
CHI 99 15-20 MAY 1999 Papers

Should We Leverage Natural-Language Knowledge?
An Analysis of User Errors in a

Natural-Language-Style Programming Language

Amy Bruckman and Elizabeth Edwards
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280 USA

asb@cc.gatech.edu, lizzie@cc.gatech.edu

ABSTRACT
Should programming languages use natural-language-like
syntax? Under what circumstances? What sorts of errors
do novice programmers make? Does using a natural-
language-like programming language lead to user errors?
In this study, we read the entire online interactions of
sixteen children who issued a total of 35,047 commands
on MOOSE Crossing, an educational MUD for children,
We counted and categorized the errors made. A total d
2,970 errors were observed. We define “natural-language
errors” as those errors in which the user failed to
distinguish between English and code, issuing an
incorrect command that was more English-like than the
correct one. A total of 314 natural-language errors were
observed. In most of those errors, the child was able to
correct the problem either easily (41.1% of the time) or
with some effort (20.7%). Natural-language errors were
divided into five categories. In order from most to least
frequent, they are: syntax errors, guessing a command
name by supplying an arbitrary English word, literal
interpretation of metaphor, assuming the system is
keeping more state information than is actually the case,
and errors of operator precedence and combination. We
believe that these error rates are within acceptable limits,
and conclude that leveraging users’ natural-language
knowledge is for many applications an effective strategy
for designing end-user-programming languages.

Keywords
Natural language, novice programming, programming
language design, end-user programming.

A HISTORICAL PERSPECTIVE
Since the very beginning of computing, the use of natural-
language-like syntax for programming languages has been
controversial. In fact, the use of words of any kind was
initially hotly debated. Admiral Grace Murray Hopper,
speaking at the history of programming languages
conference in 1978, told this story:

Permission to make digital or hard topics of all or part ofthis work fix
personal or classroom use is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation w the first page. To copy
othcrwisc, to republish, to post on servers or to rcdisuihutc to lists.
requires prior specific permission and/or a fee.

CHI ‘99 Pittsburgh PA USA
Copyright ACM 1999 0-201-48559-l/99/05.,.$5.00

“In the early years of programming languages, the
most frequent phrase we heard was that the only way
to program a computer was in octal. Of course a f&v
years later a few people admitted that maybe you
could use assembly language. But the entire
establishment was firmly convinced that the only way
to write an efficient program was in octal. They totally
forgot what happened to me when I joined Eckert-
Mauchly. They were building BINAC, a binary
cohputer. We programmed it in octal. Thinking I
was still a mathematician, I taught myself to add,
subtract, multiply, and even divide in octal. I was
really good, until the end of the month, and then my
checkbook didn’t balance! [Laughter] It stayed out of
balance for three months until I got hold of my brother
who’s a banker. Afler several evenings of work he
informed me that at intervals I had subtracted in octal.
And I faced the major problem of living in two
different worlds. That may have been one of the things
that sent me to get rid of octal as far as possible.” [l]

A somewhat puritanical spirit pervaded the early days of
computing. Computers were astronomically expensive,
and many argued that their resources shouldn’t be
squandered to cater to the weakness of human
programmers. If coding in octal was time-consuming or
error-prone, the coders were simply not working hard
enough. It took time to recognize that those delays and
errors are inevitable, and better accommodating the needs
of the human programmer is not indulgent coddling but
simply good business sense. Today, computers are no
longer so expensive, but elements of the underlying
attitude remain: technologies that are too user-friendly are
often denigrated as “not serious.”

In 1959, a committee with representatives from industry
and government was formed to design a “Common
Business Language”-what eventually became COBOL.
At one of their first meetings, they made a list of desired
characteristics of the new language. It began with these
two points:

“a) Majority of the group favored maximum use cf
simple English language; even though some
participants suggested there might be advantage horn
using mathematical symbolism.

207

Papers CHI 99 15-20 MAY 1999

b) A minority suggested that we steer away from
problem-oriented language because English language
is not a panacea as it cannot be manipulated as
algebraic expressions can.” [2]

As these early observations indicate, how natural-
language-like to make a programming language is a
matter of trade-offs. The COBOL committee was
concerned primarily with manipulability-in other words,
expressive power for mathematical applications. A second
common concern is ambiguity: words may mean
something different in typical English usage than in a
program [3, 41. Another key issue and the primary
concern of this paper is Zeamability and the slippery slope
of natural language: will novice programmers be able to
draw a distinction between English and code? Will they
try to insert arbitrary English sentences into programs?

