve must walk to the arch, build stairs, and then walk up
the stairs and across the arch. Because of this, an obstacle
course of a few hundred obstacles may generate thousands of
image/subgoal pairs.



Figure 6: An example of imagery that was used to train the
CNN. The image contains Steve as well as multiple obstacles.
The imagery is dependent on the viewing angle of Steve.

The generated images is representative of what a human
player would see while running the course. This perspective
is from behind the player and was chosen as it maximizes the
amount of state information for surrounding blocks present in
an imagry. The image is not only dependent on the content
of the scene but also the viewing angles. Because of this,
we generate training data with variable viewing angles (both
azimuth and elevation).

The expert procedure is biased: it chooses the ’walk’ sub-
goal 78% of the time. For training purposes we removed this
bias by undersampling the data set removing the between-class
imbalance [He and Garcia, 2009]. This yields a total of 348
frames per subgoal with 278 for training and 70 for validation.
The assignment of which frames to keep, as well as whether a
frame is used for validation or training, was chosen randomly.

Finally, we generated a set of test data by running A C T O R -
S I M on an independent obstacle course with varing viewing
angles resulting in 892 image/subgoal pairs. We use all 892
images for testing maintaining the unbalanced distribution of
subgoals inherent in the problem. The images (with labels
removed) are run through the CNN which generates a subgoal
which can be compared to the subgoal ”truth” generated by
the expert procedure.

4.2 CNN Architecture
Convolutional Neural Networks (CNNs), a specific DL ar-
chitecture, have frequently been used to process imagery for
classification problems. We used the trained DL architecture
defined in [Krizhevsky et al., 2012] (i.e., AlexNet) as the basis
for our DL network.

This architecture is implemented in Caffe [Jia et al., 2014],
which defines the architecture and learning procedure for the
CNN. In our study experimentation we used the weights from
the origonal AlexNet model for all but the final inner product
layer.

We applied a fine-tuning procedure to train this network
[Karayev et al., 2014]. We modified the final inner product
layer, which has 1000 outputs, to instead output our four
possible subgoals. During training, the weights of this layer
were tuned using the standard learning rate and all other layers
were trained using a reduced rate. The CNN model trained
quickly, achieving high accuracy in a short amount of time as

Figure 7: The approach for training a CNN. The A C T O R -
S I M Connector produces a subgoal given state information of
Minecraft. This subgoal, and the corresponding imagery, are
used to train the network.

shown in Figure 8.

5 Results
We tested the trained CNN by applying it to all 892 frames
in the test set. The CNN achieved an average accuracy of
87.1% when compared to the subgoals generated by A C T O R -
S I M . This accuracy is higher than a policy which picks the
most common subgoal which would have accuracy of 78%.
Table 1 displays the confusion matrix, which plots the CNN’s
predicted subgoal vs. the subgoal generated by A C T O R S I M.
Of the 115 frames that incorrectly predicted, 83 were labeled
with the previous (correct) subgoal selection. This suggests
that taking into account previous state information, in addition
to current imagery, could greatly increase the overall accuracy
of the DL network.

Many of the errors are due to occlusion, as not enough state
information can be generated from the imagery due to either
the viewing angle or the agent blocks the forward path, as
shown in Figure 9. This lead to a problem where the agent
would walk up to a location, correctly choose the subgoal, and
then not realize that the subgoal had already been executed.
We discuss plans for handling this problem in Section 6.

6 Summary and Future Work
We presented a pilot study on performing subgoal selection for
a limited version of overcoming obstacles in Minecraft. We
found that it is possible to train a Deep Learning (DL) network
to perform well on this subgoal selection task. This network,
which we trained using information from a goal reasoning



Figure 8: Training results of the finetuned CNN. The archi-
tecture is a modified version of AlexNet which has been re-
purposed for subgoal selection. Raw imagery is input into
the network a suggested subgoal is returned bridging the gap
between sensory information and appropriate policy.

Table 1: The confusion matrix for the 892 image/subgoal pairs.
This table shows a comparison between the actual subgoal as
deteremined by A C T O R S I M and the subgoal predicted by
the CNN given imagery only.

simulator, can predict the proper subgoal using only imagery
87.1% of the time.

Our current implementation is limited by the inability to
remember previous subgoal selections, which may be allevi-
ated by adding memory to the network in the form of Long
Short Term Memory (LSTM) [Hochreiter and Schmidhuber,
1997]. This technique has begun to be explored in video game
tasks [A. Summerville, 2016] and would likely improve a net-
work’s ability to navigate complex environments. By allowing
state information to be remembered it will likely enable a
perspective shift from behind the character (third person) to a
perspective from the characters perspective (first person).

In the future, we plan to study more complex tasks such
as agents that must protect themselves against mobs. A first
step in this direction will be to encode our goal network using
the goal lifecycle provided in A C T O R S I M, since our current
implementation applies goal reasoning without using much

Figure 9: An example of occlusion. Here the proper action
is to walk forward onto the previously constructed bridge.
However the bridge is not easily seen in front of Steve resulting
in the CNN predicting that a bridge needs to be constructed.
This type of error, where the CNN produces a subgoal which
was accomplished in the previous process, represents 83 of
the 115 errors produced by the CNN.

of its functionality. This will allow us to build (or learn)
more sophisticated goal networks and to leverage existing
planning and scheduling techniques in A C T O R S I M. Finally,
we plan to include non-playing characters in Minecraft with
our resulting goal networks. Each of these advancements
requires an advanced understanding of imagery and high level
goal reasoning.

Finally, we plan to couple A C T O R S I M with the BURLAP
reinforcement learning platform [MacGlashan, 2015], which
would incorporate the DL and goal reasoning portions of the
system and allow us to more easily integrate learning with
G T N planning.
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