More than twenty-five years after the design of COBOL,
the designers of Hypertalk had similar goals and
strategies. When asked about the language ancestors aE
Hypertalk, designer Bill Atkinson replied “The first one
is English. I really tried to make it English-like” [5]. Ted
Kaehler, another member of the Hypertalk design team,
comments that “One principle was ‘reads as English, but
does not write as English.’ Like an ordinary
programming language, it depends on exactly the right
syntax and terms” [6]. English-like scripting languages
are becoming more common, but few empirical studies
have addressed the pros and cons of this design approach.

A NATURAL-LANGUAGE-STYLE LANGUAGE
Work on the MOOSE programming language began in
mid-1993, and it has been in public use since October
1995. The language was designed for one restricted
application: for children to create places, creatures, and
other objects that have behaviors in a text-based multi-
user virtual world (or “MUD”‘). The fundamental goal is
for children to learn reading, writing, and computer
programming through the process of creating such objects
[13]. This is an unusual design goal: the process of
programming and what is learned from that process is
more important than the product (the program created).

The design of MOOSE borrows Liberally t?om the MOO
language (on top of which it is built [14-161) and from
Hypertalk. Another significant influence is Logo, the first
programming language designed explicitly for kids [17].
The designers* deliberately tried to make the MOOSE
language as natural-language-like as possible while

’ “MUD” stands for “Multi-User Dungeon.” The first
MUDS were violent adventure games [7]. More recently,
the technology has been adapted for a variety of
purposes including professional communities [S-lo] and
educational applications [11, 121.

* The MOOSE language was designed by Amy
Bruckman with guidance from Pave1 Curtis, Mitchel
Resnick, and Brian Silverman, and assistance from MIT
students Austina DeBonte, Albert Lin, and Trevor
Stricker.

maintaining a regular syntax. While some researchers are
investigating the use of free-form natural language [181, we
felt that a natural-language-like approach which still
maintained a degree of forma1 syntax was a more
promising compromise. The following is a MOOSE
program written by Wendy (girl, age 10-12) 3, one of the
randomly selected subjects of this study. The program
choreographs a sequence of events as a magic.al book is
opened:
on read blue book

tell context "You take an old and musty blue
book off of the shelf. As you blow the dust
off the cover, a symbol painted in gold
appears. It resembles a circle with a - in
the middle" + ".'I

announce-all-but context context's name +
"carefully takes an old,large,and musty
blue volume off of the shelf" t II." +
context's psc t ' blows gently. The dust
swirls up in a flurry of gray mysts4. A
svmbol imprinted in gold on the cover
emerges. It resembles a circle with a - in
the middle" t V ' . . .

fork 5
tell context "You hesitantly open this

strange book. As you peer inside, you see
a life like painting of a brook behind a
poppy field and infront of an apple
orchard...."

announce-all-but context context's psc + '
hesitantly opens the strange book."

fork 15
announce "A strong wind blows in from the

open windows. It grows stronger and
stronger and STRONGER....."

fork 5
announce-all-but context context's name

t "Is suddenly lifted up into the
air, and carried off...."

tell context "You are lifted off your
feet and are carried off...Up over
the trees, houses, lakes,
meadows...."

fork 3
move player to #4551

endfork
endfork

endfork
endfork

end

3 The children’s online pseudonyms have been changed
to protect their identities.

4 Children’s spelling and grammar have been 1eR
unchanged.

208

CHI 99 15-20 MAY 1999 Papers

When you run this program by typing “read blue book,”
you are magically transported to a babbling brook. This
is what you see:
You take an old and musty blue book off of the
shelf. As you blow the dust off the cover, a
symbol painted in gold appears. It resembles a
circle with a - in the middle.

[pause]
You hesitantly open this strange book. As you
peer inside, you see a life like painting of a
brook behind a poppy field and infront of an
apple orchard....

[pause]
A strong wind blows in from the open windows.
It grows stronger and stronger and
STRONGER.....
You are lifted off your feet and are carried
off...Up over the trees, houses, lakes,
meadows....

[pause]

Babbling Brook
You are in a small meadow filled with poppies.
As the breeze frolicks above the flowers, the
dance and sway like the sea. Behind you is a
forest of apple trees, pear trees, orange
trees, and peach trees.Underneath them is a
carpet of green green moss, soft and springy.
Beside you is a babbling brook which giggles
and laughs as it slides down over the sMOOth
pebbles. As you stick your foot in you are
suprised. This stream is not cold like all the
others, but warm, and soothing. Tiny mare's
tails walts across the sky.Can this last
forever? It is late-afternoon summer. A
bright sunny day with few clouds.

The syntax of a basic MOOSE command is a verb
followed by some number of arguments. Arguments can
be string constants, numbers, or references to objects.
Quoting of strings is optional as long as those strings
don’t contain words that function as logical operators
(such as “and”). The environment includes both a
command-line language and scripting language, which
were designed to be as nearly identical as possible. This
allows the learner to try most commands out at the
command line, and later use them in programs. A more
complete description of the language and principles that
underlie its design appears in [131.

The language was designed with eight basic heuristics:

1. Have a gently-sloping learning curve.

2. Prefer intuitive simplicity over formal elegance.

3. Be forgiving.

4. Leverage natural-language knowledge.

5. Avoid non-alphanumeric characters wherever
possible.

6. Make essential information visible and easily
changeable.

7. It’s OK to have limited functionality.

8. Hide nasty things under the bed. 1131

Are these heuristics useful? Under what circumstances?
Of particular interest is rule four, “Leverage natural-
language knowledge.” The designers felt that a natural-
language-like programming language would increase
accessibility to young children, However, we worried
about the slippery slope of natural language: would
children understand the differences between MOOSE and
English? This paper attempts to address that question
systematically.

Basic

Basic

Table 1: Randomly selected study subjects

209

Papers CHI 99 15-20 MAY 1999

Note that this paper addresses the risks and possible
downsides of natural-language-style programming, but not
the benefits. Three years of observation of children using
the MOOSE language in the virtual world called MOOSE
Crossing have led us subjectively to believe that it has
significant benefits. Children as young as seven have been
able to program in MOOSE. Kids can immediately read
other children’s programs and use them as examples to
learn from. The intuition that reliance on natural language
is part of what makes this possible is based on years af
participant observation, clinical interviews, and, log file
analysis. A systematic analysis of the benefits of natural-
language-style programming would be desirable.
However, that is beyond the scope of this study, and is
left for future work. In this study, we attempt to examine
the downside risks systematically.

THE STUDY
At the time of this writing, the MOOSE language has
been used for almost three years by 299 children and 211
adults. All input to and output from the system is
recorded, with written informed consent from both parents
and children. A total of 1.1 Gb of data has been recorded
as of July 31”‘, 199K5 To re-evaluate the language’s
design and principles underlying it, we randomly selected
16 children, and categorized every error each child made.
While this retrospective analysis is not a controlled
study, the data is intriguing and we believe sheds light on
general questions of programming language design for
children.

Data about the random sample of children appears in
Table 1. The children range in age from six to f&en at
the start of their participation. Their length c6
involvement ranges from seven minutes to thirty-three
months. The total number of commands they typed into
the system (which ranges from 15 to 40,182) is perhaps a
better measure of their varying degrees of involvement.
Seven of the children wrote no programs; five attained
basic or slightly above basic programming knowledge;
one, intermediate knowledge; two, advanced knowledge;
one, expert knowledge. Definitions of coding categories
are:

Basic Simple output.

Intermediate Conditionals, property references,
variables.

Advanced List manipulation, control flow.

Expert Complex projects using all
language features and constructs.

The children’s level of achievement is based on what
language constructs they were able to use independently
in original programs. For example, Snickers has a number
of programs with intermediate language constructs;

’ Most data for one roughly six-month period (6/10/97-
12/l/97 was lost due to a technical problem. Most of
Lucy’s participation was during this time. The other
subjects are less directly affected.

however, he received significant assistance in writing that
code and never demonstrated that he Iunderstood
everything he was shown. Consequently, he is listed in
the Basic category.

For each child, Elizabeth Edwards read the child’s entire
online experiences, and categorized each error the child
made. (With one significant exception: Mike’s degree of
participation was so high that it was logistically
impossible for us to read his entire log file. Instead, we
sampled his participation by randomly selecting one
month per year for a total of 1,275 of his 40,182
commands typed.) “Errors” most typically are times
when the system returned an error message; however, we
also subjectively inferred situations in which the output
from the system was likely not what the child desired.
For example, Wendy typed:

describe here as the way it was
before!!

We can reasonably infer that the outcome (the room was
described literally as “the way it was before!!“) was not
what she intended.

t\ NUMBER OF 1 NUMBER OF 1 ERRC)RRATE

Table 2: Over-all error rate observed

ERRORS/TOTAL

SCRIPT
1 LEVEL

Basic

Basic

Basic

Advanced

Expert

Basic

Batsic +

Advanced

Intermediate

Table 3: Errors for each child

210

CHI 99 15-20 MAY 1999 Papers

For the sixteen children, a total of 2,970 errors were
observed (see Table 2). They are broken down per child
in Table 3. There is no apparent correlation between the
child’s age or level of programming achievement and the
number of natural language or other errors they make.

Errors are divided into seven basic categories (see Table
4). From most to least fi-equent, they are: object
manipulation, command-line syntax, typos, scripting
syntax, movement, system bugs, and
communication/interaction errors. A more detailed
breakdown appears in Table 5.

Interaction in the virtual world takes place at the
interactive command-line prompt. Scripts are written in a
separate window, in a client program (MacMOOSE or
JavaMOOSE) designed to give the child a supportive
programming environment. Clicking “save” in the client
compiles the script and returns feedback to the user. Note
that command-line errors are counted per individual line
typed; however, scripting errors are countedper compile.

In each of these error categories, some errors can be
categorized as natural-language errors, and some can not.
Examples appear in Table 6. Generally speaking, we
define natural-language errors as those errors in which the
incorrect command is more English-like than the correct.

In total, 10.6% of errors found were judged to be natural-
language related. A total of 3 14 natural-language errors
were found. Of those, 73% (229/3 14) were command-line
syntax errors. In most cases, such errors involve a child
guessing at a command’s name or the syntax of its
arguments. The “examine” command will tell you what
commands are available for a particular object and what
their exact syntax is; however, children frequently guess
rather than use “examine.”

In a study of novice Pascal programmers, JefI?ey Bonar
and Elliot Soloway found error rates attributable to “step
by step natural-language knowledge” from between 47%

LANGUAGE

ERRORS/TOTAL

Table 4: Categorizatioqof errors

to 67% [19]. Certainly the measures used in the two
studies are not directly comparable, and the definitions d
“natural-language errors” differ. However, if it were the
case, broadly speaking, that natural-language errors were
less common in MOOSE than Pascal, this finding
wouldn’t be surprising. In an English-like language such
as MOOSE, relying on natural-language knowledge is
oRen a success&l strategy. In a more formal language like
Pascal, this approach is more likely to lead to errors.

ERROR

Object
manipulation

Command-line
syntax

Typos

Scripting
syntax

Movement

System bugs

Communication
and interaction
errors

Table 5: Detaile

DETAILED BREAKDOWN

Assuming presence of object that
doesn’t exist (243)
Assuming script that doesn’t exist (240)

Incorrect number of arguments (128)

Trying to run script that never compiled
(98)
Ambiguous object reference (35)

Permissions errors (3 1)

Wrong type of argument (24)

Syntax errors (336)

Guessing at commands (263)

Errors creating objects (67)

Difficulties with tutorial system (26)

Disallowed characters in object names
(9)

Misspellings (440)

Forgotten “say” or “emote” (174)

Key banging (87)

Quoting errors (117)

Scripting syntax errors (111)

Mismatch of script name (38)

Nonexistent property or variable (38)

Missing script structure (“on”, “end”,
returns) (28)

Problems with alternate line editor (7)

Assuming exit which doesn’t exist (201)

Teleporting to random non-existent room
name (64)

Type room name instead’of exit name (53)

Mail system problems (39)

Other system bugs (15)

Saying something instead of doing it
(15)

Typing desired output instead of
command to generate desired output (12)

Talking to non-player characters (9)

Talking to person not in the room (7)

Addressing person by real rather than
character name (2)

error breakdown

211

Papers CHI99 15-20 MAY 1999

Roy Pea comments:

“[Students’] default strategy fir making sense when
encountering difficulties of program interpretation or
when writing programs is to resort to the pow&l
analogy of natural language conversation, to assume a
disambiguating mind which can understand. It is not
clear at the current time whether this strategy is
consciously pursued by students, or whether it is a
tacit overgeneralization of conversational principles to
computer programming “discourse.” The central point
is that this personal analogy should be seen as
expected rather than bizarre behavior, for the students
have no other analog, no other procedural device than
“person” to which they can give written instructions
that are then followed. Rumelhart and Norman have
similarly emphasized the critical role of analogies in
early learning of a domain-making links between the
to-be-learned domain and known domains perceived
by the student to be relevant. But, in this case,
mapping conventions for natural language instruction
onto programming results in error-ridden
performances.” [20]

Pea’s conclusions are based on his analysis of student
errors in traditional programming languages. One
approach to countering this problem is deliberately to
leverage students’ natural-language knowledge in the
programming-language design.

Table 7 sorts the 314 natural language errors into different
categories+ategories more descriptive of the nature d
natural-language errors we observed. The most common

7s

OBJECT
MANIPULATION:

NON-NL set Rocky's following 1
(Correct command would be:
set Rocky’s following to 1)

NL feel Napoleon

COMMAND-LINE
SYNTAX:

NON-NL

NL

SCRIPTING
SYNTAX:

create #lOO josephine

(Correct command would be:
created #lOO named josephine)

examine me more

NON-NL

NL

MOVEMENT:

Missing end, endif, etc.

if number < 20 and > 10

NON-M, Trying to use exit that doesn’t
exist.

NL Back
Go to tree house

(There are no such commands.)
/

Table 6: Examples of non-natural language (Non-v
and natural language (NL,) errors

are again syntax and guessing errors. Many of these errors
demonstrate a lack of understanding of underlying
computer-science concepts. In the first example, Wendy
apparently wants to make her pet follow her around the
virtual world. She expresses that in an Elnglish-like
fashion (“set Roo to follow me”). However, she evidently
fails to understand that making a pet follow you involves
setting a property on the pet’s object (the correct
command would be “set Roo’s following to me”.)
Wendy demonstrates an understanding of the use of
properties in other contexts, but not in this instance.

Perhaps the most intriguing category of error is literal
interpretation of metaphor. For example, to get rid of an
object that you no longer want, you “recycle” it.
Recycling is a metaphor for a process that caln be more
precisely described as deleting a database entry.
Interpreting that metaphor somewhat literally, at number of
participants have tried to “reuse” objects.

The next most prevalent category is assuming the system
tracking or aware of state more than it is. When travelling
through the virtual world, children will o&n type “back”
to try to retrace their steps. No such command exists,
(though implementing one is not hard and actually might
be a good idea.)

TYPE

Syntax

Guessing

Literal
interpretation
of metaphor

Assuming
system is
tracking/
aware of state

Operator
precedence or
zombination

INSTANCES
(ERRORSOF
TYPFYTOTAL
ERRORS)

46.8%
(147/314)

21.7%
(68/314)

18.5%
(581314)

4.5%
(14/314)

2.2% (7/314)

EXAMPLE

set Roo to follow me

(To make a pet follow you,
you need to set its
“following” property.
Correct command is: set
roo’s following to me.)

make new thing
(Correct command would be
to type “create” and wait for
prompts or type “create
<pareno named <o’bject
name’?
tie hair with ribons
(Child has created an object
called “ribons” but not
programmed any scripts on
it.)

reuse Harper
(You can “recycle” an
object, but not “reuse” it.)

back
describe here as the
way it used to be

if number < 20 and >
10

Table 7: Types or natural language errors

212

CHI99 15-20 MAY 1999 Papers

Interestingly enough, the least common category is the
one we were most worried about before we began data
analysis: operator precedence and combination. The
conditional clause “if A is B or C” is parsed by the
computer as equivalent to “if (A is B) or (C is true)“;
however, it’s often the case that the user meant “if (A is
B) or (A is C)“.

Another type of operator error involves the insertion d
extra operator words. For example, children often write
statements of the form “if x is member of y,” inserting an
extra “is” before the “member of’ operator. This
particular problem can be automatically detected and is
corrected by the MOOSE compiler. However, the
compiler currently is not able to correct the error in the
example “if number < 20 and > 10.”

Concern about operator errors was the original motivation
for undertaking this study. However, only seven of 314
natural language errors and 2,970 total errors fell into this
category. It’s worth noting that only four of sixteen
children demonstrated an understanding of the use cf
conditionals. Those four children had a total of 2125
errors. Operator precedence and combination errors
represent only 0.3% of the total.

ERROR RECOVERY?
But how serious are these natural language errors?
Certainly an error that is immediately corrected is quite
differen from one that causes the child to abandon a
project in frustration. We divided error recovery into six
categories:

Immediate As soon as feedback is received, the next
command directed towards the problem
solves it.

Short

Long

Workaround

Interrupted

Never

The problem takes more than one attempt
but is solved in that particular sitting.

The child doesn’t solve the problem in
the initial attempt, but returns to it later
(time ranging from minutes to days) and
solves the problem then.

Child does not determine how to execute
this particular command, but constructs a
di&rent string of commands that produce
the desired results.

Child is interrupted by a message, arrival
of another child, parental threat cf
grounding if they don’t get off the
computer, etc., and does not appear to
return to the problem.

Problem not solved.

For each of the 3 14 natural language errors observed, we
categorized the recovery time. This data appears in Table
8. Table 9 analyzes how quickly errors were recovered by
type, grouping them into easily recovered (immediate and
short), recovered with difficulty (long and workaround),
not recovered (never), and unclear (interrupted). Error
recovery rates were not calculated for non-natural-language
errors. This would be an interesting topic for future work.

At first glance it surprised us that guessing errors were the
most “serious’‘-aren’t operator errors, for example,
conceptually deeper? However, it’s likely that this is
simply a reflection of the depth of the child’s engagement
with the task at hand. A guessing error may often be a
whim-if the task isn’t easy, it is readily abandoned. An
operator error, on the other hand, occurs in the context of

EASILY RECOVERED RECOVERED WITH NOTRECOVERED UNCLEAR
(IMMEDLATE+SHORT) DIFFICULTY (NEVER) (hTE?RRUF'TED)

(LONG+WORKAROUND)

Syntax 39.0% (69/177) 25.4% (45/177) 34.5% (61/177) 1.1% (2/177)
Guessing 27.9% (19/68) 17.6% (12/68) 54.4% (37/68) 0.0% (O/68)

Metaphor 56.3% (27/48) 4.2% (2/48) 39.6% (19/48) 0.0% (O/48)

State 92.9% (13/14) 0.0% (O/14) 0.0% (O/14) 7.1% (l/14)

Operator 14.3% (l/7) 85.7% (6/7) 0.0% (O/7) 0.0% (O/7)

Total 41.1% (129/314) 20.7% (65/314) 37.3% (117/314) 1.0% (3/314)

Table 9: Recoverability of natural language errors

213

Papers CHI 99 15-20 MAY 1999

a project in which the child has already invested
significant time and effort. Consequently, the child is
more likely to spend the time to solve the problem or in
most cases find a workaround. It makes sense then too
that syntax errors are more likely to be successmlly
resolved than guessing errors: with a syntax error, the
child has found a command and simply needs to learn to
use it correctly. In the case of a guess, no such command
or concept may exist.

CONCLUSIONS
Is it advisable to “leverage natural-language knowledge”
in designing programming languages? The question of
course can’t be answered in the general case, because
different applications and target audiences have d&rent
needs. A more focused question might be: is it wise to
leverage natural-language knowledge in the design of a
programming language for children designed to promote
learning? We began in 1993 with the intuition that the
answer was “yes.” This study supports that conclusion.

This work primarily addresses the risks of natural-
language-style programming. A formal analysis of its
benefits of would be desirable, but is beyond the scope CE
this study.

In total, we found that 16 children made a total of 2,970
errors. Of those, 3 14 were natural-language-related. Most
of those errors were easily recovered (4 1.1 O/o) or recovered
with some difficulty (20.7%). Those that were not
recovered represent 37.3% of the natural language errors
and only 4.2% of total errors. We believe these rates to be
within acceptable limits. Leveraging users’ natural-
language knowledge does not appear to cause serious
problems. We believe that making use of people’s pre-
existing natural language knowledge is an effective
strategy for programming language design for children,
end users, and others new to coding.

In future work, we hope to continue to analyze this set c&’
data to shed light on other aspects of programming-
language design for novice users.

REFERENCES
1. Hopper, G.M., Keynote Address, in History of

Programming Languages, R.L. Wexelblat, Editor.
1981, Academic Press: New York. p. 7-20.

2. Sammet, J., The Early History of COBOL, in
History of Programming Languages, R. Wexelblat,
Editor. 1981, Academic Press: New York.

3. Spohrer, J. and E. Soloway, Analyzing the High
Frequency Bugs in Novice Programs, in Empirical
Studies of Programmers, E. Soloway and S. Iyengar,
Editors. 1986, Ablex Publishing: Norwood, NJ.

4. Boulay, B.D., Some Dtfficulties of Learning to
Program, in Studying the Novice Programmer, E.
Soloway and J.C. Spohrer, Editors. 1989, Lawrence
Erlbaum Associates: Hillsdale, NJ. p. 283-299.

5. Goodman, D., The Complete HyperCard Handbook.
2nd ed. 1988, New York: Bantam Books.

6.

7.

Kaehler, T., 1996, personal communication.

Bartle, R., Interactive Multi-User Computer Games.
1990, MUSE Ltd:

8.

9.

ftp://ftp.lambda.moo.mud.org/pub/MOO/papers/mudreport.txt

Bruckman, A. and M. Resnick, The MediaMOO
Project: Constructionism and Professional
Community. Convergence, 1995. l(1): p. ‘94-109.

Glusman, G., E. Mercer, and I. Rubin, Real-time
Collaboration On the Internet: BioMOO, the
Biologists’ Virtual Meeting Place., in Internet for the
Molecular Biologist., S.R. Swindell, R.R. Miller,
andG.S.A. Myers, Editors. 1996, Horizon Scientific
Press: Norfolk, UK.

10. Van Buren, D., et al., The AstroVR Collaborator-y,

11.

12.

13.

14.

Astronomical Data Analysis Software and
Systems ZV R. Hanish and H. Payne, Editors. 1994,
Astronomical Society of the Pacitic:.San E’rancisco.

O’Day, V., et al., Moving Practice: From
Classrooms to MOO Rooms. Computer Supported
Cooperative Work, 1998. 7: p. 9-45.

Bruckman, A., Community Support for
Constructionist Learning. Computer Supported
Cooperative Work, 1998. 7: p. 47-86.

Bruckman, A., MOOSE Crossing: Construction,’
Community, and Learning in a Networked Virtual
World for Kids.1997, MIT, Ph.D. dissertation:
http://w.cc.gatech.edu/-asblthesisl

Curtis, P. Mudding: Social Phenomena in Text-
Based Virtual Realities. in DIAC. 199:!. Berkeley,
CA:

15.

16.

17.

18.

19.

20.

ftp://ftp.lambda.moo.mudorg/pubiMOO/papers/DIAC92.txt

Curtis, P., LambdaMOO Programmer’s Manual.
1993:
ftp://ftp.lambda.moo.mud.orglpubh4OOProgr-ersManual.txt

Curtis, P. and D. Nichols. MUDS Grow Up: Social
Virtual Reality in the Real World. in Third
International Conference on Cyberspace. 1993.
Austin, Texas:
ftp:/Ktp.lambda.moo.mud.org/pub/MOO/papersiMUD&rov.4Jp.txt

Papert, S., Mindstorms: Children, Computers, and
Powerful Ideas. 1980, New York: Basic IBooks.

Miller, L. A., Natural language programming:
Styles, strategies, and constrasts: IBM Systems
Journal, 1981. 20(2): p. 184-215.

Bonar, J. and E. Soloway, Preprogramming
Knowledge: A Major Source of Misconceptions in
Novice Programmers, in Studying the Novice
Programmer, E. Soloway and J. Spohrer, Editors.
1989, Lawrence Erlbaum Associates: Hillsdale, NJ.

Pea, R.D., Language-Independent Conceptual
“‘Bugs ” in Novice Programming. Journal ti
Educational Computing Research, 1986. 2(l): p. 25
36.

214

